Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Общие принципы программной инженерии: эффективность, повторное использование, надежность, стойкость к ошибкам

Содержание:

Введение

Программная инженерия (промышленное программирование) обычно ассоциируется с разработкой больших и сложных программ коллективами разработчиков. Становление и развитие этой области деятельности было вызвано рядом проблем, связанных с высокой стоимостью программного обеспечения, сложностью его создания, необходимостью управления и прогнозирования процессов разработки.

В конце 60-х – начале 70-х годов прошлого века произошло событие, которое вошло в историю как первый кризис программирования. Событие состояло в том, что стоимость программного обеспечения стала приближаться к стоимости аппаратуры («железа»), а динамика роста этих стоимостей позволяла прогнозировать, что к середине 90-годов все человечество будет заниматься разработкой программ для компьютеров. Тогда и заговорили о программной инженерии (или технологии промышленного программирования, как это называлось в России) как о некоторой дисциплине, целью которой является сокращение стоимости программ.

Программная инженерия — это инженерная дисциплина, которая связана со всеми аспектами производства ПО от начальных стадий создания спецификации до поддержки системы после сдачи в эксплуатацию. В этом определении есть две ключевые фразы: · Инженерная дисциплина · Все аспекты производства ПО Инженерная дисциплина. Инженеры – это те специалисты, которые выполняют практическую работу и добиваются практических результатов. Ученый может сказать: проблема неразрешима в рамках существующих теорий и это будет научный результат, достойный опубликования и защиты диссертации. Для решения задачи инженеры применяют теории, методы и средства, пригодные для решения данной задачи, но они применяют их выборочно и всегда пытаются найти решения, даже в тех случаях, когда теорий или методов, соответствующих данной задаче, еще не существует. В этом случае инженер ищет метод или средство для решения задачи, применяет его и несет ответственность за результат – ведь метод или средство еще не проверены. Набор таких инженерных методов или способов, теоретически возможно не обоснованных, но получивших неоднократное подтверждение на практике, играет большую практическую роль.

 Основу инженерных методов в программировании составляет повышение качества, для достижения которого сформировались методы определения требований к качеству, подходы к выбору и усовершенствованию моделей метрического анализа показателей качества

Стандарты программной инженерии

Как отмечалось, по происхождению программные продукты бывают двух типов: заказные (под заказ конкретного потребителя) и коробочные (для массовой продажи на рынке). Для заключения контракта заказчик должен быть уверен, что разработчик справится и не завалит проект. В мировой практике промышленного производства гарантией успеха являются стандарты на производство продуктов и услуг и сертификация производителей на соответствие этим стандартам. Процесс стандартизации и сертификации давно вошел и в программную инженерию, где он составляет основу промышленного производства программных продуктов. При изготовлении коробочных продуктов стандартизация имеет не меньшее значение, т.к. она обеспечивает качество продуктов и продвижение их на рынок.

Какие бывают стандарты.

Среди всего многообразия стандартов принято выделять следующие основные типы стандартов:

Корпоративные стандарты разрабатываются крупными фирмами (корпорациями) с целью повышения качества своей продукции. Такие стандарты разрабатываются на основе собственного опыта и с учетом требований мировых стандартов. Корпоративные стандарты не сертифицируются, но являются обязательными для применения внутри корпорации. В условиях рыночной конкуренции могут иметь закрытый характер.

Отраслевые стандарты действуют в пределах организаций некоторой отрасли (министерства). Например, СНИП – строительные нормы и правила. Разрабатываются с учетом требований мирового опыта и специфики отрасли. Являются, как правило, обязательными для отрасли. Подлежат сертификации.

Государственные стандарты (ГОСТы) принимаются государственными органами, в некоторых случаях имеют силу закона. Разрабатываются с учетом мирового опыта или на основе отраслевых стандартов. Могут иметь как рекомендательный, так и обязательный характер (стандарты безопасности). Для сертификации создаются государственные или лицензированные органы сертификации.

Международные стандарты. Разрабатываются, как правило, специальными международными организациями на основе мирового опыта и лучших корпоративных стандартов. Имеют сугубо рекомендательный характер. Право сертификации получают организации (государственные и частные), прошедшие лицензирование в международных организациях.

Кто разрабатывает стандарты программной инженерии.

Основными разработчиками международных стандартов являются следующие организации:

ISO - International Organization for Standardization – Международная организация по стандартизации. Наиболее представительная и влиятельная организация, разрабатывающая стандарты почти во всех областях деятельности, в том числе и в IT.

ACM - Association for Computing Machinery –Ассоциация по вычислительной технике. Всемирная научная и образовательная организация в области вычислительной технике. Известна также и разработкой образовательных стандартов.

SEI - Software Engineering Institute - Институт Программной Инженерии. Исследования в области программной инженерии с упором на разработку методов оценки и повышения качества ПО. Стандарты по качеству ПО и зрелости организаций, разрабатывающих ПО.

PMI - Project Management Institute - Международный Институт Проектного Менеджмента (Управления Проектами). Некоммерческая организация, целью которой является продвижение, пропаганда, развитие проектного менеджмента в разных странах. PMI разрабатывает стандарты проектного менеджмента, занимается повышением квалификации специалистов.

IEEE - Институт инженеров по электронике. Поддержка научных и практических разработок в области электроники и вычислительной техники. Большие вложения в разработку стандартов в этой области.

Главная составляющая качества - надежность, которой уделяется большое внимание в области надежности технических средств и тех критических систем (реального времени, радарные системы, системы безопасности и др.), для которых надежность - главная целевая функция оценки их реализации. Как следствие, в проблематике надежности разработано более сотни математических моделей надежности, являющихся функциями от ошибок, оставшихся в ПС, от интенсивности отказов или частоты появления дефектов в ПС. На их основе производится оценка надежности программной системы.

Характеристика показателей качества

1.Функциональность - совокупность свойств, определяющих способность ПО выполнять перечень функций в заданной среде и в соответствии с требованиями к обработке и общесистемным средствам. Под функцией понимается некоторая упорядоченная последовательность действий для удовлетворения потребительских свойств. Функции бывают целевые (основные) и вспомогательные.

К атрибутам функциональности относятся:

  • функциональная полнота - свойство компонента, которое показывает степень достаточности основных функций для решения задач в соответствии с назначением ПО;
  • правильность (точность) - атрибут, который показывает степень достижения правильных результатов;
  • интероперабельность - атрибут, который показывает возможность взаимодействовать на ПО специальными системами и средами (ОС, сеть);
  • защищенность - атрибут, который показывает на способность ПО предотвращать несанкционированный доступ (случайный или умышленный) к программам и данным.

2.Надежность - совокупность атрибутов, которые определяют способность ПО преобразовывать исходные данные в результаты при условиях, зависящих от периода времени жизни (износ и его старение не учитываются). Снижение надежности ПО происходит из-за ошибок в требованиях, проектировании и выполнении. Отказы и ошибки в программах появляются на заданном промежутке времени.

К подхарактеристикам надежности ПО относятся:

  • безотказность - атрибут, который определяет способность ПО функционировать без отказов (как программы, так и оборудования);
  • устойчивость к ошибкам - атрибут, который показывает на способность ПО выполнять функции при аномальных условиях (сбой аппаратуры, ошибки в данных и интерфейсах, нарушение в действиях оператора и др.);
  • восстанавливаемость - атрибут, который показывает на способность программы к перезапуску для повторного выполнения и восстановления данных после отказов.

К некоторым типам систем (реального времени, радарных, систем безопасности, коммуникация и др.) предъявляются требования для обеспечения высокой надежности (недопустимость ошибок, точность, достоверность, удобство применения и др.). Таким образом, надежность ПО в значительной степени зависит от числа оставшихся и не устраненных ошибок в процессе разработки на этапах ЖЦ. В ходе эксплуатации ошибки обнаруживаются и устраняются.

Если при исправлении ошибок не вносятся новые или, по крайней мере, новых ошибок вносится меньше, чем устраняется, то в ходе эксплуатации надежность ПО непрерывно возрастает. Чем интенсивнее проводится эксплуатация, тем интенсивнее выявляются ошибки и быстрее растет надежность ПО.

К факторам, влияющим на надежность ПО, относятся:

совокупность угроз, приводящих к неблагоприятным последствиям и к ущербу системы или среды ее функционирования;

угроза как проявление нарушения безопасности системы;

целостность как способность системы сохранять устойчивость работы и не иметь риска.

Обнаруженные ошибки могут быть результатом угрозы извне или отказов, они повышают риск и уменьшают некоторые свойства надежности системы.

Надежность - одна из ключевых проблем современных программных систем, и ее роль будет постоянно возрастать, поскольку постоянно повышаются требования к качеству компьютерных систем. Новое направление - инженерия программной надежности (Software reliability engineering) - ориентировано на количественное изучение операционного поведения компонентов системы по отношению к пользователю, ожидающему надежную работу системы, и включает:

  • измерение надежности, т.е. проведение ее количественной оценки с помощью предсказаний, сбора данных о поведении системы в процессе эксплуатации и современных моделей надежности;
  • стратегии и метрики конструирования и выбора готовых компонентов, процесс разработки компонентной системы, а также среда функционирования, влияющая на надежность работы системы;
  • применение современных методов инспектирования, верификации, валидации и тестирования при разработке систем, а также при эксплуатации.

Верификация применяется для определения соответствия готового ПО установленным спецификациям, а валидация - для установления соответствия системы требованиям пользователя, которые были предъявлены заказчиком.

В инженерии надежности термин dependability (пригодноспособность) обозначает способность системы иметь свойства, желательные для пользователя, который уверен в качественном выполнении функций ПС, заданных в требованиях. Данный термин определяется дополнительным количеством атрибутов, которыми должна обладать система, а именно:

  • готовность к использованию (availability);
  • готовностью к непрерывному функционированию (reliability);
  • безопасность для окружающей среды, т.е. способность системы не вызывать катастрофических последствий в случае отказа (safety);
  • секретность и сохранность информации (сonfidential);
  • способность к сохранению системы и устойчивости к самопроизвольному ее изменению (integrity);
  • способность к эксплуатации ПО, простота выполнения операций обслуживания, а также устранения ошибок, восстановление системы после их устранения и т.п. (maintainability);
  • готовность и сохранность информации (security) и др.

Удобство применения характеризуется множеством атрибутов, которые показывают на необходимые и пригодные условия использования (диалоговое или не диалоговое) ПО заданным кругом пользователей для получения соответствующих результатов. В стандарте удобство применения определено как специфическое множество атрибутов программного продукта, характеризующих его эргономичность.

К под характеристиками удобства применения относятся:

понимаемость - атрибут, который определяет усилия, затрачиваемые на распознавание логических концепций и условий применения ПО;

изучаемость (легкость изучения) - атрибут, который определяет усилия пользователей на определение применимости ПО путем использования операционного контроля, диагностики, а также процедур, правил и документации;

оперативность - атрибут, который показывает на реакцию системы при выполнении операций и операционного контроля;

согласованность - атрибут, который показывает соответствие разработки требованиям стандартов, соглашений, правил, законов и предписаний.

  1. Эффективность - множество атрибутов, которые определяют взаимосвязь уровней выполнения ПО, использования ресурсов (средства, аппаратура, материалы - бумага для печатающего устройства и др.) и услуг, выполняемых штатным обслуживающим персоналом и др.

К подхарактеристикам эффективности ПО относятся:

    • реактивность - атрибут, который показывает время отклика, обработки и выполнения функций;
    • эффективность ресурсов - атрибут, показывающий количество и продолжительность используемых ресурсов при выполнении функций ПО;
    • согласованность - атрибут, который показывает соответствие данного атрибута с заданными стандартами, правилами и предписаниями.
  1. Сопровождаемость - множество свойств, которые показывают на усилия, которые надо затратить на проведение модификаций, включающих корректировку, усовершенствование и адаптацию ПО при изменении среды, требований или функциональных спецификаций.

Cопровождаемость включает подхарактеристики:

анализируемость - атрибут, определяющий необходимые усилия для диагностики отказов или идентификации частей, которые будут модифицироваться; изменяемость - атрибут, который определяет удаление ошибок в ПО или внесение изменений для их устранения, а также введение новых возможностей в ПО или в среду функционирования;

стабильность - атрибут, указывающий на постоянство структуры и риск ее модификации;

тестируемость - атрибут, показывающий на усилия при проведении валидации и верификации с целью обнаружения несоответствий требованиям, а также на необходимость проведения модификации ПО и сертификации;

согласованность - атрибут, который показывает соответствие данного атрибута соглашениям, правилам и предписаниям стандарта.

Переносимость - множество показателей, указывающих на способность ПО адаптироваться к работе в новых условиях среды выполнения. Среда может быть организационной, аппаратной и программной. Поэтому перенос ПО в новую среду выполнения может быть связан с совокупностью действий, направленных на обеспечение его функционирования в среде, отличной от той среды, в которой оно создавалось с учетом новых программных, организационных и технических возможностей.

Переносимость включает подхарактеристики:

  • адаптивность - атрибут, определяющий усилия, затрачиваемые на адаптацию к различным средам;
  • настраиваемость (простота инсталляции) - атрибут, который определяет необходимые усилия для запуска данного ПО в специальной среде;
  • сосуществование - атрибут, который определяет возможность использования специального ПО в среде действующей системы;
  • заменяемость - атрибут, который обеспечивают возможность интероперабельности при совместной работе с другими программами с необходимой инсталляцией или адаптацией ПО;
  • согласованность - атрибут, который показывает на соответствие стандартам или соглашениями по обеспечению переноса ПО.

Вывод

Таким образом можно сделать вывод что программная инженерия непосредственно связана напрямую со всеми процессами жизненного цикла любого программного обеспечения. Цель программной инженерии состоит в реализации самых эффективных, новых и лучших технологий в практических целях для реализации и совершенствования сложных систем, объектов, процессов или явлений. Сам термин процесса программной инженерии может характеризоваться обсуждением, поиском и реализацией на практике реальных последовательностей действий по правильным и эффективным способам выполнения поставленных задач. Связанные непосредственно со всеми процессами жизненного цикла программного обеспечения (разработка либо приобретение, а также сопровождение и вывод из эксплуатации), подавляющее большинство процессов программной инженерии взаимодействуют между собой, а также и как напрямую, так и опосредованно с другими областями знаний. Все процессы программной инженерии комплексно направлены на выработку наиболее верных решений при построении надежных и безопасных программных продуктов в условиях минимальных временных и ресурсных затрат на их создание, внедрение и сопровождение.


 

Список источников

1. https://spravochnick.ru/informacionnye_tehnologii/programmnaya_inzheneriya/

2. https://studopedia.ru/6_130261_zaklyuchenie.html

3. http://www.unn.ru/pages/issues/aids/2007/16.pdf

4. https://studme.org/164841/informatika/printsipy_programmnoy_inzhenerii

5. https://hsse.spbstu.ru/metodologiya_i_instrumentu_programmnoy_inzghenerii/