Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Процессор персонального компьютера. Назначение, функции, классификация процессора

Содержание:

ВВЕДЕНИЕ

Сейчас, принято говорить, что центральный процессор является мозгом компьютера. Фактически, центральный процессор - это крошечный чип, связанный непосредственно с материнской платой, с большим вентилятором (кулером), подключенным непосредственно к нему. Без вентилятора центральный процессор очень быстро бы сгорел.

На сегодняшний день на рынке есть две главные марки центральных процессоров: Intel и AMD.

Различают также два различных центральных процессора: «гнездо» и разъем. «Гнездо» подсоединяется непосредственно к материнской плате, также оно имеет собственный вентилятор, в то время как разъем имеет оболочку, которая держится на центральном процессоре, и вентилятор, связанный с этой оболочкой. Нельзя выделить лучшее из этих двух типов, но «гнездо» становится все более популярным, и, таким образом, становится легче охлаждать процессор, что является главным фактором быстродействия компьютера.

Скорость центрального процессора измеряется в Мегагерцах (Мгц), свыше 1000 Мгц называется Гигагерцем (ГГц). Одно основное неправильное представление относительно центрального процессора – это то, что чем больше число (мегагерц/гигагерц), тем быстрее центральный процессор.

Целью данной курсовой работы является изучение архитектуры, функционирования и основных характеристик центрального процессора.

Для реализации поставленной цели, необходимо решить следующие задачи:

  1. Изучить архитектуру центрального процессора
  2. Исследовать функционирование центрального процессора
  3. Провести сравнительный анализ основных характеристик процессоров.

1. Общая архитектура центрального процессора

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

К основным характеристикам процессора относятся:

  • Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.
  • Тактовая частота в МГц. Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 (1974 г.), 80286 (1982 г.), 80386DX (1985 г.), 80486DX (1989 г.), 80586 или Pentium (1993 г.), Pentium Pro (1995 г.), Pentium II (1997 г.), Pentium III (1999 г.), Pentium IV (2001 г.). Как видно, увеличение частоты – одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели. У Intel – это Pentium и модель с урезанной кэш-памятью Pentium Celeron; у AMD – это Athlon и модель с урезанной кэш-памятью Duron.
  • Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 (2x8); если 4 байта, то 32; если 8 байтов, то 64.

Существует много различных подходов к реализации структурной схемы (архитектуры) центрального процессора (ЦП). В нашей стране наибольшее распространение получила архитектура, предложенная американской фирмой Intel. Именно поэтому мы сосредоточим основное внимание на изучении процессоров, построенных по идеологии Intel и вычислительных машин, реализованных на базе этих процессоров фирмой IBM.

При разработке Intel8086 применены интересные архитектурные решения, к которым, в частности, относится разделение функций сопряжения с шиной и выполнения команд. В соответствии с этим структуру процессора (рис. 1.1, а) можно условно разделить на две части: блок сопряжения с шиной (БСШ) и исполнительный блок (ИБ).

Рассмотрим назначение и работу отдельных узлов микропроцессора Intel 8086. В нем имеется четырнадцать 16-разрядных регистров, которые по своему назначению можно разделить на три группы (рис. 1.1, б). Регистры АХ, ВХ, СХ, DX образуют группу регистров общего назначения (РОН). Эти регистры могут без ограничений участвовать в выполнении арифметических и логических операций. Некоторые другие операции, например операции над цепочками байтов и слов, предписывают регистрам данной группы специальное использование: АХ - аккумулятор, ВХ - база, СХ - счетчик, DX - данные. В отличие от регистров других групп РОН обладают свойством раздельной адресации старших и младших байтов. Поэтому РОН можно рассматривать как совокупность двух наборов 8-разрядных регистров: набора Н, содержащего АН, ВН, СН, DH, и набора L, содержащего AL, BL, CL, DL. Регистры всех других групп являются неделимыми и оперируют 16-разрядными словами, даже в случае использования только старшего или младшего байта.

Рис. 1.1. Архитектура центрального процессора Intel 8086 и его регистры.

Регистры SP, BP, SI и DI образуют группу указательных и индексных регистров, назначение которых заключается в том, что они содержат значения смещений, используемых для адресации в пределах текущего сегмента памяти. При этом регистры-указатели SP и ВР хранят смещения адреса в пределах текущего сегмента памяти, выделенного под стек, а индексные регистры SI и DI содержат смещения адреса в пределах текущего сегмента памяти, выделенного под данные. С этим связаны и обозначения регистров: SP - указатель стека, ВР - указатель базы, SI - индекс источника и DI - индекс места назначения. Регистры этой группы могут использоваться и как регистры общего назначения.

Регистры CS, DS, SS и ES, образующие группу сегментных регистров, играют важную роль во всех действиях ЦП, связанных с адресацией памяти. Обозначения регистров расшифровываются следующим образом: CS - кодовый или программный сегмент, DS - сегмент данных, SS - стековый сегмент и ES - дополнительный сегмент. Содержимое любого из этих регистров определяет текущий начальный адрес сегмента памяти, выделенного пользователем под информацию, соответствующую названию регистра.

Содержимое регистра CS определяет начальный адрес сегмента памяти, в котором располагается объектный код программы. Выборка очередной команды осуществляется относительно содержимого CS с использованием значения указателя команд IP. Содержимое регистра DS определяет начальный адрес текущего сегмента данных, так что обращение к данным в памяти ЦП осуществляет относительно содержимого DS. Для обращения к другим трем сегментам: дополнительному, стековому или программному - используется специальный указатель, который называется префиксом замены сегмента и располагается в соответствующих командах.

Содержимое регистра SS определяет текущий сегмент, выделенный для организации стека. Все обращения к памяти, при которых для вычисления адреса прямо или косвенно используются регистры ВР или SP, осуществляются относительно содержимого регистра SS. К таким обращениям относятся, например, все операции со стеком, включая и те, которые связаны с операциями вызова подпрограмм, прерываниями и операциями возврата. Обращения к данным, использующие регистр ВР (но не SP), могут производиться также и относительно одного из трех других сегментных регистров путем использования префикса замены сегмента.

Рис. 1.2. Регистр флагов

Содержимое регистра ES определяет начальный адрес сегмента, рассматриваемого как дополнительный сегмент данных. В частности, обращения к данным в операциях с цепочками байтов или слов осуществляются относительно ES, а в качестве смещения берется содержимое DI.

Кроме перечисленных регистров имеются два 16-разрядных регистра: IP - указатель команд и F - регистр флагов. В регистре IP формируется относительный (относительно CS)адрес команды, подлежащей исполнению. В регистре F (рис. 1.2) используются следующие девять разрядов: CF - перенос, PF - четность, AF - вспомогательный перенос, ZF - нулевой результат, SF - знак, TF - пошаговый режим, IF - разрешение прерывания, DF - направление, OF - переполнение. Неиспользованные разряды на рисунке заштрихованы.

Флаги AF, CF, PF, SF и ZF характеризуют признаки результата последней арифметической, логической или иной операции, влияющей на эти флаги. Установка флага производится в следующих случаях:

AF - при выполнении операции производится перенос «1» из младшей тетрады байта в старшую или осуществляется заем «1» из старшей тетрады;

CF - при переносе «1» из старшего бита байта (слова) или при заеме единицы в старший бит;

PF - если в представлении результата операции содержится четное число единиц;

SF - при получении «1» в старшем бите результата;

ZF - если в результате выполнения операции получено нулевое значение.

К этой группе флагов относится также флаг OF, который устанавливается при наличии переполнения в результате выполнения арифметических операций над числами со знаком.

Флаги DF, IF и TF используются для управления работой процессора. Флаг DF управляет направлением обработки данных в операциях с цепочками байтов или слов. При DF=1 цепочка обрабатывается снизу вверх, т. е. происходит автоматическое уменьшение (автодекремент) адреса текущего элемента цепочки. При DF=0 цепочка обрабатывается сверху вниз, т. е. происходит автоматическое увеличение (автоинкремент) адреса.

Флаг IF предназначается для разрешения или запрещения (маскирования) внешних прерываний. При IF = 0 внешние прерывания запрещены, т. е. процессор не реагирует на их запросы.

Флаг TF применяется для задания процессору пошагового режима, при котором процессор после выполнения каждой команды останавливается и ждет внешнего запуска. Пошаговый режим задается установкой флага TF= 1 и обычно необходим при отладке программ.

Основные операции по обработке данных выполняются в арифметико-логическом устройстве (АЛУ), с которым связана схема коррекции результатов (СКР), используемая при работе с данными, представленными в двоично-десятичных кодах. Связь внутренних узлов ЦП с шиной ША/Д осуществляется через буфер шины БШ, состоящий из двунаправленных усилителей с тремя устойчивыми выходными состояниями.

Усовершенствование архитектуры Intel 8086 связано также с введением в структуру микропроцессора специального сумматора (СМ) для вычисления адресов памяти.

Как отмечалось выше, разрядность адресов микропроцессора равна 20. Однако для упрощения операций хранения и пересылки адресной информации процессор манипулирует 16-разрядными логическими адресами, к которым относятся начальные (базовые) адреса сегментов памяти и значения смещений в этих сегментах. Логические адреса используются для вычисления 20-разрядных физических (абсолютных) адресов с помощью следующей процедуры. Содержимое каждого сегментного регистра рассматривается как 16 старших разрядов А19-А4 начального адреса соответствующего сегмента. Младшие разряды A3-А0 этого адреса всегда полагаются равными нулю и поэтому не запоминаются в регистрах, а приписываются справа к старшим разрядам во время операции вычисления физических адресов. Эта операция выполняется сумматором адреса, расположенным в блоке БСШ, и состоит в сложении 20-разрядного начального адреса сегмента с 16-разрядным смещением, которое дополняется четырьмя старшими разрядами А19-А16, равными нулю, как показано на рис. 1.3. Сумматор адресов осуществляет, например, следующие вычисления: CS + IP - при выборке очередной команды, SS + SP - при обращении к стеку, DS + SI и ES + DI - при обработке строк, DS + EA- при обращении к запоминающему устройству с произвольной выборкой (ЕА - исполнительный адрес, формирование которого описано ниже).

Рис. 1.3. Вычисление физического 20-разрядного адреса

Поскольку младшие четыре разряда начального адреса любого сегмента должны быть равны нулю, значения начальных адресов сегментов выбираются кратными 16. Наибольшая емкость памяти, отводимой под один сегмент, определяется максимальным значением 16-разрядного смещения и составляет 64К байт.

На рис. 1.4 приведен пример размещения сегментов памяти.

Рис 1.4. Пример размещения сегментов в памяти

В несложных системах с емкостью памяти не более 64К байт можно отказаться от сегментации памяти и установить все сегментные регистры в нулевое состояние. При этом 16-разрядный адрес смещения будет фактически абсолютным адресом. При использовании системы с большой емкостью памяти (до 1М байт включительно) начальные адреса сегментов задаются исходя из особенностей структуры программного обеспечения и данных, хранимых в памяти.

кэш память команд

2. Принцип работы центрального процессора

Рабочий цикл центрального процессора:

01. На буферный регистр адреса центрального процессора посылается содержимое счётчика адреса команд.

02. На буферный регистр адреса запоминающего устройства посылается содержимое буферного регистра адреса центрального процессора.

03. Из запоминающего устройства по адресу счётчика адреса команд происходит выборка адреса команды и передача на буферный регистр адреса запоминающего устройства.

04. На буферный регистр данных центрального процессора подаётся содержимое буфера регистра данных запоминающего устройства.

05. На регистр команд посылается команда с буферного регистра данных центрального процессора.

06. На буферный регистр адреса центрального процессора посылается первый адрес операнда команды.

07. На буферный регистр адреса запоминающего устройства посылается содержимое На буферный регистр адреса центрального процессора.

08. Из запоминающего устройства происход выборка данных по адресу первого операнда команды и передача его на буферный регистр адреса запоминающего устройства.

09. На буферный регистр данных центрального процессора подаётся содержимое буфера регистра данных запоминающего устройства.

10. На аккумулятор передаётся содержимое буферного регистра данных центрального процессора.

11. На буферный регистр адреса центрального процессора посылается содержимое посылается второй адрес операнда команды.

12. На буферный регистр адреса запоминающего устройства посылается содержимое буферного регистра адреса центрального процессора.

13. Из запоминающего устройства происходит выборка данных по адресу второго операнда команды и передача его на буферный регистр адреса запоминающего устройства.

14. На буферный регистр данных центрального процессора подаётся содержимое буфера регистра данных запоминающего устройства.

15. На арифметико-логическое устройство посылается содержимое буферного регистра данных центрального процессора.

16. Расшифровка кода операций и подача кода на схему выработки.

17. Выполнение операций в арифметико-логическом устройстве.

18. Результат арифметическо-логического устройства записывается в запоминающие устройство по второму адресу.

19. В запоминающие устройство по адресу второго операнда команды записывается содержимое буферного регистра данных запоминающего устройства.

20. На буферный регистр данных запоминающего устройства посылается содержимое буферного регистра данных центрального процессора.

21. На буферный регистр данных центрального процессора посылается содержимое арифметико-логического устройства.

22. Изменить счётчик адреса команд.

23. Возврат на первый шаг если не возникла команда "Конец работы".

Система команд процессора Intel 8086 насчитывает более 10 разнообразных форматов команд, отличающихся как длиной формата (машинная команда может занимать от 1 до 6 байт, не считая возможных предшествующих ей префиксов), так и распределением полей в отдельных байтах команды.

Используются 3 вида префиксов (префиксных байтов), которые предшествуют команде и определенным образом влияют на ее выполнение.

К префиксам относятся:

1) seg – префикс замены сегмента;

2) rep – префикс повторения;

3) lock – префикс блокировки шины.

1) Префикс замены сегмента используется для переназначения стандартных сегментов, используемых по умолчанию при обращении к памяти за операндом и (или) при записи результата.

Адрес переназначения сегмента занимает 2 средних бита в префиксном байте

2) Префикс повторения используется исключительно перед командами обработки строк и заставляет повторять ее выполнение многократно в целях поэлементной обработки всей строки.

Использование префикса rep позволяет организовывать цикл по последовательной обработке элементов строки на аппаратном, а не на программном уровне.

3) При выполнении команды с предшествующим ей префиксом lock на все время выполнения команды блокируется шина, связывающая процессор с памятью и портами ввода-вывода.

Действие любого префикса распространяется только на одну машинную команду, которая следует непосредственно за ним.

Форматы команд

1. Однобайтная безадресная команда:

Подобный формат используется либо командами с неявной адресацией, либо командами, не использующими операндов.

Примерами команд первого типа могут служить команды обработки строк, в которых строка–источник и строка-приемник неявно адресуются с использованием регистров SI и DI соответственно.

К ним относятся:

MOVS – пересылка строки,

LODS – загрузка строки,

STOS – запись в память строки,

CMPS – сравнение строк,

SCAS – сканирование строки.

2. Однобайтная одноадресная команда

ОрС W REG

7 4 3 2 0

Рис.2.2 . Однобайтная одноадресная команда

Эта команда задает прямой адрес регистрового операнда (поле reg). Бит w задает длину операнда (1 – слово, 0 – байт).

  1. Двухадресная команда с постбайтом адресации

Рис.2.3. Двухадресная команда с постбайтом адресации

Бит d кода операции (direction - направление) определяет, по какому адресу записывается результат операции (при d = 1 – в регистр reg, при d = 0 – в регистр или память, адресуемые полем r/m).

Подобный формат широко используется для разнообразных арифметических и логических команд.

  1. Одноадресная команда с постбайтом адресации

Рис.2.4. Одноадресная команда с постбайтом адресации

В отличие от предыдущего формата, среднее поле постбайта адресации является расширением кода операции (Е – Extended).

Подобный формат используется, во-первых, для однооперандных команд (например, INC, DEC, NEG – negative – изменение знака, NOT – инвертирование) и, во-вторых, для двухоперандных команд, в которых один из операндов адресуется неявно (например, MUL/IMUL – умножение, DIV/IDIV – деление, в которых один из операндов является аккумуляторным, а также команды сдвигов, в которых счетчик числа сдвигов адресуется неявно регистром CL).

На рис. 2.5 приведена схема работы центрального процессора.

Рис.2.5. Схема работы центрального процессора

Где:

ВШУ, ВШД - внутренняя схема управления, данных;

РОН - регистр общего назначения;

АЛУ - арифметико-логическое устройство;

А - аккумулятор;

БВПК - блок восстановления последовательности команд;

сх1...схN (N=2n) - схемы выработки управляющего сигнала (не регистр);

ДшОп - Дешифратор операций;

УВПК - устройство восстановления последовательности команд;

А1, А2 - операнды;

Рез - Результат операции;

Вып - флажок выполнено/не выполнено;

РгКв - регистр команд (выход);

КОп - Код операции;

УУ - устройство управления;

РгК - регистр команд;

КОп - Код операции;

БРК - блок распределения команд;

УРК - устройство распределения команд;

СчАК - счетчик адреса команд (+δ - прибавляет по байту);

БРА, БРД - буферные регистры адреса, данных;

ЗУ - запоминающее устройство;

БРАЗУ, БРДЗУ - буферные регистры адреса, данных запоминающего устройства;

Согласно данной схеме Рабочий цикл Центрального процессора имеет следующий вид

Шаги 1-5: MOV(СчАК,РгК i);

Шаги 6-10: MOV(А1,РгК[А1] i);

Шаги 11-15: MOV(А2,РгК[А2]i);

Шаг 16: PARBEGIN

16.1: УРК(РгКi,РгКАЛУi);

16.2: ДшОп(РгКi-1);

16.3: выполнение Оп i-2;

16.4: УВПК(РгКвi-3);

PAREND;

Шаги 17-22: MOV(РгКв[Рез]i-4,[А2]);

Шаг 23: СчАК + δ;

Шаг 24: → Шаг 1.

Где:

Оп - операция;

MOV - "проход", введено для сокращения, каждый MOV означает 5 соответствующих шагов:

1. БРА := А1;

2. БРАЗУ := БРА;

3. БРДЗУ := [БРАЗУ];

4. БРД := БРДЗУ;

5. [А2] := БРД.

- то, что стоит в кв. скобках [] означает, что берется не А2, а значение по адресу А2;

- индексы i-1, i-2, i-3 и т.д. означают, что берется предыдущая команда; предпредыдущая и т.п. (которая уже прошла обработку на предыдущем блоке);

-шаги алгоритма 16.1, 16.2, 16.3 и 16.4 выполняются ПАРАЛЛЕЛЬНО

процессор модель кэш-память команда

3. Основные характеристики центральных процессоров

3.1 Процессоры семейства AMD Ryzen

AMD Ryzen второго поколения кардинально изменили табель о рангах современных процессоров, причём в большей степени это касается чипов высшего класса, адресованных энтузиастам. Четыре новых модели поступили в продажу ещё весной 2018 года, но даже сейчас, после выхода Intel Core i9 9900K, флагманский AMD Ryzen 7 2700X выглядит не таким уж отстающим, к тому же он в два раза дешевле.

Чипы 2000-й серии с кодовым названием Pinnacle Ridge построены на тех же самых ядрах с архитектурой Zen, что и чипы первого поколения Summit Ridge, при этом техпроцесс стал более тонким, изменившись с 14-нм норм на 12-нм нормы, и такие ядра получили официальное название Zen+. В семейство вошли две восьмиядерные шестнадцатипоточные модели серии Ryzen 7 и две шестиядерные 12-поточные модели серии Ryzen 5. Ryzen второго поколения поддерживают работу с оперативной памятью частотой до DDR4-2933, в то время как конкурирующие чипы Intel Coffee Lake всё ещё штатно работают только с DDR4-2666.

Все чипы оснащаются "умной" технологией обучения и адаптации AMD SenseMI и комплектуются фирменным кулером семейства Wraith, который у серии 7 дополнительно оснащён светодиодной подсветкой. Ryzen 7 2700X c теплопакетом 105 Вт штатно комплектуется кулером Wraith Prism со светодиодной подсветкой, который состоит из радиатора с четырьмя тепловыми трубками прямого контакта и вентилятора с тремя независимыми зонами RGB-подсветки, переключаемыми профилями охлаждения и уровнем шума до 39 дБ(А).

В процессорах Ryzen второго поколения реализованы улучшенные функции Precision Boost 2 (динамическое масштабирование напряжения и частоты, аналог Turbo Boost от Intel) и XFR (eXtended Frequency Range — "расширенный частотный диапазон"), входящие в состав технологии SenseMI.

Новая версия Precision Boost 2 всегда ориентирована на повышение тактовых частот, даже при задействовании всех ядер, причём шаг изменения частоты составляет всего 25 МГц. В Precision Boost 2 принимается во внимание не только число занятых ядер и потоков, но и запас по температуре, по силе тока и максимально возможная тактовая частота. Тем самым она позволяет повышать позволяет тактовые частоты на 500 МГц при многопоточных нагрузках, а если потенциал системы охлаждения позволяет, то XFR2 обеспечит ещё до 7% прироста частоты. Тем самым мы получаем более высокую многопоточную производительность в более широком круге задач.

Наконец, с выходом Ryzen второго поколения не нужно задумываться о проблемах совместимости: несмотря на выпуск новой системной логики X470, все Ryzen 2000-й серии, включая Ryzen 7 2700X, полностью совместимы с платами на 300-х чипсетах.

Микроархитектура Zen, изначально сильная в многопоточных вычислительных задачах, наконец-то стала на равных конкурировать с Core и в игровых приложениях. И если в тестах с разрешением 1080p ещё можно зафиксировать минимальное отставание (буквально в 1-2 кадра в секунду), то при перехода не 1440p или 4K какая-либо разница отсутствует в принципе.

В тестах на продуктивность Ryzen 7 2700X опережает любой процессор в своей ценовой категории: в многоядерном бенчмарке Cinebench он на 31% быстрее, чем Core i7 8700K и лишь однопоточные задачи традиционно лучше удаются чипам от Intel, в том числе и благодаря более высоким рабочим частотам.

Однако энергоэффективность явно не относится к сильным сторонам Ryzen второго поколения, Ryzen 7 2700X под нагрузкой опережает всех сегодняшних конкурсантов. Более того, даже в режиме простоя оба Ryzen потребляют почти на 20 Вт больше, чем системы на платформе Intel.

Ryzen 7 2700X выигрывает порядка 1000 рублей по цене по сравнению с Intel Core i7 8700K, а если учесть, что он укомплектован превосходным кулером Wraith Prism производства Cooler Master, то преимущество составит ещё почти 3000 рублей. Наконец, более совместимая платформа AM4, которую в AMD обещают сохранить как минимум до 2020 года, делает "райзены" ещё более привлекательными для тех, кого не радует перспектива менять материнские платы с каждым очередным обновлением процессоров.

3.2 Процессоры семейства Intel Core i7

После появления Sandy Bridge все последующие массовые процессоры Intel стали штамповаться по одной и той же схеме. Четыре вычислительных ядра, встроенный графический ускоритель и системный агент объединялись в один комплекс при помощи неизменной кольцевой шины. При этом в них, конечно, вносились какие-то изменения на уровне микроархитектуры, но никаких глобальных переделок не проводилось. Основным стержнем происходящего прогресса было элементарное увеличение плотности полупроводниковых кристаллов, происходящее за счёт перевода производства на всё более «тонкие» техпроцессы. В результате если сопоставить Kaby Lake и Sandy Bridge, то получится, что конечным итогом последовательной смены 32-нм на 22-нм и впоследствии на 14-нм нормы стало 42-процентное уменьшение площади процессорного кристалла при троекратном увеличении числа транзисторов.

На низком уровне в новых процессорах нет почти ничего: основная масса структурных блоков Coffee Lake без каких-либо изменений перенесена из прошлых дизайнов. То есть главное, что реализовано в новых массовых процессорах Intel, – это высокоуровневое изменение общего строения, заключающееся в увеличении количества вычислительных ядер с четырёх до шести штук. Если же говорить о показателе IPC (числе исполняемых за такт инструкций) и об удельной производительности на ядро, то в этих параметрах никаких перемен не произошло. Вычислительные ядра Coffee Lake полностью аналогичны ядрам Kaby Lake.

Небольшие технические изменения можно найти лишь в контроллере памяти. Новые массовые процессоры Intel получили официальную поддержку DDR4-2666 SDRAM и по этому параметру сравнялись с предложениями конкурента. Впрочем, как и раньше, контроллер памяти Coffee Lake обладает завидной гибкостью, что позволяет разгонять частоту памяти до существенно более высоких, чем обещается в спецификациях, значений.

Несмотря на всё сказанное, полупроводниковый кристалл Coffee Lake выглядит очень непривычно. Всё дело в двух дополнительных ядрах, которые расположились вдоль протянутой по центру кристалла кольцевой шины.

При производстве Coffee Lake используется технологический процесс с 14-нм нормами, и площадь полупроводникового кристалла с шестью вычислительными ядрами получается равной 150 мм2. Если вспомнить о том, что площадь четырёхъядерного кристалла Kaby Lake составляла порядка 126 мм2, то можно прикинуть, сколько занимает одно дополнительное ядро. Вместе с сопряжённой 2-мегабайтной областью L3-кеша получается что-то около 12 мм2. Это значит, что при необходимости Intel легко сможет добавить и ещё некоторое количество ядер – транзисторный бюджет при этом растёт совсем незначительно. Но на данный момент из маркетинговых соображений микропроцессорный гигант решил ограничиться в массовом сегменте лишь шестью ядрами.

Возможность появления в ассортименте Intel недорогих многоядерных процессоров во многом обуславливается совершенствованием 14-нм технологического процесса, запущенного Intel ещё в 2014 году (впервые этот процесс был применён для процессоров Broadwell). К настоящему времени данная технология позволяет выпускать шестиядерные решения с сохранением сравнительно невысокого тепловыделения и при хорошем выходе годных кристаллов. Всё дело в том, что в случае Coffee Lake при производстве процессоров применяется новая модификация 14-нм техпроцесса, которую Intel относит к третьему поколению данной производственной технологии, условно обозначаемому 14++ нм.

Согласно утверждениям микропроцессорного гиганта, эта версия техпроцесса позволяет серьёзно улучшить тепловые и электрические свойства полупроводниковых кристаллов при сохранении их частот и производительности на привычном уровне.

Если сопоставлять новую технологию производства с изначальной версией 14-нм техпроцесса, которая применялась в Broadwell и Skylake, то при прочих равных она может обеспечить либо 26-процентное увеличение тактовой частоты, либо 52-процентное снижение тепловыделения.

Это – весьма значительные улучшения, которые делают такую усовершенствованную технологию с точки зрения параметров производительности даже лучше первой версии 10-нм техпроцесса. Именно по этой причине 10-нм процессорный дизайн Cannon Lake в десктопных решениях применяться не будет, и в течение ближайших полутора лет модельный ряд процессоров для настольных систем будет опираться на 14-нм кристаллы Coffee Lake.

Если говорить о произошедшем обновлении процессоров Intel, то нужно иметь в виду, что Core восьмого поколения – это не обязательно Coffee Lake. На мобильном рынке под этой же маркой представлены носители дизайна Kaby Lake Refresh. Но в части настольных систем Intel пока не допускает никакой путаницы, и все выходящие сегодня процессоры Core, относящиеся к восьмитысячной серии, – это Coffee Lake, производимые по технологии 14++ нм и обладающие увеличенным числом вычислительных ядер.

Именно дополнительные ядра стоит считать главным преимуществом новинок. Теперь для того, чтобы получить систему на процессоре Intel, способную выполнять более восьми потоков одновременно, вовсе не обязательно смотреть в сторону дорогостоящих HEDT-решений. С приходом дизайна Coffee Lake серия Core i7 получает в своё распоряжение шесть ядер с поддержкой Hyper-Threading, Core i5 будут шестиядерными процессорами без поддержки виртуальной многопоточности, а Core i3 станут обладателями четырёх полноценных ядер без Hyper-Threading.

Произошедшая модернизация процессорного дизайна, безусловно, станет причиной существенного роста производительности настольных систем. Действительно, новые процессоры серии Core i3 теперь можно считать аналогами старых Core i5, а новые Core i7 беззастенчиво вторгаются на территорию, принадлежавшую раньше HEDT-платформе. Фактически можно даже говорить о том, что Coffee Lake отправляют в разряд устаревших решений совсем недавно анонсированный шестиядерный LGA2066-процессор Skyake-X Core i7-7800X, не говоря уже о четырёхъядерных Kaby Lake-X. Представители семейства Coffee Lake с аналогичным числом ядер стоят дешевле, но при этом ощутимо превосходят их как по частотам, так и по производительности на ватт. Таким образом, пользователям, которые захотят получить принципиально более высокое быстродействие и более развитую многопоточность, чем может предложить стандартная интеловская платформа, выбирать теперь придётся между процессорами Core i9 или Ryzen Threadripper стоимостью от $800.

Дальнейшее расширение семейства процессоров Coffee Lake для настольных систем намечено на начало 2018 года. В этот период к имеющемуся множеству из шести моделей добавится по два процессора Core i5 и Core i3, три процессора Pentium и два – Celeron. Попутно будут представлен достаточно широкий ассортимент энергоэффективных десктопных модификаций Coffee Lake с расчётным тепловыделением на уровне 35 Вт.

Стоит заметить, что увеличение числа вычислительных ядер, происходящее с переходом массовых процессоров на дизайн Coffee Lake, не могло не сказаться на тактовых частотах новинок. У шестиядерников они, естественно, стали ниже. Например, номинальная частота Core i7-8700K относительно частоты старшего Kaby Lake, Core i7-7700K, снизилась на 500 МГц, а паспортная частота Core i5-8600K меньше частоты Core i5-7600K на 200 МГц. Очевидно, сделано так ради того, чтобы полуторакратное увеличение количества ядер прошло без необходимости заметного поднятия планки теплового пакета, который у наиболее «горячих» новинок прибавил лишь 4 Вт – с 91 до 95 Вт.

Тем не менее снижение номинальных частот эффективно компенсируется сильно возросшей агрессивностью технологии Turbo Boost 2.0, которая даже у старшего процессора Coffee Lake может наращивать частоту на целый гигагерц. В результате по максимально достижимым частотам новинки даже превосходят своих предшественников. Например, тот же Core i7-8700K при неполной нагрузке может самостоятельно разгоняться на 200 МГц сильнее по сравнению с Core i7-7700K, а для Core i5-8600K максимальная доступная частота выше предельной частоты Core i5-7600K на 100 МГц. Технология Turbo Boost Max 3.0, которая дополнительно поднимает частоты избранных ядер в HEDT-платформе Intel, в массовых процессорах Coffee Lake при этом не поддерживается. Впрочем, в данном случае в ней не было бы особого смысла: Turbo Boost 2.0 раскрывает частотный потенциал Coffee Lake более чем достаточно.

Ещё одной приятной неожиданностью стали цены. Несмотря на то, что с появлением Coffee Lake массовая платформа Intel сделалась намного привлекательнее, стоить новые процессоры будут почти столько же, сколько и их предшественники. Например, в то время, как официальная цена четырёхъядерного Core i7-7700K была установлена в $339, шестиядерный Core i7-8700K получил официальную стоимость на уровне $359, что больше всего лишь на 6 процентов. На те же скромные 6 процентов подорожал и старший представитель в серии Core i5: четырёхъядерный Core i5-7600K был оценён производителем в $242, а шестиядерный Core i5-8600K получил официальную цену на уровне $257. В серии же Core i3 цены на процессоры одинакового позиционирования не изменились вовсе, несмотря на то, что раньше они имели лишь по два вычислительных ядра, а теперь располагают четырьмя и фактически стали современными аналогами старых Core i5.

3.3 Сравнительная характеристика процессоров

Для сравнительного тестирования были выбрали более доступный Ryzen 5 2600X второго поколения, а также Intel Core i7 8700K и более доступный Core i5 8600K. Основные характеристики в таблице 1.1.

Таблица 3.3.1. Основные характеристики процессоров

Ryzen 7 2700X

Ryzen 5 2600X

Core i7 8700K

Core i5 8600K

Ядер/потоков

8/16

6/12

6/12

6/6

Базовая частота

3,7 ГГц

3,6 ГГц

3,7 ГГц

3,6 ГГц

Турбочастота

4,3 ГГц

4,2 ГГц

4,7 ГГц

4,3 ГГц

Объём кэш-памяти уровня L3

20 Мбайт

19 Мбайт

12 Мбайт

9 Мбайт

Штатный кулер

Wraith Prism LED

Wraith Spire

Нет

Нет

TDP

105 Вт

95 Вт

95 Вт

95 Вт

Цена в России, руб.

24990

16900

25990

21700

В качестве тестового стенда будет использоваться следующая конфигурация для процессоров в таблице 1.2

Таблица 3.3.2 Конфигурация тестового стенда

Тестовый стенд процессоров AMD, Intel

Материнская плата

Asus ROG Strix X470-F Gaming, ASUS ROG STRIX Z390-F Gaming

Графический ускоритель

Аsus Nvidia GTX 1070

Оперативная память

2 х 8 Гбайт Crucial Ballistix DDR4

Накопитель

1 Тбайт Plextor PX-1TM9PeGN

3.3.1. Синтетические тесты

В синтетических тестах (рис. 3.3.1.1, 3.3.1.2, 3.3.1.3, 3.3.1.4) Ryzen 7 2700X выступает очень неплохо, особенно если речь идёт о многопоточных задачах. При этом чипы от Intel сохраняют архитектурное преимущество при однопоточной нагрузке, в том числе и за счёт работы на более высоких частотах.

Рис. 3.3.1.1 PCMark 8

Рис. 3.3.1.2 Cinebench R15

Рис. 3.3.1.3 Cinebench R15

Рис. 3.3.1.4 SiSoft Sandra


Рис. 3.3.1.5 3DMark Time

3.3.2. Игровые тесты

В игре Asssassin’s Creed Odyssey (рис. 3.3.2.1, 3.3.2.2)  Ryzen 7 2700X демонстрирует предельно близкое среднее значение fps к Core i7 8700K, но его младший брат серьёзно отстаёт по минимальной частоте кадров.

Рис. 3.3.2.1 Asssassin’s Creed Odyssey min fps

Рис. 3.3.2.2 Asssassin’s Creed Odyssey средний fps

А в игре Far Cry 5 (рис.3.3.2.3, 3.3.2.4) Ryzen 7 2700X уступил даже Core i5 8600K, хотя  разница в производительности остаётся минимальной.

Рис. 3.3.2.3 Far Cry 5 min fps

Рис. 3.3.2.4 Far Cry 5 средний fps

3.3.3. Энергопотребление и температура

Ryzen 2 не слишком горячее Coffee Lake — разница в один-два градуса (рис. 3.3.3.1, 3.3.3.2) совершенно не принципиальна, но заметно прожорливее своих конкурентов, причём как под нагрузкой (рис. 3.3.3.4), так и в режиме простоя (рис. 3.3.3.3). Как можно заметить, это именно конструктивная особенность микроархитектуры, а не свойство конкретной системы.

Рис. 3.3.3.1 Температура процессора, C


Рис. 3.3.3.2 Температур системы пиковая

Рис. 3.3.3.2 Энергопотребление системы в простое, Вт


Рис. 3.3.3.2 Энергопотребление системы пиковая, Вт

ЗАКЛЮЧЕНИЕ

Данная курсовaя рaботa посвященa изучению aрхитектуры, функционировaнию центрaльного процессорa персонaльного компьютерa.

В первом разделе работы приведено определение центрального процессора, приведены основные характеристики. В работе приведена схема структуры Центрального процессора, описана работа основных регистров.

Второй раздел посвящен принципам работы Центрального процессора персонального компьютера. В разделе приведен общий рабочий цикл центрального процессора, который состоит из 23 шагов. Описаны форматы команд, которые могут быть: однобaйтнaя одноaдреснaя комaндa, двухaдреснaя комaндa с постбaйтом aдресaции и одноaдреснaя комaндa с постбaйтом aдресaции. Также приведена схема работы центрального процессора и алгоритм функционирования.

В третьем разделе приведены осноные характеристики процессоров семейства AMD и Intel Core i7, i5. Проведен сравнительный анализ основных характеристик процессоров Ryzen 7 2700X, Ryzen 5 2600X, Core i7 8700K, Core i5 8600K.

При сравнении процессоров Ryzen 7 2700X, Ryzen 5 2600X, Core i7 8700K, Core i5 8600K, то можно сделать вывод о том, что в целом процессоры AMD в среднем по производительности стоит вровень с процессорами Intel. Но при детальном рассмотрении все-таки у них есть различия в решении различных типах задач. Говоря о цене, Intel, то он стоит почти в два раза больше, чем AMD. И это в большей степени влияет на выбор потребителей при покупке современного процессора.

СПИСОК ЛИТЕРАТУРЫ

  1. Акулов О.А., Медведьев Н.В. Информатика: базовый курс. М.: Омега-Л, 2006.
  2. Дорот В.А., Новиков Ф.Н. Толковый словарь современной компьютерной лексики. 2-е изд. СПб.: BHV, 2001.
  3. Лесничая И.Г. Информатика и информационные технологии. Учебное пособие. М.: Издательство Эксмо, 2009
  4. Макарова Н.В., Николайчук Г.С., Титова Ю.Ф. Компьютерное делопроизводство. - СПб.: Издательский дом «Питер», 2002.
  5. Чубриков Л.Г., Электроника и микропроцессорная техника. 2010
  6. Таненбаум Э. Архитектура компьютеров. СПб.: Питер, 2009. - 848 с.
  7. Замковец С. В., Захаров В. Н., Красовский В. Е., “Эволюция архитектур современных микропроцессоров”, Системы и средства информатики, 21:1 (2011), 34–46
  8. Новиков Ю.В. , Скоробогатов П.К. Основы микропроцессорной техники. - М.: БИНОМ. Лаборатория знаний, 2008. - 368 с.:ил.
  9. Гуров В.В. Архитектура микропроцессоров. - М.: БИНОМ. Лаборатория знаний, 2010. - 273 с.:ил.
  10. Асмаков С.В., Пахомов С.О. Железо 2008. Компьютер Пресс рекомендует. - СПб.: Питер, 2010.
  11. http://ru.wikipedia.org/wiki/Архитектура_процессора
  12. http://citforum.ru/hardware/microcon/intel_serv_pl/