Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

История развития средств вычислительной техники (этапы становления развития вычислительной техники)

Содержание:

ВВЕДЕНИЕ

В короткой истории компьютерной техники выделяют несколько периодов на основе того, какие основные элементы использовались для изготовления компьютера. Временное деление на периоды в определенной степени условно, т.к. когда еще выпускались компьютеры старого поколения, новое поколение начинало набирать обороты.

Можно выделить общие тенденции развития компьютеров:

  1. Увеличение количества элементов на единицу площади.
  2. Уменьшение размеров.
  3. Увеличение скорости работы.
  4. Снижение стоимости.
  5. Развитие программных средств, с одной стороны, и упрощение, стандартизация аппаратных – с другой.

Данная тема актуальна. Так как компьютеры охватили все сферы человеческой деятельности. В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70 - х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и малоизвестным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения, знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта - Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В XXI веке невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.

Таким образом, целью работы является рассмотреть развитие компьютерной техники с древних времен до настоящего времени, а также дать краткий обзор счётным устройствам, начиная с до механического периода и заканчивая современными ЭВМ.

Задачи исследования- рассмотреть этапы становления развития вычислительной техники.

Предмет исследования –история развития средств вычислительной техники.

Объект исследования – вычислительная техника.

Работа состоит из введения, двух глав, заключения и списка литературы.

ГЛАВА 1. ИСТОРИЯ РАЗВИТИЯ И КЛАССИФИКАЦИЯ ЭЛЕКТРОННО- ВЫЧИСЛИТЕЛЬНЫХ МАШИН

1.1 Понятие и сущность вычислительных машин

На сегодняшний день компьютеры, в различных их проявлениях, прочно вошли в нашу повседневную жизнь. Новейшие вычислительные машины, и созданные на их основе различные коммуникационные системы, открывают новые границы развития для всего информационного мира. Сегодня полным ходом идет совершенствование информационного общества. Условием его нормального развития и существования является адекватное применение и обработка информации, удовлетворяющей потребностям общества. Новейшие вычислительные средства, необходимые системы крайне значимы для информационного общества. Вычислительные системы — совокупность взаимосвязанных и взаимодействующих электронно-вычислительных машин (ЭВМ), оборудования и необходимого программного обеспечения, которое нужно для хранения, сбора и обработки всей информации. С ростом своих возможностей, компьютеры расширили и сферу своей эксплуатации. Они стали применяться в различных образовательных и здравоохранительных учреждениях, научно-исследовательских институтах.

Под понятием информация понимаются такие сведения, которые снижают степень нашего непонимания о какой-либо области или предмете. С точки зрения философии информация понимается как отражение реального мира: это те данные, которые один настоящий объект может сообщить о другом. Информация не возникает из пустого места, ее можно получить, использовать, передать, записать и удалить. Когда информация распространяется, то появляется следующее свойство: когда информация передается из одной системы в другую, объем информации не снизится в передающей системе, однако в принимающей системе он может стать больше.

Информация не существует без материального носителя – какого-то средства для ее переноса во времени и в пространстве. Переносчиком информации может являться физический объект, кроме того, информация может представляться самыми разнообразными звуковыми, световыми и электрическими сигналами.

При выборе способа кодирования, а также носителя информации при исполнении различных информационных задач, большое значение имеет эффективная работа системы управления. В ней она может изменять не только тип носителя, но и свой код. Достаточно частым способом кодировки информации может быть предоставление в форме последовательности символов какого-либо алфавита. Например, когда мы читаем книгу, мы принимаем ту информацию, которая записана на ее страницах в виде слов, состоящих из последовательного набора символов – букв или цифр данного алфавита.

Информатика – наука, которая изучает аспекты получения, хранения, преобразования, передачи, защиты и использования информации. Данная учебная дисциплина является фундаментом для таких дисциплин, как: математика, логика, операционные системы, основы алгоритмизации и программирования. Возможность автоматического использования информационных процессов посредством компьютера, также изучается информатикой. Персональный компьютер (ПК) - вид компьютера, принцип которого заключается в транзисторной технологии, использующейся во всех видах радиотехники.

Вычислительные системы (ВС). Этот термин появляется в начале 60-ых годов, когда создавались вычислительные машины 3-го поколения. Этот период времени был очень значимым, так как стали появляться интегральные схемы. Они дали толчок для принятия новых решений: массовый доступ и применение ресурсов вычисления, распределение процессов обработки информации [2]. Возникают новые режимы работы вычислительных машин – многопользовательская и многопрограммная обработка. Разницей между ВС и ЭВМ служит использование в ВС нескольких вычислителей, использующих параллельную обработку. Цель создания вычислительных систем заключалась в росте производительности системы, за счет увеличения скорости обработки данных, а также увеличение надежности и точности вычислений [1].

Классификация ЭВМ. Существует множество различных признаков, по которым классифицируются ЭВМ, но самыми значимыми являются классификации по структурной и функциональной организации вычислительных систем. По назначению, системы делятся на: 1)универсальные и 2)специализированные. Универсальные системы служат для выполнения самых различных операций, специализированные – для выполнения более узкого круга задач. По типу вычислительные системы делятся на: 1)многомашинные и 2)многопроцессорные. Многомашинные ВС появились раньше. Уже в то время появлялись задачи, для которых требовалась высокая производительность, долговечность и точность вычислений. Такие цели и были в основе использования данных машин.

Информационные процессы – процессы сбора, обработки, накопления, хранения, поиска и распространения информации. Извлечение какой-либо хранимой информации называется ее поиском. Есть очень много разных способов поиска, таких как: наблюдение, общение, чтение журналов или газет, просмотр телевизора или программ, радио и другие. Способом передачи информации во времени и пространстве называется ее хранение. Варианты хранения зависят и вида носителя. Им может быть рукопись, журнал или фотография. Передача информации заключается в процессе участия в ней источника и приемника. Источник будет передавать ее, а приемник получать. Между ними образуется канал связи, который передает сигнал от источника к приемнику. Процесс преобразования какой-либо информации из одного вида в другой называется обработкой. При обработке имеет большое значение входная и выходная информация. Использование информации происходит при принятии каких-либо решений. Под защитой информации понимается комплекс мер по защите от угроз безопасности, а также устранение последствий.

1.2 История развития вычислительной техники

Знание истории развития вычислительной техники как основы компьютерной информатики - необходимый составной элемент компьютерной культуры. Поэтому рассмотрим историю ее становления с точки зрения сегодняшнего дня.
    Основные этапы развития ВТ можно привязать к следующей хронологической шкале:

  • Ручной - до 17 века.
  • Механический - с середины 17 века.
  • Электромеханический - с 90 годов 19 века.
  • Электронный - с 40 годов 20 века.

    Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки т.д. Наконец появление приборов, использующих вычисления по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские , японские, китайские счеты.

Несомненно, необходимо отметить изобретение Дж. Непером в 17 веке логарифмов. Для их вычисления он предложил использовать устройство, называемое «палочками Непера», которые позволяли быстро выполнять операции умножения и деления. Наряду с палочками Непер предложил счетную доску для выполнения четырех арифметических действий, а также возведения в квадрат, извлечения квадратного корня в двоичной системе счисления, предвосхитив тем самым преимущество двоичной для автоматизации вычислений.

 Открытие логарифмов послужило основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет отслужившей инженерно-техническим работникам всего мира.

Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Широкую известность приобрела машина Б. Паскаля, изобретенная в 1642 г. (их было сделано 50 машин) и положившая начало механического этапа развития ВТ. Ее использование способствовало формированию общественного мнения о возможности «автоматизации умственного труда».

 Первый арифмометр, позволявший проводить все 4 арифметические действия, был изобретен Г. Лейбницем в 1673 г.

Увеличение во второй половине 19 веке вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышенные требования к ней.

Началом математического машиностроения можно считать изобретение русского инженера В.Орднера в 1874 г. арифмометра, в основе конструкции которого лежало «колесо Орднера». На протяжении многих лет арифмометр усовершенствовался (в 1900 г. на международной выставке в Париже - золотая медаль) и до наших дней сохранились экземпляры, получившие название Феликс.

Первоначально появление ЭВМ не очень повлияло на выпуск арифмометров прежде всего из-за различия в назначении, а также стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые в начале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась минитюаризацией электронной техники, включая ВТ. Особое место среди разработок механического этапа развития ВТ занимают работы Ч. Беббиджа, с полным основанием считающегося родоначальником и идеологом современной ВТ.

В работах Беббиджа два основных направления: проекты разностной и аналитической вычислительных машин. Проект первой предназначался для табулирования полиномиальных функций методом конечных разностей. Данная работа была необходимо в проверке существующих математических таблиц, изобилующих ошибками. Самому Беббиджу не удалось воплотить в жизнь свои проекты, но разностную машину выпустили итальянцы в 1853 г, затем ее приобрели США для расчета астрономических таблиц.

Второй проект, аналитическая машина, основан на использовании принципа программного управления, явился предвестником современных ЭВМ. Данный проект был предложен в 30-е годы, а в 1843 г. Адой Лавлейс для машины Беббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли. Оба эти достижения можно считать выдающимися как опередившими свою эпоху более чем на столетие.

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887) до первой ЭВМ ENIAC (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование и т.д.), так и развитие прикладной электротехники (электропривод и электромеханические реле). Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях..

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых он стал основоположником нового направления в ВТ - счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машино-счетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период (40-е годы 20в.) электромеханического этапа развития характеризуется созданием целого ряда сложных релейных и релейномеханических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

 Наиболее крупные проекты данного периода были выполнены в Германии (К.Цузе) и США (Д.Анатасов, Г.Айкен и Д.Стиблиц). Их проекты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Последним же крупным проектом релейной ВТ следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 (на ней производился перерасчет цен на товары в связи с денежной реформой 1961 года). Машина была конкурентноспособна с ЭВМ того времени, надежна и ее быстродействие было на уровне первых малых ЭВМ. Однако электронные лампы обладали большим превосходством в быстродействии, что, в конечном итоге, и определило переход от релейной к электронной технологии. К началу 40-х гг. 20 века электроника уже располагала безынерционными элементами высокого быстродействия (триггерами), что позволило создавать быстродействующую электронную ВТ, электронные вычислительные машины..

Первой ЭВМ (специализированной в области дешифровки) можно считать английскую машину Colossus, созданную в 1943 году при участии А. Тьюринга.

Машина была узкоспециализированной, поэтому первой ЭВМ принято считать машину ENIAC, созданную в США в конце 1945г Эккертом и Моучли по идее Дж. Атанасова. Первоначально предназначенная для решения задач баллистики (оценка принципиальной возможности создания водородной бомбы), машина оказалась универсальной. Ее параметры: высота 6 м, ширина 4м, длина 30м, вес 30т, 18000 электронных ламп 16 основных типов, потребляемая мощность 140кВт. Большое внимание приходилось уделять системе охлаждения, т.к. лампы выделяли много тепла. Первая ЭВМ проработала до сентября 1955 года, выполнив за 10 лет своего существования операций больше, чем все человечество за весь период существования до 1945 года.

 Еще до начала эксплуатации первой машины эти же разработчики (Моучли и Эккерт) получили заказ на вторую машину (EDVAC- Electronic Discrete Automatic Variable Computer). В этой машине была предусмотрена большая память как для хранения программы так, и для данных. Такой подход устранял главный недостаток первой машины - необходимость перекоммутации многих узлов машины. В конце 1944 года к проекту был подключен в качестве научного консультанта Джон фон Нейман.

В результате совместной работы была построена ЭВМ с хранимыми в памяти программами. Но EDVAG (США) не стала первой машиной с архитектурой фон Неймана. На два года раньше (1949) машина этого класса была сделана в Англии EDSAC (Electronic Delay Storage Automatic Calculator)..

Английская машина работала в двоичной системе счисления, ряд операций обеспечивался выполнением специальных подпрограмм, организовано выполнение команд ветвления. EDSAC явился не только первой универсальной ЭВМ с хранимой в памяти программами, но и позволял создавать программы из перемещаемых подпрограмм, объединяя их в одну программу в момент загрузки в память. Такая модель является до сих пор одной из основных в технологии программирования..

Компьютер EDSAC положил начало новому этапу в развитии ВТ - первому поколению универсальных ЭВМ.

С самого начала люди считали, используя свои пальцы. В тот момент, когда нельзя уже было обойтись только этим, появились простейшие приспособления для счета. Среди них можно главным образом выделить абак, который в древности был широко распространен.

Изготовление абака не представляет сложности, вполне можно обойтись дощечкой, которая разлинована столбцами или разлиновать небольшой песочный участок. Каждый столбец имел свой численный разряд: единица, десяток, сотня, тысяча. Числа реализовывались набором камешков, ракушек, веточек и т.п., которые раскладывались по разным столбцам – разрядам. Увеличивая или уменьшая количество камешков в этих столбцах, было возможно было слагать и вычитать, а также умножать и делить, многократно слагая и вычитая [4, c. 173].

По способу работы, с абаком схожи русские счеты. Столбцы в них заменялись на расположенные горизонтально оси с косточками. На Руси счеты эксплуатировались очень профессионально. Они стали неизменными спутниками различных купцов, управляющих, казначеев. Из России этот весьма ценный прибор перекочевал и в Старый Свет.

Самым первым вычислительным прибором, собранным по механическому принципу являлась счетная машина, созданная в 1642 году прославленным ученым из Франции Блезом Паскалем. Данное изобретение Паскаля позволило оперировать сложением и вычитанием. «Паскалина» – такое наименование получило сие устройство – состояла из комплекта пронумерованных от 0 до 9 колес, установленные в вертикальном положении. Колесо, после совершения полного кругового оборота сцеплялось с колесом расположенным по соседству и раскручивало на единицу деления. От количества колес зависело количество разрядов разрядов – так, при помощи двух колес можно было считать до 99, при трех – до 999, а пять колес позволяли вести счет до таких величин как 99999. «Паскалина» была крайне простой в освоении [6, c. 204].

В 1673 году математик и философ из Германии Готфрид Вильгельм Лейбниц создал устройство для счета, которое тоже работало по принципу механизма, которое не ограничивалось простейшими операциями сложения и вычитания, но также могло умножать и делить. Компоновка данного устройства по сравнению с «Паскалиной» была значительно сложнее. Колеса с числами, которые здесь уже были зубчатыми, размещали на себе зубцы 9 разных длин, и арифметические операции реализовывались посредством сцепления этих самых колес. Эти слега измененные колеса вышеописанного устройства стали фундаментом широко использовавшихся счетных устройств – арифмометров, которые использовались не только в ХIХ веке, но в не столь далеком прошлом наши родичи [3, c. 342].

Имена некоторых ученых в истории ВТ, которые связаны с самыми значимыми открытиями в данной области, в наши дни широко известны даже непосвященным. Чарльз Бэббидж, английский математик первой половины XIX века, входит в их число. В 1823 году Бэббидж разработку своей ВМ, которая подразделялась на две части: вычисляющую и печатающую. Её цель состояла в том, чтобы помочь морскому ведомству Соединенного Королевства для создания разнообразных мореходных таблиц. Часть машины для вычисления, была близка к завершению к 1833 году, а печатающая была готова практически вполовину, когда средства на дальнейшую разработку истощились. И на этом работы прекратились [2, c. 280].

Хоть изобретение Бэббиджа и не удалось завершить построено до конца, эти заготовки нашли свое применение в построении всех современных компьютеров. Бэббидж сделал вывод – ВМ должна где-то хранить числа, необходимые для вычислений, а также отдаче команд машине, об определении дальнейшей судьбы чисел. Именно «программой» работы компьютера и стала называться данная последовательность команд, а то, на чем хранилась информация, стала «памятью» машины. Но недостаточно только хранения чисел, пусть и вместе с программой. Главная цель – машина должна использовать эти числа в заданных программой операциях. Бэббидж осознал, необходим особый блок для вычисления – процессор.

Новые изобретения XX века уже работали на электроэнергии. Спустя непродолжительное время после изобретения электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич создал ламповый триггер – электронное приспособление, запоминающее электрические сигналы.

Принцип работы триггера походил на качели с защелками, которые располагались на высших точках качания. Когда качели доходили до одной верхней точки – защелка срабатывала, качание останавливалось, и в таком состоянии они могут задержаться очень долго. Когда защелка открывалась – качели достигали другой точки, и далее происходило все по кругу. По положению, в котором, спустя определенное время, окажутся качели через определенное время после их установки, можно сделать вывод, была открыта защелка либо нет. Качели будто бы запоминают срабатывание защелки – таким же образом и триггер запоминает, проходил ли через него сигнал или же нет.

Первые компьютеры вычисляли в тысячи раз быстрее счетных машин на механической основе, но имели очень большие габариты, что добавляло хлопот при их установке. ЭВМ располагалась в помещении размером 9х15 м, весила, ни много ни мало, 30 тонн и пожирала около 150 кВт/ч. В этой ЭВМ располагалось около 18 тысяч электронных ламп [1, c. 127].

2-е поколение ЭВМ появилось благодаря огромному по значимости изобретению в числе электроники этого века – транзистору. Миниатюрное полупроводниковое устройство позволяло сильно уменьшить размеры компьютеров и понизить используемую ими мощность. Скорость вычисления компьютеров увеличилась до миллиона операций в секунду.

Изобретенные в 1950 году интегральные микросхемы позволили многократно уменьшить количество электронных составляющих в компьютере, что облегчило сборку машин. ЭВМ 3-его поколения на данных схемах возникли в 1964 году.

В июне 1971 года вышла в свет, непростая в реализации, универсальная интегральная микросхема, которая стало называться микропроцессором – главным компонентом компьютеров следующего поколения.

Конечно до творческого мышления человека, возможностей ЭВМ на сегодняшний день недостаточно. Поэтому всякая информация, которую необходимо представить пользователю в привычном для него виде, определенным образом кодируется, а именно в виде некоторой последовательности цифр, которую компьютер обучен распознавать [7, c. 23].

ГЛАВА 2. ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

2.1  Развитие электронно-вычислительной техники в СССР и ее перспективы при капитализме


Тема электронно-вычислительной техники в социалистической России довольно интересна и за почти 30 лет правления буржуев порядком оболганная холуями от клавиатуры и пера с веб-камерой – блогерами и прочими интеллигентами. Отстаивающая за определенную плату или по глупости капиталистические производственные отношения пробуржуйская интеллигенция, многочисленная журналистская орда, любит пнуть наши компьютеры и большие электронно-вычислительных комплексы времен СССР на предмет качества, ввиду ненадежности некоторых моделей, их технической устарелости, и оставляющей желать лучшего производимости, плюс трудности в эксплуатации по сравнению с зарубежными аналогами того времени. Компьютеры сравниваются под лицемерные разговоры про то, что западные ЭВМ были лучше и надежнее, что Советы компьютеры, в принципе, делать не умели и т. д. Увы, такое в эпоху застоя и позже, в перестройку, имело место быть. Однако такое положение дел было не всегда.

1. ассортимент производимой электронно-вычислительной техники в СССР был гораздо шире, чем представляется обывателю.

2. нельзя механистически переносить экономические и политические пороки позднего СССР и качество изделий, выпускавшихся в тот период времени на весь период существования советского государства и качество с производительностью более ранних моделей ЭВМ, не западных копий, а полностью оригинальных проектов. Падение качества и деградация в этой области производственной началось тогда, когда после смерти Сталина дорвавшиеся до руля контрреволюционеры-троцкисты начали тихо, из-под полы, проводить в СССР свою контрреволюционную политику, рыночные реформы, сильно подкосившие работу всего советского народно-хозяйственный комплекса, нарушившие его работу по выполнению плана для удовлетворения растущих потребностей трудящихся. Но об этом ниже.

«КИБЕРНЕТИКА (от др. греч. слова, означающего рулевой, управляющий) — реакционная лженаука, возникшая в США после второй мировой войны и получившая широкое распространение и в других капиталистических странах; форма современного механицизма. Приверженцы кибернетики определяют её как универсальную науку о связях и коммуникациях в технике, в живых существах и общественной жизни, о «всеобщей организации» и управлении всеми процессами в природе и обществе. Тем самым кибернетика отождествляет механические, биологические и социальные взаимосвязи и закономерности. Как всякая механистическая теория, кибернетика отрицает качественное своеобразие закономерностей различных форм существования и развития материи, сводя их к механическим закономерностям. Кибернетика возникла на основе современного развития электроники, в особенности новейших скоростных счётных машин, автоматики и телемеханики. В отличие от старого механицизма XVII-XVIII вв. кибернетика рассматривает психофизиологические и социальные явления по аналогии не с простейшими механизмами, а с электронными машинами и приборами, отождествляя работу головного мозга с работой счётной машины, а общественную жизнь — с системой электро- и радиокоммуникаций. По существу своему кибернетика направлена против материалистической диалектики, современной научной физиологии, обоснованной И.П. Павловым, и марксистского, научного понимания законов общественной жизни. Эта механистическая метафизическая лженаука отлично уживается с идеализмом в философии, психологии, социологии. Кибернетика ярко выражает одну из основных черт буржуазного мировоззрения — его бесчеловечность, стремление превратить трудящихся в придаток машины, в орудие производства и орудие войны. Вместе с тем для кибернетики характерна империалистическая утопия — заменить живого, мыслящего, борющегося за свои интересы человека машиной как в производстве, так и на войне. Поджигатели новой мировой войны используют кибернетику в своих грязных практических делах. Под прикрытием пропаганды кибернетики в странах империализма происходит привлечение учёных самых различных специальностей для разработки новых приёмов массового истребления людей — электронного, телемеханического, автоматического оружия, конструирование и производство которого превратилось в крупную отрасль военной промышленности капиталистических стран. Кибернетика является, таким образом, не только идеологическим оружием империалистической реакции, но и средством осуществления её агрессивных военных планов.»

Классовая характеристика и методологическая характеристика дана точная и бесспорная. Опровергнуть ее в действительности невозможно. Ибо вопрос перед компартией стоит остро: или ей продолжать громить идеализм в науке и отрицать лженаучную реакционную кибернетику, или отказываться от диалектического материализма, философии прогрессивного класса наемных работников, и скатываться в поповский идеализм, уводить страну по пути ревизии марксизма и реставрации в итоге капиталистических производственных отношений. Ибо не было научной аргументации в пользу кибернетики. Те, кому в после сталинский период ползучей контрреволюции приходилось ее оправдывать, ссылались на позицию хрущевско-брежневского ревизионистского руководства в КПСС.

Теперь рассмотрим материально-техническую сторону вопроса. Посмотрим, как, что и когда разрабатывали, производили в Советском Союзе, какие компьютеры и какие электронно-вычислительные машины тогда проектировали, делали. В конце 1948 года, в секретной лаборатории в Феофании под Киевом, под руководством директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и вычислительной техники АН СССР Сергея Александровича Лебедева, начались работы по созданию Малой Электронной Счетной Машины (МЭСМ). В целом, конец 1948-го года был крайне продуктивным временем для создателей первых отечественных компьютеров. Лебедев реализовал основополагающие принципы построения вычислительных агрегатов, такие как:

1. Наличие арифметических устройств, памяти, устройств ввода/вывода и управления;

2. Кодирование и хранение программы в памяти, подобно числам;

3. Двоичная система счисления для кодирования чисел и команд;

4. Автоматическое выполнение вычислений на основе хранимой программы;

5. Наличие как арифметических, так и логических операций;

6. Использование численных методов для реализации вычислений;

7. Иерархический принцип построения памяти;

Проектированиеc монтажом, отладкой МЭСМ были выполнены в рекордно короткие сроки, примерно за два года, и проведены силами всего 17 человек. Это был коллектив из 12 научных сотрудников и 5 техников. Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, регулярная эксплуатация — 25 декабря 1951 года. Лебедевым были выдвинуты, обоснованы и реализованы принципы ЭВМ с хранимой в памяти программой. Это независимо от Джона фон Неймана. В 1953 году коллективом, возглавляемым С.А.Лебедевым, создается первая большая ЭВМ — БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно — ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно — САМ). После комплектации усовершенствованной элементной базой оперативной памяти БЭСМ-1, ее быстродействие достигло 10000 операций в секунду — на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и было осуществлено в количестве нескольких десятков. ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ «Урал-4», служившая для экономических расчетов

Второй этап развития вычислительной техники СССР.

Второй этап развития вычислительной техники конца 50-х — начала 60-х годов характеризуется созданием развитых языков программирования. Освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Появился мультипрограммный режим обработки данных. Наиболее характерные черты этих ЭВМ, обычно называемых «ЭВМ второго поколения»:

- совмещение операций ввода/вывода с вычислениями в центральном процессоре;

- увеличение объема оперативной и внешней памяти;

- использование алфавитно-цифровых устройств для ввода и вывода данных;

- «закрытый» режим для пользователей: программист уже не допускался в машинный зал, лишь сдавал программу на алгоритмическом языке оператору для дальнейшего пропуска на машине.

Контрреволюция.

Контрреволюционные капиталистические преобразования, исходившие из застойной КПСС, тогда уже не отражавшей интересы и чаяния пролетариата, больно ударили по всему огромному народнохозяйственному комплексу страны. Создавались постепенно и специально условия для зарождения класса буржуазии и реставрации старых капиталистических производственных отношений, была отменена контрреволюционерами законодательно диктатура пролетариата. Теперь ее заменяло вредное для социализма положение о затухании классовой борьбы и общенародном государстве, которое пытались во времена Сталина протолкнуть троцкистские оппозиционеры-контрреволюционеры вроде Рыкова и Бухарина. В период застоя, косыгинские реформы, внедряющие рыночные механизмы в социалистический базис, переводили предприятия на систему учета их прибыльности, а не того, как выполнялся ими план. Да, как бы данные реформы позволяли увеличивать прибыль отдельных предприятий, но подкашивали плановую систему в целом, породили сбои при производстве, распределении продукции, особенно это касалось товаров класса Б, которые начали после 1965 года постепенно пропадать, падало также и качество их. Это стало сильно ощущаться советскими гражданами, особенно на селе и в отдаленных от столицы местах. За негативными изменениями в соц. базисе со стороны партии, надстройки, потянулись в пропасть и другие части этой надстройки, к примеру, такая важная, как наука. «Прелести» хозрасчета ощутили работники интеллектуальной сферы и рабочие, ученые сферы точного машиностроения.

Копировать стало выгоднее с точки зрения экономии средств, но не сточки зрения развития производительных сил для социалистической системы, а значит, для удовлетворения постоянно растущих потребностей трудящихся. В 1968-м году была принята директива «Ряд», по которой дальнейшее развитие электронно-вычислительной техники СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» негативно – путь копирования по определению являлся дорогой отстающих. Но руководством страны в конце 60-х годов было принято решение о замене всех разнокалиберных отечественных разработок среднего класса на Единое Семейство ЭВМ на базе архитектуры IBM 360-американского аналога. На уровне Минприбора было принято аналогичное решение в отношении мини-ЭВМ. Потом, во второй половине 70-х годов, в качестве генеральной линии для мини- и микро-ЭВМ была утверждена архитектура PDP-11, также иностранной фирмы DEC. Решение чудовищное по своей сути. В результате производители отечественных ЭВМ были принуждены копировать устаревшие образцы IBM-вской вычислительной техники. Это было начало конца. Это было, без преувеличения, диверсией. Развитие средних и малых ЭВМ в СССР в связи с таким шагом контрреволюционеров было заторможено всерьез и надолго. Вредящие чиновники-ревизионисты из правящей верхушки того времени, советской вычислительной технике закрыли путь к развитию.

Отныне все должны были копировать устаревшую американскую технику. С начала 70-х годов разработка малых и средних средств вычислительной техники в СССР начала деградировать. Был организован ВНИИЦЭВТ. Были вместе с этим расформированы почти все творческие коллективы, закрыты конкурентные разработки. Отныне все должны были копировать штатовскую технику, причем отнюдь не самую совершенную. Гигантский коллектив этого ВНИИЦЭВТ копировал IBM, а коллектив ИНЭУМ — DEC. Вместо дальнейшего развития проработанных и испытанных концепций компьютеростроения огромные силы институтов вычислительной техники страны стали заниматься механическим полузаконным копированием западных ЭВМ, ибо шла холодная война, экспорт современных технологий компьютеростроения в СССР, в большинстве империалистических стран был законодательно запрещен. Отечественная электронная промышленность вынужденно встала на путь клонирования американских компонентов для обеспечения возможности создания аналогов западных ЭВМ.

Однако и при таком печальном положении не были свернуты все отечественные оригинальные разработки. Так, с 1975 года группой И.В.Прангишвили и В.В.Резанова в научно-производственном объединении «Импульс» начал разрабатываться вычислительный комплекс ПС-2000 с быстродействием в 200 миллионов операций в секунду, пущенный в производство в 1980 году и применявшийся в основном для обработки геофизических данных, — поиска новых месторождений полезных ископаемых. В этом комплексе максимально использовались возможности параллельного исполнения команд программы, что достигалось хитроумно спроектированной архитектурой. Коллектив В.С.Бурцева продолжал работу над серией ЭВМ «Эльбрус», и в 1980 году ЭВМ «Эльбрус-1» с быстродействием до 15 миллионов операций в секунду был запущен в серийное производство. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки и единая операционная система для многопроцессорных комплексов — все эти возможности, реализованные в серии «Эльбрус», появились раньше, чем на Западе. В 1985 году следующая модель этой серии, «Эльбрус-2», выполнял уже 125 миллионов операций в секунду. Большие советские компьютеры во многом еще превосходили западные образцы, да и стоили гораздо дешевле.

С 1991 г, с уничтожением СССР, для бывшей советской науки настали тяжелые времена. Буржуазия РФиии других бывших республик социалистического государства не потянула украденный у советского народа огромный народно-хозяйственный комплекс, он ей был не выгоден, не работал на создание максимальной прибыли в максимально короткий срок. Поэтому буржуями был взят курс на его уничтожение, и советской науки вместе с ним, как не соответствующей интересам бизнеса. Прекратилось финансирование буржуазными государствами подавляющее большинство научных проектов. Также, вследствие разрушения системы социализма, прервались взаимосвязи заводов-производителей ЭВМ из бывших союзных республик, ныне стран СНГ и ЕС. Масштабное, организованное компьютерное производство стало невозможным. Многие разработчики отечественной вычислительной техники были вынуждены работать не по специальности, теряя квалификацию и время. Единственный экземпляр разработанного еще в советское время компьютера «Эльбрус-3», в два раза более быстрого, чем самая производительная американская супермашина того времени Cray Y-MP, в 1994 году был капиталистами-преступниками разобран и пущен под пресс. Оставшиеся НИИ стали создавать крупные вычислительные системы на импортных компонентах. Так, в НИИ “Квант” под руководством В.К.Левина ведется разработка вычислительных системы МВС-100 и МВС-1000, основанных на иностранных процессорах Alpha 21164 (производства DEC-Compaq). Правда, приобретение такого оборудования ныне затруднено действующим эмбарго на экспорт в Россию высоких технологий. Возможность же применения подобных комплексов в оборонных системах крайне сомнительна, — никто не знает, сколько в них можно найти встроенных специально браков с жучками, срабатывающими по сигналу и выводящие из строя систему. Еще осуществляется сборка компьютеров из импортных комплектующих и создание отдельных устройств, например, материнских плат, — опять-таки все из готовых импортных дешевых компонентов, при этом размещаются заказы на производство на заводах Юго-Восточной Азии, так как там рабочая сила банально дешевле и законы по ее социальному обслуживанию не такие жесткие. Однако и таких разработок весьма мало.

При социализме оказались нужны новые производительные силы, сверхмощные компьютеры для упрощения регулирования производственного процесса. Прогресс науки и техники так или иначе должен находиться в полном соответствии с производственными силами и отношениями в социалистическом обществе.

Совершенствование социалистического производства целиком отвечало и отвечает назревшим потребностям общества. США свои первые ЭВМ использовали 70 лет назад в первую очередь в военной области. Не жалели капиталисты затрат на совершенствование техники только в тех отраслях производства, которые обслуживают интересы войны — самого выгодного бизнеса, и сдерживают под контролем возмущающийся пролетариат через компьютерные игры, соцсети и прочие дурманящие сознание трудящихся вещи. В самих соцсетях или играх нет ничего плохого, это действительно шаг вперед в развитии производительных сил, но использование их бизнесом и монополиями ради извлечения прибыли превращает их в орудие по выкачиванию из пользователя денег, порой калечит психику, в т.ч., детскую. Новые технологии в области ЭВМ и интернета, если они не приносят прибыли, не являются приоритетным направлением производства для эксплуататорского класса. Зато, современные компьютеры, интернет - это такая прогрессивная производительная сила, которая полноценно может использоваться для организации планового хозяйства в мировом масштабе, быстро и эффективно. Остается только упразднить частную собственность на средства производства, отнять фабрики, заводы и прочие средства производства у буржуазии, и провозгласить социализм.

2.2 Тенденции развития вычислительных систем

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - ней-рокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

ЗАКЛЮЧЕНИЕ

Сегодня научно-технический прогресс охарактеризовался огромным ростом социально-экономического значения информационной деятельности, как средства обеспечения научной организации, контроля, управления и осуществления общественного производства. Сейчас, сформированной и развивающейся отраслью, которая находится на пике научно-технического прогресса, является индустрия информатики, организация которой обусловливает все в большей степени эффективное функционирование всех прочих отраслей народного хозяйства.

Из данных ЮНЕСКО, на сегодняшний день, больше половины занятого населения многих стран так или иначе участвуют в деятельности распространения и производства информации. Если судить по статистике, то процесс перераспределения трудовых ресурсов из сферы материального производства и обслуживания в информационную сферу хозяйства США привел к тому, что в сфере информации сейчас занимается около 60% населения страны. Следствием этого является переход развитых стран на новую ступень развития, которую все чаще именуют «веком информации».

В заключение отметим, что информационные технологии развиваются, хоть и не с геометрической прогрессией, но тем не менее достаточно стремительно. Вычислительная техника становится все более и более изощренной, вместе с тем становясь совершеннее. Естественно становится возможным реализовывать наиболее сложные задачи, которые в раннем времени даже не представлялось возможным решить; что важнее, многократно повышается точность вычислений. Самые совершенные вычислительные системы устанавливаются на таких видах техники как космические зонды, спутники, научно-исследовательские модули, и, конечно широко эксплуатируются на Международной Космической Станции. Подсчитываются огромные расстояния между различными небесными телами, и прочие величины. Но, все еще впереди.

СПИСОК ЛИТЕРАТУРЫ

  1. Альбов А. Рей Томлинсон: QWERTYOP // Магия ПК. - 2001. - N 10.
  2. Апокин И.А., Майстров Л.Е. Развитие вычислительных машин. - М.: Наука, 1974.
  3. Балашов Е.П., Частиков А.П. Эволюция вычислительных систем. - М.: Знание, 1981.
  4. Балашов Е.П., Частиков А.П. Эволюция мини- и микроЭВМ. Малые вычислительные машины. - М.: Знание, 1983.
  5. Бауэр Ф., Гооз Г. Информатика / Пер. с нем. - М.: Мир, 1990.
  6. Бернерз-Ли о будущем Web // CW Россия. - 1997. - 5 апр.
  7. Брандел М. UNIX и Internet - дети шестидесятых годов // CW Россия. - 2000. - 7 февр.
  8. Вычислительные системы. [Электронный ресурс] - Режим доступа. - URL: http://chernykh.net/content/view/900/981/
  9. Гусев И.В., Гусев В.В., Христофоров Р.П. [и др.] ИСТОРИЯ РАЗВИТИЯ И КЛАССИФИКАЦИЯ ЭЛЕКТРОННО- ВЫЧИСЛИТЕЛЬНЫХ МАШИН // Научное сообщество студентов: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ: сб. ст. по мат. XI междунар. студ. науч.-практ. конф. № 8(11). URL: https://sibac.info/archive/meghdis/8(11).pdf
  10. История развития ЭВМ. [Электронный ресурс] - Режим доступа. - URL: https://goo.gl/sZ1yEV
  11. Карева Н.В. АКТУАЛЬНЫЕ ПРОБЛЕМЫ РАЗВИТИЯ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ // Научное сообщество студентов XXI столетия. ТЕХНИЧЕСКИЕ НАУКИ: сб. ст. по мат. XXXVI междунар. студ. науч.-практ. конф. № 9(35). URL: http://sibac.info/archive/technic/9(35).pdf
  12. Христофоров Р.П., Гусев В.В., Гусев И.В. [и др.] ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ // Научное сообщество студентов: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ: сб. ст. по мат. XI междунар. студ. науч.-практ. конф. № 8(11). URL: https://sibac.info/archive/meghdis/8(11).pdf