Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

устройство персонального компьютера ( Общее устройство компьютера.)

Содержание:

Введение

Компьютеры заняли прочную позицию в современном мире и уже сложно

представить повседневную жизнь без компьютера. То, что еще каких-то 25-30 лет назад казалось фантастикой, вдруг стало реальностью. Сбылись предсказания главы компании Microsoft Билла Гейтса. В свое время он придумал слоган компании, который звучал так – «Компьютер на каждом столе и в каждом доме» и эта мечта, спустя 30 лет, стала реальностью.

Несмотря на то, что компьютеры стали обыденностью, очень многие имеют слабое представление о том, что собой представляет персональный компьютер, из чего он состоит и что требуется для его работы.

  1. Устройство персонального компьютера.

Компьютер - это устройство, которое способно выполнять арифметические и логические действия. Раньше у нас такие устройства называли ЭВМ (электронные вычислительные машины). Название "компьютер" пришло из английского языка и переводится как «вычислитель». [1]

Компьютер (англ. computer - вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Существует два основных класса компьютеров:

  • цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов;
  • аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин.

Поскольку в настоящее время подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер".

Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) - заранее заданных, четко определённых последовательностей арифметических, логических и других операций. [2]

1. Общее устройство компьютера.

Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих выделить в любом компьютере следующие главные устройства:

  • память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;
  • процессор, включающий в себя устройство управления (УУ) и арифметико-логическое устройство (АЛУ);
  • устройство ввода;
  • устройство вывода.

Эти устройства соединены каналами связи, по которым передается информация.

Основные устройства компьютера и связи между ними представлены на схеме (рис. 1). Жирными стрелками показаны пути и направления движения информации, а простыми стрелками - пути и направления передачи управляющих сигналов.

Рис. 1. Общая схема компьютера

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

  1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды "стоп".

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

  1. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм).

Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

  1. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских.

Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без "счетчика команд", указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими. [2]

2. Архитектура и структура компьютера.

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа (рис. 4.1). Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной, подробно рассмотренная в разделе 5 (рис. 5.1). Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рис. 2.

Рис. 2. Архитектура многопроцессорного компьютера

Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко.

Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе - то есть по одному потоку команд.

Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рис. 3.

Рис. 3. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

Рассмотрим устройство компьютера на примере самой распространенной компьютерной системы - персонального компьютера. [2]

3. Персональный компьютер.

Персональным компьютером (ПК) называют сравнительно недорогой универсальный микрокомпьютер, рассчитанный на одного пользователя.

Персональные компьютеры обычно проектируются на основе принципа открытой архитектуры.

Принцип открытой архитектуры заключается в следующем:

  • Регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Таким образом, компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями.
  • Компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями.

Упрощённая блок-схема, отражающая основные функциональные компоненты компьютерной системы в их взаимосвязи, изображена на рисунке 4

Рис. 4 Общая структура персонального компьютера с подсоединенными периферийными устройствами.

Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

Интерфейс - это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.

Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным.

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме (рисунок 5):

Рис.5 Подключение периферийных устройств

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Порты устройств представляют собой некие электронные схемы, содержащие один или несколько регистров ввода-вывода и позволяющие подключать периферийные устройства компьютера к внешним шинам микропроцессора.

Портами также называют устройства стандартного интерфейса: последовательный, параллельный и игровой порты (или интерфейсы).

Последовательный порт обменивается данными с процессором побайтно, а с внешними устройствами - побитно. Параллельный порт получает и посылает данные побайтно.

К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы.

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз). [2]

3.1. Основные блоки, входящие в состав ПК

Современный персональный компьютер состоит из нескольких основных конструктивных компонент:

  • системного блока;
  • монитора;
  • клавиатуры;
  • манипуляторов.

В системном блоке размещаются:

  • блок питания;
  • накопитель на жёстких магнитных дисках;
  • накопитель на гибких магнитных дисках;
  • системная плата;
  • платы расширения;
  • накопитель CD-ROM;
  • и др.

Рис. 6. Виды корпусов системного блока

Корпус системного блока может иметь горизонтальную (DeskTop) или вертикальную (Tower - башня) компоновку.

Типичный системный блок со снятой крышкой корпуса представлен на рис. 7

Рис. 7. Системный блок со снятой крышкой корпуса

1- Системная плата.
2 - Разъём дополнительного второго процессора.
3 - Центральный процессор с радиатором для отвода тепла.
4 - Разъёмы оперативной памяти.
5 - Накопитель на гибких магнитных дисках.
6 - Накопитель CD-ROM.
7 - Сетевая карта.
8 - Графический акселератор.
9 - Блок питания, преобразующий переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.

Вместо термина "системный блок" иногда употребляют термин "платформа". [2]

3.2. Системная плата

Системная плата является основной в системном блоке. Она содержит компоненты, определяющие архитектуру компьютера:

  • центральный процессор;
  • постоянную (ROM) и оперативную (RAM) память, кэш-память;
  • интерфейсные схемы шин;
  • гнёзда расширения;
  • обязательные системные средства ввода-вывода и др.

Системные платы исполняются на основе наборов микросхем, которые называются чипсетами (ChipSets). Часто на системных платах устанавливают и контроллеры дисковых накопителей, видеоадаптер, контроллеры портов и др.

В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Рис. 8. Системная плата компьютера класса Pentium

1 - Разъём под центральный процессор;
2 - Дополнительный кэш объёмом 256 Кбайт;
3 - Разъём под дополнительный кэш;
4 - Контроллеры внешних устройств;
5 - Разъёмы накопителей на жёстких магнитных дисках;
6 - Разъёмы под оперативную память, 4 планки;
7 - Коннектор (соединитель) клавиатуры и мыши;
8 - Микросхема, обслуживающая флоппи-дисковод, последовательные порты и параллельный порт;
9 - Разъёмы 32-битной шины (для видеокарты, карты Интернет и др.);
10 - Перезаписываемая BIOS (Flash-память);
11 - Мультимедийная шина;
12 - Разъёмы 16-битной шины;
13 - Регулятор напряжения для питания центрального процессора.

3.3. Процессор

Центральный процессор (CPU, от англ. Central Processing Unit) - это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера. [2]

Центральный процессор (ЦП) или просто процессор — состоит из арифметико-логического устройства (АЛУ), Устройство управления (УУ) и

также набора регистров общего назначения (РОН), служащих для промежуточного хранения информации в процессе ее обработки.

Устройство управления (УУ) — важнейшая часть вычислительной машины, организующая автоматическое выполнение программ (путем реализации функций управления) и обеспечивающая функционирование ВМ как единой системы. Для пояснения функций УУ вычислительную машину следует рассматривать как совокупность элементов, между которыми происходит пересылка информации, в ходе которой эта информация может подвергаться определенным видам обработки.

АЛУ обеспечивает арифметическую и логическую обработку двух входных переменных (операндов), в итоге которой формируется выходная переменная (результат). Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям, а также операциям сдвига. Помимо результата операции, АЛУ формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в ходе его получения (равенство нулю, знак, четность, перенос, переполнение и т. д.). Флаги могут анализироваться в УУ с целью

принятия решения о дальнейшем порядке следования команд программы. [3]

Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

Вот как выглядит микропроцессор Pentium III (рис. 9):

Рис. 9. Микропроцессор Pentium III

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

Функции процессора:

  • обработка данных по заданной программе путем выполнения арифметических и логических операций;
  • программное управление работой устройств компьютера. [2]

3.4. Память компьютера.

Память компьютера построена из двоичных запоминающих элементов - битов, объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова - два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово).

Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации.

Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0

Байт 1

Байт 2

Байт 3

Байт 4

Байт 5

Байт 6

Байт 7

ПОЛУСЛОВО

ПОЛУСЛОВО

ПОЛУСЛОВО

ПОЛУСЛОВО

СЛОВО

СЛОВО

ДВОЙНОЕ СЛОВО

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации.

Различают два основных вида памяти - внутреннюю и внешнюю.

Функции памяти:

  • приём информации из других устройств;
  • запоминание информации;
  • выдача информации по запросу в другие устройства машины. [2]

Организация внутренней памяти

В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

3.4.1 Оперативная память

Оперативная память (ОЗУ, англ. RAM, Random Access Memory - память с произвольным доступом) - это быстрое запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, обрабатываемых этими программами. [2]

Организация оперативной памяти.

Запоминающие устройства (ЗУ), именуемые также устройст­вами памяти, предназначены для хранения данных. Основными характеристиками ЗУ являются:

• емкость памяти, измеряемая в битах либо байтах;

• методы доступа к данным;

• быстродействие (время обращения к устройству).

От количества оперативной памяти напрямую зависит скорость системы.

Адресация данных.

Команды, исполняемые ЭВМ при выполнении программы, равно как и числовые и символьные операнды; хранятся в памяти компьютера. Память состоит из миллионов ячеек, в каждой из которых содержится один бит информации (значения 0 или 1). Биты редко обрабатываются поодиночке, а, как правило, группами фиксированного размера. Для этого память организуется таким образом, что группы по п бит могут записываться и считываться за одну операцию. Группа п бит называется словом, а значение п — длиной слова. Схематически память компьютера можно представить в виде массива слов.

Основная память соединяется с процессором посредством адресной шины и шины данных. Каждая шина состоит из совокупности электрических цепей (линий или бит). Ширина (разрядность) адресной шины определяет, сколько адресов может быть в ОП (адресное пространство), а шины данных - сколько данных может быть передано за один цикл.

Байтовая адресация.

Отдельные биты, как правило, не адре­суются и чаще всего адреса назначаются байтам памяти. Память, в которой каждый байт имеет отдельный адрес, называется памятью с байтовой адресацией. Последовательные байты имеют адреса 0, 1, 2 и т. д. Таким образом, при использовании слов длиной 32 бита последовательные слова имеют адреса 1, 4, 8, ..., и каждое слово состоит из 4 байт.

Адресное пространство.

Для доступа к памяти необходимы имена или адреса, определяющие расположение данных в памяти. В качестве адресов традиционно используются числа из диапазона от 0 до 2* - 1 со значением к, достаточным для адресации всей памяти компьютера. Все 2* адресов составляют адресное пространство компьютера. Следовательно, память состоит из 2* адресуемых элементов.

Иерархическая организация памяти

Компромиссом между производительностью и объемами памяти является решение использовать иерархию запоминающих устройств, т. е. применять иерархическую модель памяти.

Применение иерархических систем памяти оправдывает себя вследствие двух важных факторов — принципа локальности обращений и низкого (экономически выгодного) соотношения стоимость/производительность. Принцип локальности обращений состоит в том, что большинство программ обычно не выполняют обращений ко всем своим командам и данным равновероятно, а в каждый момент времени оказывают предпочтение некоторой части своего адресного пространства.

Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени взаимодействуют только два близлежащих уровня. Минимальная единица информации, которая может присутствовать либо отсутствовать в двухуровневой иерархии, называется блоком или строкой. [4]

3.4.2 Кэш-память

Кэш (англ. cache), или сверхоперативная память - очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования. [2]

Необходимость создания кэш-памяти возникла потому, что появились процессоры с высоким быстродействием. Между тем для выполнения сложных прикладных процессов нужна большая память. Использование же большой сверхскоростной памяти экономически невыгодно. Поэтому между ОП и процессором стали устанавливать меньшую по размерам высокоскоростную буферную память, или кэш-память. В дальнейшем она была раз­делена на два уровня — встроенная в процессор (on-die) и внеш­няя (on-motherboard).

Кэш 1 - го уровня ( Level 1 cache , или L1).

Кэш 1-го уровня, или первичный кэш, находится на плате центрального процессора и используется для временного хранения команд и данных, организованных в блоки по 32 байта. Первичный кэш —самая быстрая форма памяти. Будучи встроенным в чип, он обеспечивает минимальную задержку интерфейса с АЛУ, однако ограничен в размере. L l-кэш реализуется, используя принцип статической оперативной памяти (SRAM), и длительное время в среднем имел размер 16 Кбайт.

Кэш 2 - го уровня ( Level 2 cache , или L2).

Кэш 2-го уровня (вторичный кэш) использует ту же самую логику управления, что и кэш 1-го уровня, и также относится к типу SRAM.

Кэш 2-го уровня обычно имеет два размера — 256 или 512 Кбайт и помешается на системной плате в гнезде типа Card Edge Low Profile (CELP) или в модуле «кэш-на-плате» («cache on a stick» — COAST). Последний напоминает SIMM, но немного короче и включает гнездо COAST, которое обычно расположено близко к процессору и напоминает слот PCI.

Цель кэша 2-го уровня состоит в том, чтобы поставлять со­храненную информацию на процессор без какой-либо задержки (состояния ожидания). Для этой цели интерфейс шины процессора имеет специальный протокол передачи, названный групповым (или пакетным) режимом (burst mode). При этом обычно используется синхронный тип памяти, управляемой тактовым генератором ЦП. Цикл пакета состоит из четырех передач данных, где на адресную шину выводится адрес только первых 64 бит. Обычно кэш 2-го уровня — это синхронная пакетно-конвейерная память (Pipelined Burst Static RAM — PB SRAM).

Применение кэширования особенно эффективно, когда доступ к данным осуществляется преимущественно в последовательном порядке. Тогда после первого запроса на чтение данных, расположенных в медленной (кэшируемой) памяти, можно заранее {упреждающее чтение) выполнить чтение следующих блоков данных в кэш-память для того, чтобы при следующем запросе на чтение данных почти мгновенно выдать их из кэш-памяти. [4]

3.4.3 Специальная память

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Постоянная память (ПЗУ, англ. ROM, Read Only Memory - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Перепрограммируемая постоянная память (Flash Memory) - энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти - модуль BIOS.

BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для:

  • автоматического тестирования устройств после включения питания компьютера;
  • загрузки операционной системы в оперативную память.

Роль BIOS двоякая: с одной стороны, это неотъемлемый элемент аппаратуры (Hardware), а с другой строны - важный модуль любой операционной системы (Software).

Разновидность постоянного ЗУ - CMOS RAM.

CMOS RAM - это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Setup - устанавливать, читается "сетап").

Для хранения графической информации используется видеопамять.

Видеопамять (VRAM) - разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам - процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти. [2]

3.5 Устройства внешней памяти

Устройства хранения информации (внешняя память) – компоненты компьютера, позволяющие практически неограниченное время сохранять большие объемы информации без потребления электроэнергии (энергонезависимые). [5]

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке (рис. 10):

Рис. 10 – Передача информации от внешней памяти до центрального процессора

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнитооптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.
  • флэш-памяти

[2]

Первыми такими устройствами для ПК были Floppy-дисководы (FDD) и сменные дискеты – вначале пятидюймовые (5,25") емкостью 360 Кб и 1,2 Мб, затем трехдюймовые (3,5") емкостью 1,44 Мб. В настоящее время применяются редко в связи с широким распространением устройств флэш-памяти емкостью в несколько гигабайт.

Рассмотрим внешние памяти более конкретней.

3.5.1 Накопители на гибких магнитных дисках

Гибкий диск, дискета (англ. floppy disk) - устройство для хранения небольших объёмов информации, представляющее собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.

Рис. 11. Виды гибких дисков

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

Рис. 12. Поверхность магнитного диска

На дискете можно хранить от 360 Килобайт до 2,88 Мегабайт информации.

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive), автоматически в нем фиксируется, после чего механизм накопителя раскручивается до частоты вращения 360 мин-1. В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней.

Накопитель связан с процессором через контроллер гибких дисков.

3.5.2 Накопители на жестких магнитных дисках.

Следующий этап в развитии устройств хранения информации для ПК –винчестеры (или жесткие диски – Hard Disk Drive, HDD), которые в настоящее время являются обязательным компонентом каждого настольного персонального компьютера. В принципе, могут существовать бездисковые сетевые рабочие станции и терминалы, с загрузкой операционной системы с сервера и работой с дисковыми устройствами сервера, но на практике такие ПК встречаются достаточно редко. В субноутбуках винчестер может отсутствовать, вместо него используется флэш-память большого объема. [5]

Накопитель на жёстких магнитных дисках (англ. HDD - Hard Disk Drive) или винчестерский накопитель — это запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины - платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации - программ и данных.

Рис. 13. Винчестерский накопитель

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух.

Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска. [2]

Пакет дисков вращается непрерывно с большой скоростью (7200–15000 об/мин). Запись данных осуществляется следующим образом. При изменении силы тока, проходящего через записывающую головку, происходит изменение напряженности магнитного поля в щели между поверхностью и головкой, что приводит к изменению напряженности магнитного поля на небольшом участке ферромагнитного покрытия диска. Намагниченные участки и не намагниченные соответствуют двоичным кодам 1 и 0. Для чтения данных используется магниторезистивный принцип, когда сопротивление полупроводниковой пленки, из которой сделана головка чтения, меняется в зависимости от напряженности магнитного поля на поверхности ферромагнитного диска. Электрический сигнал с головки усиливается и передается на обработку в контроллер жесткого диска, расположенный в чипсете.

Винчестерский накопитель связан с процессором через контроллер жесткого диска.

Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.

3.5.3 Накопители на компакт-дисках.

CD-ROM (Compact Disk Read Only Memory, постоянное запоминающее устройство компакт-дисков). [5]

CD-ROM состоит из прозрачной полимерной основы диаметром 12 см и толщиной 1,2 мм. Одна сторона покрыта тонким алюминиевым слоем, защищенным от повреждений слоем лака. Двоичная информация представляется последовательным чередованием углублений (pits - ямки) и основного слоя (land - земля).

Рис. 14. Компакт-диск

На одном дюйме (2,54 см) по радиусу диска размещается 16 тысяч дорожек с информацией. Для сравнения - на дюйме по радиусу дискеты всего лишь 96 дорожек. Ёмкость CD до 780 Мбайт. Информация заносится на диск на заводе и не может быть изменена.

Достоинства CD-ROM:

  • При малых физических размерах CD-ROM обладают высокой информационной ёмкостью, что позволяет использовать их в справочных системах и в учебных комплексах с богатым иллюстративным материалом; один CD, имея размеры примерно дискеты, по информационному объёму равен почти 500 таким дискетам;
  • Считывание информации с CD происходит с высокой скоростью, сравнимой со скоростью работы винчестера;
  • CD просты и удобны в работе, практически не изнашиваются;
  • CD не могут быть поражены вирусами;
  • На CD-ROM невозможно случайно стереть информацию;
  • Стоимость хранения данных (в расчете на 1 Мбайт) низкая.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну - спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей магнитной головки к центру диска.

Для работы с CD ROM нужно подключить к компьютеру накопитель CD-ROM (CD-ROM Drive), в котором компакт-диски сменяются как в обычном проигрывателе. Накопители CD-ROM часто называют проигрывателями CD-ROM или приводами CD-ROM.

Рис. 15. Накопитель CD-ROM

Участки CD, на которых записаны символы "0" и "1", отличаются коэффициентом отражения лазерного луча, посылаемого накопителем CD-ROM. Эти отличия улавливаются фотоэлементом, и общий сигнал преобразуется в соответствующую последовательность нулей и единиц.

Многие накопители CD-ROM способны воспроизводить обычные аудио-CD. Это позволяет пользователю, работающему за компьютером, слушать музыку в фоновом режиме.

Со временем на смену CD-ROM могут прийти цифровые видеодиски DVD (читается "ди-ви-ди"). Эти диски имеют тот же размер, что и обычные CD, но вмещают 4,7 Гбайт данных, т.е. по объёму заменяют семь стандартных дисков CD-ROM. В скором времени ёмкость дисков DVD возрастет до 17 Гбайт. На таких дисках будут выпускаться полноэкранные видеофильмы отличного качества, программы-тренажёры, мультимедийные игры и многое другое.

Главный недостаток накопителей CD-ROM по сравнению с винчестерскими накопителями - невозможность перезаписи информации. [2]

3.5.4 Записывающие оптические и магнитооптические накопители

Накопитель на магнитооптических компакт-дисках СD-MO (Compact Disk-Magneto Optical). Диски СD-MO можно многократно использовать для записи, но они не читаются на традиционных дисководах CD-ROM. Ёмкость от 128 Мбайт до 2,6 Гбайт.

Рис.16. Накопитель CD-MO

Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски. Ёмкость 650 Мбайт.

Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

Накопитель WORM (Write Once, Read Many times), позволяет производить однократную запись и многократное считывание.

3.5.5 Накопители на магнитной ленте (стримеры) и накопители на сменных дисках

Стример (англ. tape streamer) - устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 - 2 Гбайта и больше.

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

В последнее время всё шире используются накопители на сменных дисках, которые позволяют не только увеличивать объём хранимой информации, но и переносить информацию между компьютерами. Объём сменных дисков - от сотен Мбайт до нескольких Гигабайт. [2]

Рис. 17. Накопитель на сменных дисках

3.5.6 Флэш-память

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти EEPROM. Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Элементарной ячейка хранения данных флэш-памяти представляет из себя транзистор с плавающим затвором. Особенность такого транзистора в том, что он умеет удерживать электроны (заряд). Вот на его основе и разработаны основные типы флэш-памяти NAND и NOR. Конкуренции между ними нет, потому что каждый из типов обладает своим преимуществом и недостатком. Кстати, на их основе строят гибридные версии такие как DiNOR и superAND. Во флэш-памяти производители используют два типа ячеек памяти MLC и SLC.

  • Флэш-память с MLC (Multi-level cell - многоуровневые ячейки памяти) ячейки более емкие и дешевые, но они с большим временем доступа и меньшим количеством циклов записи/стирания (около 10000).
  • Флэш-память, которая содержит в себе SLC (Single-level cell - одноуровневые ячейки памяти) ячейки имеет максимальное количество циклов записи/стирания (100000) и обладают меньшим временем доступа. Изменение заряда (запись/стирание) выполняется приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.

Принцип работы флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области ("карман") полупроводниковой структуры. Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения. Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек. [6]

Существуют две основные технологии флеш-памяти: NOR и NAND. Каждая технология имеет свои преимущества, которые делают их идеально подходящими в различных областях применения.

Флеш-память NOR

Флеш-память NOR, получившая название от технологии структурирования данных (Not OR), является высокоскоростной технологией флеш-памяти. Флеш-память NOR обеспечивает возможность высокоскоростного произвольного доступа, позволяя считывать и записывать данные в определенных областях памяти без необходимости доступа к памяти в последовательном режиме. В отличие от флеш-памяти NAND, флеш-память NOR позволяет считывать данные минимальным объемом до одного байта. Флеш-память NOR демонстрирует отличные результаты в областях применения, которые требуют произвольного считывания или записи данных. NOR наиболее часто встраивают в сотовые телефоны (для хранения операционной системы телефона) и КПК, а также используют в компьютерах для хранения программ BIOS, выполняющих функции при запуске.

Флеш-память NAND

Флеш-память NAND изобретена после памяти NOR, и получила название от технологии структурирования данных (Not AND). Флеш-память NAND выполняет считывание и запись в высокоскоростном последовательном режиме, оперируя данными небольшого блокового размера (“страницами”). Флеш-память NAND может считывать или записывать данные отдельными страницами, но не может считывать отдельные байты, как память NOR.

Флеш-память NAND обычно используется в твердотельных накопителях, мультимедийных флеш-устройствах воспроизведения аудио и видео, ресиверах цифрового телевидения, цифровых камерах, сотовых телефонах (для хранения данных) и в других устройствах, в которых данные обычно записываются или считываются последовательно.

Например, в большинстве цифровых камер используется цифровая “пленка” на основе флеш-памяти NAND, потому что фотографии обычно снимаются и хранятся последовательно. Флеш-память NAND также обычно более эффективна при считывании фотографий, потому что очень быстро передает целые страницы данных. Флеш-память NAND является носителем последовательного хранения и идеально подходит для хранения

данных.

Флеш-память NAND дешевле, чем память NOR, и может иметь большую емкость при том же размере кристалла.

Флеш-память, хранящая один бит на ячейку (например, значение “0” или “1” на ячейку), называется памятью с одноуровневыми ячейками (SLC). [7]

3.6. Видеосистема персонального компьютера

В архитектуре каждого ПК имеется видеосистема, предназначенная

для формирования изображений на экране монитора.

Основным средством оперативного отображения информации в компьютере является монитор (дисплей).

Видеокарта — это то устройство, с помощью которого изображение

выводится на монитор, т.е. без видеокарты ни текста, ни изображений мы

на экране не увидим.

Видеокарта (известна также как графический ускоритель, графическая плата, графическая карта, видеоадаптер) —устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора.

Её основу составляет видеоадаптер (или видеоконтроллер), осуществляющий непосредственное управление монитором. Выполнен он

в виде платы расширения — внешней видеокарты (дискретной), которая устанавливается в один из разъёмов на материнской плате, или является

встроенным (онбордным от англ. «Onboard» —на плате), т.е. интегрирован в материнскую плату.

Монитор - конструктивно законченное устройство, предназначенное для

визуального отображения информации.

Современный монитор состоит из экрана (дисплея), блока питания,

плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере — видеокарта). В некоторых случаях в качестве монитора может применяться и телевизор.

Классификация мониторов

1. По виду выводимой информации:

  • алфавитно- цифровые (система текстового (символьного) дисплея (character display system) — начиная с MDA);
  • дисплеи, отображающие только алфавитно-цифровую информацию;
  • дисплеи, отображающие псевдографические символы;
  • интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных;
  • графические, для вывода текстовой и графической (в том числе видео-) информации;
  • векторные (vector-scan display);
  • растровые (raster-scan display)—используются практически в каждой графической подсистеме PC. IBM назвала этот тип отображения информации = (начиная с CGA) отображением с адресацией всех точек (All-Points-Addressable, APA) — дисплеи такого типа обычно называют растровыми (графическими), поскольку каждому элементу изображения на экране соответствует один или несколько бит в видеопамяти.

2. По типу экрана:

  • ЭЛТ—монитор на основе электронно-лучевой трубки (англ.cathode ray tube, CRT);
  • ЖК— жидкокристаллические мониторы (англ. liquid crystal display, LCD);
  • плазменный—на основе плазменной панели (англ. plasma display panel, PDP, gas - plazma display panel ) ;
  • проектор—видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант—через зеркало или систему зеркал); проекционный телевизор;
  • LED-монитор — на технологииLED (англ. light-emitting diode светоизлучающий диод);
  • OLED-монитор — на технологии OLED (англ.organic light-emitting diode— органический светоизлучающий диод);
  • виртуальный ретинальный монитор —технология устройств вывода, формирующая изображение непосредственно насетчаткеглаза;
  • лазерный—на основе лазерной панели (пока только внедряется в производство). [8]

3.7 Устройства ввода-вывода данных

Классификация устройств ввода информации приведена на рис.18.

 Рисунок 18. – Схема классификации устройств ввода информации

3.7.1 Клавиатура

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащенные как персональные компьютеры, так и терминалы мейнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

  •  алфавитно-цифровой блок – содержит клавиши латинской и национального алфавитов, а также клавиши цифр и специальных символов;
  •  блок управляющих клавиш;
  •  блок расширенной цифровой клавиатуры;
  •  блок навигации. [11]

Принцип действия.

Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечение для начала работы с компьютером уже имеется в микросхеме ПЗУ в составе базовой системы ввода-вывода (BIOS), и потому компьютер реагирует на нажатия клавиш сразу после включения.


Принцип действия клавиатуры заключается в следующем.


1. При нажатии на клавишу (или комбинацию клавиш) специальная микросхема, встроенная в клавиатуру, генерирует и выдает так называемый скан-код.


2. Скан-код поступает в микросхему, выполняющую функции порта клавиатуры. (Порты — специальные аппаратно-логические устройства, отвечающие за связь процессора с другими устройствами.) Порт клавиатуры — это довольно простое устройство, интегрированное в одну из микросхем материнской платы.


3. Порт клавиатуры выдает процессору прерывание с фиксированным номером. Для клавиатуры номер прерывания — 9 (Interrupt 9)


4. Получив прерывание, процессор откладывает текущую работу и по номеру прерывания обращается в специальную область оперативной памяти, в которой находится так называемый вектор прерываний. Вектор прерываний — это список адресных данных с фиксированной длиной записи. Каждая запись содержит адрес программы, которая должна обслужить прерывание с номером, совпадающим с номером записи.


5. Определив адрес начала программы, обрабатывающей возникшее прерывание, процессор переходит ее исполнению. Простейшая программа обработки клавиатурного прерывания «зашита» в микросхему ПЗУ, но программисты могут «подставить» вместо нее свою программу, если изменят данные в векторе прерываний.


6. Программа-обработчик прерывания направляет процессор к порту клавиатуры, где он находит скан-код, загружает его в свои регистры, потом под управлением обработчика определяет, какой код символа соответствует данному скан-коду.


7. Далее обработчик прерываний отправляет полученный код символа в небольшую область памяти, известную как буфер клавиатуры, и прекращает свою работу, известив об этом процессор.


8. Процессор прекращает обработку прерывания и возвращается к отложенной задаче.


9. Введенный символ хранится в буфере клавиатуры до тех пор,
его не заберет оттуда та программа, для которой он предназначался, например текстовый редактор или текстовый процессор. Если символы поступают в буфер чаще, чем забираются оттуда, возможен эффект переполнения буфера. В этом случае ввод новых символов на некоторое время прекращается. На практике в этот момент при нажатии на клавишу мы слышим предупреждающий звуковой сигнал и не наблюдаем ввода данных.

[12]

3.7.2 Устройства позиционного ввода (манипуляторы).

Манипуляторы (мышь, джойстик и др.) - это специальные устройства, которые используются для управления курсором.

Мышь имеет вид небольшой коробки, полностью умещающейся на ладони. Мышь связана с компьютером кабелем через специальный блок - адаптер, и её движения преобразуются в соответствующие перемещения курсора по экрану дисплея. В верхней части устройства расположены управляющие кнопки (обычно их три), позволяющие задавать начало и конец движения, осуществлять выбор меню и т. п. [1]

Принцип действия.

В отличие от рассмотренной ранее клавиатуры не является стандартным органом управления, и персональный компьютер не имеет для нее выдел- ленного порта. Для мыши нет и постоянного выделенного прерывания, а базовые средства ввода и вывода (BIOS) компьютера, размещенные в постоянном запоминающем устройстве (ПЗУ), не содержат программных средств для обработки прерываний.

В связи с этим в первый момент после включения компьютера мышь не работает. Она нуждается в поддержке специальной системной программы — драйвера мыши.

Драйвер устанавливается либо при первом подключении мыши, либо при установке операционной системы компьютера. Хотя мышь и не имеет выделенного порта на материнской плате, для работы с ней используют один из стандартных портов, средства для работы, с которыми имеются в составе BIOS. Драйвер мыши предназначен для интерпретации сигналов, поступающих через порт. Кроме того, он обеспечивает механизм передачи информации о положении и состоянии мыши операционной системе и работающим программам.

Компьютером управляют перемещением мыши по плоскости и кратковременными нажатиями правой и левой кнопок. (Эти нажатия называются щелчками.) В отличие от клавиатуры мышь не может напрямую использоваться для ввода знаковой информации — ее принцип управления является событийным. Перемещения мыши и щелчки ее кнопок являются событиями с точки зрения ее программы-драйвера.
Анализируя эти события, драйвер устанавливает, когда произошло событие и в каком месте экрана в этот момент находился указатель. Эти данные передаются в прикладную программу, с которой работает пользователь в данный момент. По ним программа может определить команду, которую имел в виду пользователь, и приступить к ее исполнению.
Комбинация монитора и мыши обеспечивает наиболее современный тип интерфейса пользователя, который называется графическим. Пользователь наблюдает на экране графические объекты и элементы управления. С помощью мыши он изменяет свойства объектов и приводит в действие элементы управления компьютерной системой, а с помощью монитора получает от нее отклик в графическом виде. [12]

Рис. 19. Мышь компьютера

Джойстик - обычно это стержень-ручка, отклонение которой от вертикального положения приводит к передвижению курсора в соответствующем направлении по экрану монитора. Часто применяется в компьютерных играх. В некоторых моделях в джойстик монтируется датчик давления. В этом случае, чем сильнее пользователь нажимает на ручку, тем быстрее движется курсор по экрану дисплея.

Рис. 20 Джойстик

Трекбол - небольшая коробка с шариком, встроенным в верхнюю часть корпуса. Пользователь рукой вращает шарик и перемещает, соответственно, курсор. В отличие от мыши, трекбол не требует свободного пространства около компьютера, его можно встроить в корпус машины.

Рис. 21 Трекбол

Дигитайзер - устройство для преобразования готовых изображений (чертежей, карт) в цифровую форму. Представляет собой плоскую панель - планшет, располагаемую на столе, и специальный инструмент - перо, с помощью которого указывается позиция на планшете. При перемещении пера по планшету фиксируются его координаты в близко расположенных точках, которые затем преобразуются в компьютере в требуемые единицы измерения. [1]

3.7.3 Печатающие устройства.

Классификация и принципы работы печатающих устройств

В зависимости от порядка вывода информации различают:

· посимвольные печатающие устройства (ПУ) – выводят на носитель последовательно символ за символом;

· построчные ПУ – выводят за один цикл печати всю строку;

· постраничные ПУ – выводят за один цикл печати всю страницу.

Матричные и струйные принтеры являются строчными, а лазерные принтеры – страничными.

По принципу формирования изображений символов на носителе различают:

· литерные ПУ – изображение формируется одновременно на всей поверхности символа при единичном воздействии на носитель записи;

· матричные ПУ – изображение символа формируется из отдельных элементов – точек последовательно или последовательно-параллельно (их еще называют знакосинтезирующими).

По физическому принципу печати различают:

· ПУ ударного действия – изображения получаются в результате удара по носителю записи органом записи – молоточком, стержнем;

· ПУ безударного действия – изображения получают в результате физико-химического или другого воздействия на конечный или промежуточный носитель записи, входящий в состав ПУ.

Наибольшее распространение при реализации безударных ПУ получили электрографический (лазерный) и струйный способы регистрации.

Электрографические ПУ. В основе лежит электрофотографический способ регистрации, при котором создают скрытое электронное изображение на промежуточном носителе записи с фотопроводниковым слоем на поверхности, визуализируют это изображение мелкодисперсным красящим порошком-тонером, получая при этом порошковое изображение, которое затем переносят на конечный носитель – бумагу и закрепляют термическим способом. В таких ПУ используют лазерные и светодиодные источники излучения. Во всех лазерных ПУ развертку лазерного луча вдоль строки производят электромеханическим путем с помощью вращающегося зеркального многогранника или призмы. В качестве фотопроводникового слоя применяют неорганические вещества (селен-теллур) или органические фотопроводниковые вещества. Скрытое электронное изображение визуализируют с помощью магнитной кисти (подаваемый лист заряжается так, чтобы тонер с барабана притягивался к бумаге). Порошковое изображение на бумаге закрепляют, используя термический или термосиловой способ фиксации (прокатывают между двух нагретых валов).

Струйные ПУ. Струйная технология является на сегодня самой распространенной для реализации цветных устройств. Отличие струйных ПУ заключается в конструкции головки, используемом красконосителе и способе его подачи. В большинстве струйных ПУ красящая капля генерируется по запросу, то есть с поступлением управляющего сигнала из отверстия сопла вылетает только одна капля. Используют многоканальные струйные головки. Для генерации капель в канале с чернилами, сопряженным с выходными отверстиями сопл, возбуждают ударную волну, которая, дойдя до отверстия, выбрасывает каплю. Наиболее распространены два способа возбуждения ударной волны – возбуждение пьезоэлемента и нагревание микрорезистора (bubble-jet – пузырьковая технология). Достоинство головок с пьезоприводом – неограниченный срок службы. Недостаток – повышенная трудоемкость при изготовлении.

Программное управление принтером


Принтеры могут выполнять различные команды, поступающие от компьютера в виде специальных кодов: выбор типа и размера шрифта, длины строки, цвета печати, протяжка бумаги, установка интервала, число строк на странице и т.д. Особенности команд, исполняемых принтерами, учитывают разработчики программ для ПК. Прежде чем использовать многие из прикладных программ, например, редактор Word, пользователь ПК должен настроить на определенную конфигурацию оборудование компьютера. Часто эта настройка сводится к указанию марки используемого принтера или подключению драйвера печати конкретного устройства (Windows).

3.7.4 Графопостроитель

Графопостроитель, или плоттер (от английского plotter), – это устройство вывода, представляющее выводимые из ЭВМ данные в форме рисунка или графика на бумаге или другом подобном ей носителе информации. Графопостроители являются высококачественной альтернативой принтерам при выводе изображений. Графопостроители широко применяются в системах автоматизированного проектирования.

В зависимости от конструктивного исполнения плоттеры делятся на устройства планшетного и рулонного (барабанного типа).

В графопостроителе планшетного типа лист бумаги закрепляется на рабочей плоскости, над которой движется перо (или несколько перьев), перемещающееся по двум координатам x и y. Пишущий узел приводится в движение сервоприводом, обеспечивающим высокую точность его установки. Точности позиционирования пера, как правило, достаточно, например, для вычерчивания в реальном масштабе рисунков сложных печатных плат. Роль перьев в простых моделях плоттеров играют обычные шариковые ручки, а в совершенных моделях – специальные фломастеры. Изображение формируется на листе бумаги при перемещении опущенного пера. Если нужно просто установить перо в другую исходную точку, то оно автоматически приподнимается и переводится в требуемое место. Совместно с ПК применяются главным образом устройства в настольном исполнении и намного реже – в напольном.

3.7.5 Графические планшеты

Графические планшеты и диджитайзеры (от английского digitizer – цифровой преобразователь) автоматизируют создание и ввод в компьютер изображений, в основном рисунков. Работа с графическим планшетом аналогична рисованию карандашом или ручкой, а поэтому более удобна, чем с манипулятором (конечно, это замечание касается только создания рисунков). Графические планшеты являются факультативным ПУ. Они намного упрощают (по сравнению с написанием специальных программ) ввод в ПК графической информации, состоящей из линий, то есть штриховых рисунков.

Графический планшет состоит из прямоугольного корпуса, на котором расположены наклонная рабочая поверхность и панель управления, а внутри – электронный блок. Для формирования рисунка служит специальное перо, подключаемое к планшету при помощи гибкого шнура. Сам же планшет обычно подсоединяется к ПК через интерфейс RS232C. Для облегчения ввода сложных изображений на рабочую поверхность может быть нанесена вспомогательная координатная сетка.

3.7.6 Сканер.

Сканером (от английского scanner) называется устройство ввода, позволяющее вводить в ЭВМ изображения. Ввод изображений может потребоваться при копировании, размножении документов, для их редактирования с последующим размножением, а также в системах хранения и поиска изображений. При комплектации сканером и высококачественным печатающим устройством ПК превращается в АРМ для подготовки и издания различных информационных материалов.

Сканеры характеризуются:

· разрешающей способностью (разрешением);

· количеством воспринимаемых оттенков;

· возможностью ввода цветных изображений;

· быстродействием;

· размером обрабатываемых изображений;

· стоимостью.

Большинство из этих показателей рассмотрим на фоне изложения принципов работы сканирующих устройств.

Аналогично копировальному устройству сканер освещает оригинал белым светом с протяженного осветителя, а светочувствительные многоэлементные фотоприемные линейки (датчик сканера) с определенной частотой производит замеры интенсивности отраженного оригиналом света. Число фотоприемников в линейке может составлять 2000 и больше. Оптическая разрешающая способность сканера определяется расстоянием между фотоприемниками в линейке (чем их больше, тем разрешение лучше). Обычно оно не превышает 300-600 точек на дюйм. Более высокие значения достигаются благодаря интерполяции, сглаживающей неровности контуров, именно эти значения указывают производители в документации (1200, 1600).

В процессе сканирования напряжение, создаваемое фоточувствительным элементом, преобразуется в двоичный код, который передается в компьютер для дальнейшей обработки. Если сканер при каждом замере регистрирует всего один бит информации, то он распознает только два цвета – черный и белый. В зависимости от количества битов, соответствующих одному замеру, сканер может распознавать большее или меньшее количество оттенков от черного до белого. так, при 4-битовом кодировании имеется возможность распознавания 16 различных оттенков. Восьмибитовые же сканеры обеспечивают регистрацию 256 градаций серого цвета. [13]

3.8 Аудиоадаптер

Аудиоадаптер (Sound Blaster или звуковая плата) - это специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона, наушников, динамиков, встроенного синтезатора и другого оборудования.

Аудиоадаптер содержит в себе два преобразователя информации:

  • аналого-цифровой, который преобразует непрерывные (то есть, аналоговые) звуковые сигналы (речь, музыку, шум) в цифровой двоичный код и записывает его на магнитный носитель;
  • цифро-аналоговый, выполняющий обратное преобразование сохранённого в цифровом виде звука в аналоговый сигнал, который затем воспроизводится с помощью акустической системы, синтезатора звука или наушников.

Профессиональные звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нём сотнями тембров звучаний различных музыкальных инструментов.

Звуковые файлы обычно имеют очень большие размеры. Так, трёхминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому платы Sound Blaster, помимо своих основных функций, обеспечивают автоматическое сжатие файлов.

Область применения звуковых плат - компьютерные игры, обучающие программные системы, рекламные презентации, "голосовая почта" (voice mail) между компьютерами, озвучивание различных процессов, происходящих в компьютерном оборудовании, таких, например, как отсутствие бумаги в принтере и т.п.


3.9 Видеоадаптер и графический акселератор

Видеоадаптер - это электронная плата, которая обрабатывает видеоданные (текст графику) и управляет работой дисплея. Содержит видеопамять, регистры ввода- вывода и модуль BIOS. Посылает в дисплей сигналы управления яркостью лучей и сигналы развертки изображения.

Наиболее распространенный видеоадаптер на сегодняшний день - адаптер SVGA (Super Video Graphics Array - супервидеографический массив), который может отображать на экране дисплея 1280х1024 пикселей при 256 цветах и 1024х768 пикселей при 16 миллионах цветов.

С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами широко используются разнообразные устройства компьютерной обработки видеосигналов:

Графические акселераторы (ускорители) - специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

Рис. 22 Графический акселератор

Фрейм-грабберы, которые позволяют отображать на экране компьютера видеосигнал от видеомагнитофона, камеры, лазерного проигрывателя и т. п., с тем, чтобы захватить нужный кадр в память и впоследствии сохранить его в виде файла.

TV-тюнеры - видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом можно следить за ходом передачи, не прекращая работу. [1]

Заключение.

Персональные компьютеры представляют собой наиболее широко используемый тип компьютера, их мощность постоянно повышается, а область применения постоянно расширяется. Они обосновались в каждой организации, фирме, предприятии, объединены в локальные вычислительные сети, что дает возможность многим пользователям легко обмениваться информацией, одновременно работать с общей базой данных.

Сфера применения персональных компьютеров практически не ограничена, представители самых разных специальностей рассматривают персональный компьютер в качестве неотъемлемого инструмента их работы.

В представленной курсовой работе подробно рассмотрены понятие ПК, краткая историческая справка, виды ПК.

По степени мобильности компьютеры подразделяются на две группы - стационарные компьютеры и мобильные компьютеры, к которым относятся ноутбуки; нетбуки, планшеты; карманный компьютеры.

Также в курсовой работе рассмотрена структура персонального компьютера.

Компьютер представляет собой не одно устройство, а много взаимосвязанных различных устройств, которые могут являться внешними или внутренними, основными или дополнительными.

Обычный набор стационарной компьютерной системы включает в себя следующие основные устройства - системный блок (системный блок содержит основные функциональные элементы компьютера - материнскую плату, процессор, оперативную память, жесткий диск, приводы SD и DVD-дисков, видеокарту, звуковую плату, сетевую плату, порты ввода-вывода (разъемы), блок питания), монитор, клавиатуру, мышь. Также рассмотрены дополнительные устройства персонального компьютера - принтер, сканер и др.

Список литературы.

[1] Андрей Сухов Устройство Компьютера для Начинающих.

[Электронный ресурс] 2011 – URL: http://pcsecrets.ru

[2] Лаздин А.В. Основы вычислительной техники: Учебник по дисциплине: "Информатика (пользовательские аспекты)". Версия: 1. СПбГУ ИТМО, кафедра информатики и прикладной математики. — 81 с.

[3] Орлов С. А., Цилькер Б. О. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. — СПб.: Питер, 2011. — 688 с.: ил.

[4] Максимов Н. В., Партыка Т. JL, Попов И. И. Архитектура ЭВМ и вычислительных систем: учебник 5-е изд., перераб. и доп. — М.: ФОРУМ: ИНФРА - М, 2013. — 512 с.: ил.

[5] Грошев А. С. Информатика: Учебник для вузов/ А.С. Грошев. –Архангельск, Ар-ханг. гос. техн. ун-т, 2010. – 470с.

[6] https://ru.bmstu.wiki/ [Электронный ресурс]: Национальная электронная библиотека им. Н. Э. Баумана -

URL:https://ru.bmstu.wiki/%D0%A4%D0%BB%D0%B5%D1%88%D0%BF%D0%B0%D0%BC%D1%8F%D1%82%D1%8C.

[7] https://www.kingston.com/ru [Электронный ресурс]: Kingston Technology Corporation - URL: https://media.kingston.com/pdfs/MKF_283.1_Flash_Memory_Guide_RU.pdf

[8] Бедов, А.Н. Видеосистема персональных компьютеров: учебно-методическое пособие и лабораторный практикум, 2015, 132с.

[9] Горнец Н. Н. ЭВМ и периферийные устройства. Устройства ввода-вывода: учебник для студ. учреждений высш. проф. Образования — М.: Издательский центр «Академия», 2013. — 224 с.

[10] Молодяков С.А. ЭВМ и периферийные устройства. Часть I. Основы организации ЭВМ. Учебное пособие. СПб.: СПбГПУ, 2012. -367с.

[11] https://elearning.sumdu.edu.ua/ [Электронный ресурс]: Сумской государственный университет – URL: https://elearning.sumdu.edu.ua/free_content/lectured:7e0ba9f11604efbdab22e06d5c188bb228e6dd36/20160903091955/45174/index.html

[12] Симонович С.В. Учебник Информатика. Базовый курс.: Издательский Дом ПИТЕР, 2019 – 640c.

[13] http://vvsu.ru/ [Электронный ресурс]: ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА – URL: https://abc.vvsu.ru/books/per_ustr/page0015.asp