Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Процессор персонального компьютера. Назначение, функции, классификация процессора ( Устройство, характеристики, основные функции и назначение центрального процессора компьютера)

Содержание:

Введение

В современном мире, где информационные технологии так прочно вошли в жизнь человека, мы не можем представить ни одной области деятельности людей без компьютера. Дома, на работе, на учебе - сфера использования компьютеров необъятна и безгранична, она постоянно расширяется, существенно влияя на жизнь всего общества в целом и развитие его производственных сил. С развитием общества развивается и компьютер, изменяются в лучшую сторону его технические характеристики, такие как быстродействие, удобство в работе, стоимость, размеры, количество потребляемой электроэнергии. Прежде всего, компьютер рассматривается как преобразователь информации: человек вводит данные, ЭВМ обрабатывает их и выводит информацию (уже обработанную) на монитор (либо другое устройство). Все персональные компьютеры, а также прочие технические устройства (планшеты, смартфоны) обрабатывают нескончаемый поток информации с помощью специальной электронной микросхемы, называемой процессором.

Актуальность нашей работы обусловлена тем, что компьютер прочно вошел в жизнь людей, но многие из них даже и не задумываются о сущности ПК, о том, как он устроен и из чего состоит.

Пользование компьютером становится привычным для современного человека. Вместе с тем далеко не каждый владелец ПК задумывается о том, какие конкретно функции выполняет соответствующее вычислительное устройство.

Процессор — главная вычислительная микросхема компьютера. Как правило, это самый высокотехнологичный и дорогостоящий компонент ПК. Процессоры для компьютеров выпускаются буквально несколькими фирмами в мире. Более 90% мирового рынка занимают две компании — Intel и AMD. Основной показатель производительности данного компонента ПК — частота выполнения операций. Измеряется она обычно в гигагерцах, или ГГц. Чем выше частота, тем быстрее микросхема выполняет необходимые вычисления.

Также значимый показатель производительности процессора — количество ядер. Чем их больше, тем мощнее соответствующий аппаратный компонент. Какие функции процессора компьютера можно назвать ключевыми? Можно сказать, что они, в целом, совпадают с теми, которые выполняет ПК в целом: обработка, перемещение, хранение, данных, управление файлами. Тем самым мы можем проследить значимость процессора на каждом участке работы компьютера.

Цель курсовой работы изучить назначение, функции, классификацию процессора персонального компьютера.

Для достижения поставленной цели были сформулированы следующие задачи:

- изучить устройство, характеристики, основные функции и назначение центрального процессора компьютера;

- рассмотреть виды и назначение процессора;

- исследовать принцип работы процессора.

Объектом исследования курсовой работы является компьютер

Предметом исследования является процессор компьютера.

В процессе курсовой работы были применены совокупность методов сравнительно-правового анализа, классификаций и обобщений, а также описания - один из важных методов изучения рассматриваемого вопроса.

Структурная работа состоит из введения, трех глав, заключения, содержащего основанные на результатах проведенного исследования выводы, библиографического списка.

Глава 1 Устройство, характеристики, основные функции и назначение центрального процессора компьютера

Компьютер является неотъемлемой частью жизни современного человека. Интернет-серфинг, удаленная работа, быстрая связь с близкими и друзьями за считанные секунды - все это дает нам компьютер. Еще несколько десятилетий назад люди не могли представить, что посмотреть любимый фильм, заказать еду или купить книгу можно будет не вставая со стула. Теперь же это для нас не просто привычно, это вошло и укоренилось в нашей жизни. Давайте разберемся, из чего же состоит компьютер [5]. А состоит он из множества компонентов и деталей, главные из которых - это оперативная память, центральный процессор и видеокарта. Конечно, в компьютере есть еще ряд вещей, без которых он не может функционировать: блок питания, жесткий диск, материнская плата и элементы гарнитуры. Перейдем к более детальному рассмотрению.

1.1 Устройство центрального процессора

Процессор - это своего рода мозги компьютера. На самом деле больше, чем процессор, не выполняет задач ни один элемент в компьютере. Через центральный процессор проходят сотни потоков в секунду. Он перерабатывает информацию и распределяет ее уже между другими компонентами. Не зря его называют сердцем компьютера. Через него проходит вся информация и все процессы. Что такое ЦПУ в компьютере, разобрались, перейдем к его устройству.

Данная микросхема выполняет функцию вычислительного центра. Без CPU компьютер просто не будет работать. Мощность CPU характеризуется тактовой частотой, которая измеряется в МГц. Вместе с тем именно от уровня примененной технологии зависит конечный показатель производительности процессора. При выполнении многопоточных операций (работа двух и более одновременно используемых приложений) безусловным преимуществом обладают CPU, имеющие многоядерную архитектуру строения. Данная техническая часть компьютера — процессор — состоит из ядра и сопряженных с ним составных элементов: шины ввода/вывода и адресной шины. Скорость обработки данных между указанными компонентами CPU выражается в разрядности. Чем выше упомянутый показатель, тем больше пропускная способность шины центрального процессора.

Верхняя часть процессора представляет собой механическую крышку. Она необходима для рассеивания тепла и в случае удара или падения защитит процессор. Сразу под этой крышкой находится своего рода кристалл, отвечающий за все процессоры в компьютере [7]. За основу кристалла взят кремний. В случае его малейшего повреждения работа центрального процессора будет нарушена. Под кристаллом находится специальная прокладка, к которой с обратной стороны процессора прикреплены своеобразные "ножки" процессора. Именно они контактируют с материнской платой и передают всю информацию. Так же как и в случае с кристаллом, если не будет хотя бы одной ножки, то работа компьютера будет нарушена.

Функции центрального процессора

Как уже было сказано, процессор выполняет очень важную функцию в компьютере. От мощности процессора зависит то, насколько хорошо себя проявят остальные компоненты. Если мощности процессора не хватает для того, чтобы стабильно грузить приложение или игру, то видеокарта также не сможет проявить себя. Разберем, что делает центральный процессор:

•выборка (чтение) выполняемых команд;

•ввод (чтение) данных из памяти или устройства ввода/вывода;

•вывод (запись) данных в память или в устройства ввода/вывода;

•обработка данных (операндов), в том числе арифметические операции над ними;

•адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;

•обработка прерываний и режима прямого доступа.

Это основные функции ЦП. Все эти функции он выполняет каждую секунду своей работы, обеспечивая стабильную работу компьютера.

Центральный процессор и его характеристика

Каждый процессор имеет свои особенности строения. Характеристика центрального процессора позволяет понять, для каких задач он создан. Разная архитектура, тактовая частота. Все это в каждом процессоре разное:

•тип архитектуры или серия (CISC, Intel х86, RISC);

•система поддерживаемых команд (х86, IA-32, IA 64);

•расширения системы команд (ММХ, SSE, SSE2, 3Dnow!);

•конструктивное исполнение (Slot I, Slot 2, Socket 340, Socket 478, Slot A, Socket A);

•тактовая частота (МГц, ГГц);

•частота системной шины.

Стоит также уделить внимание понятию блоков центрального процессора. Они нужны для временного хранения управляющей информации. Эти блоки необходимы для того, чтобы в случае необходимости процессор мог моментально достать и использовать необходимую ему информацию [9]. Обычно это чуть более 10 MB, но скорость у такой памяти намного выше, чем у оперативной памяти.

Видеокарта

Обсуждая центральный процессор CPU и другие компоненты компьютера, нельзя не уделить время такой важной части каждого устройства, как видеоадаптер. Видеокарта - это устройство, которое преобразует образ, хранящийся в виде информации, в полноценную и привычную нам картинку. То есть процессор информацию получает, обрабатывает и передает видеокарте, а она в свою очередь ее преобразует в графический образ. От мощности видеоадаптера зависит, какое качество картинки вы получите, разрешение и количество кадров. ЦПУ - это тоже компонент, от которого зависят кадры на экране. Количество кадров в секунду означает количество обновлений, которое происходит на экране за данную единицу времени. Приемлемым считается 25 кадров и выше, но за эталон принято не менее 30 кадров. Что интересно, частота обновления образа более 60 раз в секунду не имеет смысла, так как наш глаз уже не видит столь маленькой разницы. Видеокарты условно делятся на 3 типа:

•Для 3D-работ.

•Для игр.

•Для домашних компьютеров.

Разберем каждый тип видеокарт. К 1 типу относятся видеоадаптеры, заточенные конкретно под моделирование. Такие видеокарты стоят довольно дорого, так как намного сложнее и требовательнее остальных видов. Второй тип самый массовый и распространенный, к нему относят все видеокарты от компании Nvidia c названием GTX и от компании AMD с указателем "x" в конце (например R7 275x). Эти видеокарты заточены именно под игры, но так же отлично проявляют себя для обычной, спокойной работы. Ну а к 3 типу относят видеокарты для интернет-серфинга или для работ в офисе, не требующих высоких показателей производительности.

Эффект "узкого горлышка"

Необходимо сказать о том, что связка процессора и видеокарты должна быть грамотно подобрана. Иначе можно столкнуться с таким явлением, как bottleneck. В переводе с английского это означает "узкое горлышко". Разберемся, что это такое и почему возникает. ЦПУ - это важный модуль компьютера, и если он загружен на полную, а видеокарта еще нет, то это называется эффектом узкого горлышка, когда производительность компьютера упирается в мощность процессора, а не в видеокарту. Для того чтобы избежать подобных ситуаций, необходимо выбирать процессор мощнее, чем тот, что подходит к видеокарте.

1.2 Троттлинг

Троттлинг - это процесс защиты процессора от механических повреждений в ходе перегрева. Из-за этого существенно падает частота процессора и мощность компьютера в целом. Явление неприятное и возникает нечасто, только при существенном перегреве центрального процессора. ЦПУ - это очень хрупкий и важный компонент компьютера, который в случае угрозы поломки защищает себя. Например, процессор с 4 ядрами и 8 потоками в случае перегрева из-за высокой нагрузки увеличивает нагрузку на первые два ядра, так как они являются основными по умолчанию почти у всех процессоров. Пока остальные ядра охлаждаются, первые два работают на полную, и если нагрузка только увеличивается, то вскоре они перегреваются и включается троттлинг, тем самым фактически выключая эти ядра, перекидывая нагрузку на остальные два ядра, которые вскоре так же перегреваются и частота процессора существенно падает. Для того чтобы не попасть в такую ситуацию, надо следить за охлаждением процессора. Обязательно надо чистить компьютер от пыли, в том числе кулер, который охлаждает ЦП. Также необходимо проводить замену термопасты для более лучшей проводимости тепла [12]. Компьютер должен находиться на расстоянии не менее 50 см от стены, для свободной циркуляции воздуха, иначе перегреву подвергнется не только процессор, но и весь компьютер в целом. Для понижения температуры процессора проводится его скальпирование. Это замена текстолита, который находится под крышкой процессора, передавая тепло от кристалла к его крышке и к кулеру.

Оперативная память

Также одним из важнейших компонентов компьютера является оперативная память, или как ее еще называют ОЗУ (оперативно запоминающее устройство). В отличие от жесткого диска в оперативной памяти содержится временная информация. То есть при запуске игры сама игра находится на жестком диске, а действия, которые происходят в игре на данный момент на экране, хранятся на оперативно запоминающем устройстве. Почему именно так, а не на жестком диске? Так как у ОЗУ скорость пропускная память в десятки раз выше, чем у основного диска компьютера, то именно в ней хранятся промежуточные данные. Во время загрузки локации в игре нужно быстро подгрузить файлы, а для этого нужно их пропустить через оперативную память или жесткий диск. Так как пропуск через жесткий диск будет в разы дольше, используется оперативная память.

Разгон компонентов ПК

Часто пользователи недовольны мощностью и производительностью своего компьютера. Для этого разработчики видеокарт, процессоров и так далее предусмотрели самостоятельное увеличение мощности компьютера в домашних условиях. Разгон каждого модуля компьютера отличается и требует осторожности.

Разгон процессора

ЦПУ - это самая важная часть в компьютере. Его разгон больше всего увеличивает мощность ПК. Как уже было сказано, если компьютер упирается мощностью в процессор, то страдает вся производительность. Что же надо сделать для разгона?

•Сначала определите, если не знаете, какой у вас процессор.

•Попробуйте найти на форумах в интернете информацию о разгоне именно вашей модели процессора от пользователей. Там будет указано максимально возможная частота, до которой смогли довести процессор другие пользователи.

•Запустите компьютер вместе с БИОСом.

•У каждой материнской платы разное устройство БИОСа, поэтому поищите в интернете, как зайти в меню разгона процессора [3].

•После того как попали в меню, вы сможете выбрать виды разгона: автоматический или ручной. Также часто бывают уже заготовленные параметры разгона, но выше чем на 10 % они не разгоняют процессор. Поэтому рекомендуется выбирать ручной режим.

•Попробуйте увеличить показатель множителя вашего процессора на 10-15 % (допустим, он будет 220, а вы поставите 330).

•Запустите компьютер и понаблюдайте за его работой.

•Если компьютер не запускается, или во время работы выскакивает синий экран смерти, видимо, вы переусердствовали с разгоном.

Почему же у разных пользователей разные показатели разгона процессора одной и той же модели?

У каждого пользователи разное охлаждение и модель материнской платы. Каждая плата рассчитана под определенные нужды. Одна под офисные работы, другая под активное домашнее пользование компьютером, а третья как раз таки для разгона и игр. У кого-то материнская плата мощнее, поэтому и возможность разгона выше. Также, конечно, влияет и уровень охлаждения процессора. Повышая частоту процессора, мы увеличиваем его теплоотдачу. У каждого кулера есть предел температуры охлаждения, у одного это 90 TDF, у другого 120 TDF и так далее. Соответственно, если теплоотдача процессора выше, чем может охладить кулер, то стабильно система работать уже не будет. То есть два главных компонента в разгоне процессора - это материнская плата и система охлаждения.

Разгон видеокарты

Видеокарта, так же как и процессор, подлежит разгону. С помощью увеличения мощности можно повысить качество картинки и увеличить количество кадров в играх. Для этого надо проделать пару нехитрых действий:

•Скачать приложение для разгона видеокарты.

•Опять же узнать на форумах, до каких частот можно разогнать именно вашу видеокарту.

•Выставить желательные показатели.

•Наблюдать за работой компьютера, если выскакивает экран смерти, значит, вы переусердствовали, просто понизьте показатели.

Разгон оперативной памяти

Увеличение мощности оперативной памяти осуществляется тем же путем, что и разгон процессора. Вы так же заходите в БИОС, находите пункт разгона и понемногу увеличиваете показатели. Зачем нужен разгон оперативной памяти? Разгоняя ее, вы повышаете скорость передачи данных, тем самым ускоряя работу приложений и игр на вашем компьютере. Также стоит сказать, что разгон оперативной памяти является самым опасным, так как может привести к непоправимым последствиям, вплоть до поломки материнской платы.

1.3 Ядро процессора и его задачи

Говоря о том, из чего состоит центральный процессор, в первую очередь нужно упомянуть ядра, так как именно они представляют собой основные его части. Ядра включают в себя функциональные блоки, выполняющие арифметические или логические операции. В частности, можно выделить:

1.Блок выборки, декодирования и выполнения инструкций.

2.Блок сохранения результатов.

3.Блок счетчика команд и т.д.

Как вы поняли, каждый из них выполняет определенную задачу. Например, блок выборки инструкций считывает их по указанному в счетчике команд адресу. В свою очередь, блоки декодирования определяют, что именно надо сделать процессору. В совокупности работа всех этих блоков и позволяет добиться выполнения указанной пользователем задачи.

Отметим, что ядра могут выполнять только математические расчеты и операции сравнения, а также перемещать данные между ячейками ОЗУ. Впрочем, этого хватает, чтобы пользователи могли играть в игры на компьютере, смотреть фильмы, просматривать веб-страницы [9].

По сути, любая компьютерная программа состоит из простых команд: сложить, умножить, переместить, поделить, перейти к инструкции при выполнении условия. Конечно, это лишь примитивные команды, однако их объединение между собой позволяет создать сложную функцию.

Из чего состоит процессор еще, кроме ядер? Регистры – второй важный его компонент. Как вы уже знаете, это быстрые ячейки памяти, где находятся обрабатываемые данные. Они бывают разными:

1.A, B, C – используются для хранения информации во время обработки. Их всего три, но этого достаточно.

2.EIP – в этом регистре хранится адрес следующей в очереди инструкции.

3.ESP – адрес данных в ОЗУ.

4.Z – здесь находится результат последней операции сравнения.

Этими регистрами процессор не ограничивается. Есть и другие, однако указанные выше являются самыми главными – именно ими чаще всего пользуется чип для обработки данных во время выполнения той или иной программы.

В этой главе было полностью рассмотрено устройство центрального процессора и других компонентов. Каждый может самостоятельно дома разогнать и улучшить свой компьютер. Но необходимо обязательно помнить, что в случае поломки никто не починит ваш компьютер бесплатно, так как разгоняя его, вы берете ответственность на себя.

Глава 2 Виды, назначение принципы работы процессора

Практически каждая деталь в компьютере имеет чрезвычайно важное значение, и стоит лишить материнскую плату того или иного компонента, можно в конечном итоге обнаружить абсолютно неработающий компьютер, даже если была изъята какая-то мелочь. В особенности это относится к процессору, ведь эта, казалось бы, незначительная по своим габаритам деталь ПК является мозгом любого компьютера, хотя и не все правильно понимают назначение процессора.

В первую очередь, выбирая такие комплектующие, следует обращать свое внимание на скорость выполнения задач, ведь в зависимости от мощности данного элемента непосредственно будет зависеть скорость обработки и исполнения различных команд. Но изначально следует вообще разобраться, в чем заключается назначение процессора и что он собой представляет [10].

Центральный процессор предназначается для обработки программного кода. Другими словами, назначение процессора заключается в том, чтобы выполнять все операции, свзяанные с обработкой данных, а также управление работой различных периферийных устройств. Среди основных характеристик данного элемента стоит выделить:

•тактовую частоту;

•разрядность;

•быстродействие.

Именно эти характеристики оказывают непосредственное влияние на стоимость данного устройства, однако не следует забывать и о таком факторе, как бренд, ведь зачастую он также является достаточно важным.

Быстродействие отвечает за то, какое количество операций может выполняться каждую секунду, а так как назначение центрального процессора заключается в обработке данных, это для него является чрезвычайно важным. Тактовая частота измеряется в МГц. Промежуток времени между двумя импульсами равен одному такту, вследствие чего, чем более производительную модель процессора вы будете использовать, тем меньше ему потребуется тактов для того, чтобы выполнить те или иные действия. Предельно допустимое количество данных, которые может обрабатывать и передавать микропроцессор в одно время – это разрядность.

Первоначально процессоры были одноядерными. То есть при запуске на компьютере одновременно нескольких процедур, казалось, что процессор занимается выполнением всех этих действий одновременно, но в действительности же все действия проводились поочередно, просто на каждую операцию затрачивалось всего несколько долей секунды [6].

Основные назначения процессора с двумя ядрами уже были значительно расширены, так как все задачи решались одновременно, не говоря уже о том, насколько производительными на сегодняшний день являются устройства, оснащенные четырьмя или же шестью ядрами. Однако не стоит заблуждаться, считая, что количество ядер непосредственно влияет на мощность и скорость работы вашего компьютера, так как не стоит забывать и о том, что и от других параметров зависит то, какие могут иметь процессоры назначение. Характеристика тактовой частоты и разрядности – это также довольно важные параметры, на которые обязательно нужно обращать свое внимание при выборе таких устройств.

Помимо этого, современные процессоры распределяются между собой по производителям. На протяжении десятилетий идут баталии между поклонниками устройств от компаний Intel и AMD, однако ни одна из компаний по сегодняшний день не смогла доказать, что ее бренд является однозначно лучшим.

Также, рассматривая то, какие имеют процессоры назначение и виды, стоит выделить программные системы, которые также именуются таким образом. В частности речь пойдет о текстовых и табличных утилитах.

Назначение текстового процессора – это написание или же последующая модификация различных документов, а также компоновки макета текста. Также эти утилиты используются для предварительного просмотра документов в том виде, в котором они должны будут печататься.

Стоит отметить тот факт, что назначение текстового процессора в наши дни значительно отличается от того, какие возможности эти устройства имели всего несколько лет назад. Ведь раньше они могли просто набирать и печатать тексты, в то время как сегодня им доступно форматирование шрифтов и абзацев, проверка орфографии, создание таблиц, а также вставка разнообразных графических изображений.

Наиболее известным типом таких процессоров является Microsoft Word. Назначение процессора Word заключается именно в наборе текста, а также его совершенствовании и проверке орфографии. Благодаря широчайшему функционалу, а также тому, что утилита изначально стоит в операционной системе Windows, она сегодня является настолько популярной.

2.1 Табличный процессор

Назначение табличного процессора – это работа с различными электронными таблицами. Изначально такие утилиты предусматривали обработку исключительно двухмерных таблиц, наполненных различными числовыми данными. Однако с течением времени начали появляться различные утилиты, которые помимо этого включали в таблицы также графические, текстовые и еще целый ряд других мультимедийных элементов, расширяющих основное назначение табличного процессора.

Как и в предыдущем случае, наиболее широкое распространение получила программа Microsoft Excel. Назначение табличного процессора Excel заключается в выполнении целого комплекса задач, однако в первую очередь при помощи такого софта осуществляются различного рода вычисления. С давних времен преимущественное большинство расчетов осуществляется именно в табличной форме, в связи с чем такие программы по сегодняшний день являются чрезвычайно востребованными [17].

Разнообразное назначение табличного процессора обеспечивается тем, что в современном софте используется крайне широкий инструментарий, который включает в себя разнообразные математические функции, позволяющие проводить чрезвычайно сложные финансовые, статистические и прочие расчеты.

Чтобы вы не ошиблись и купили действительно хорошее устройство, которое могло бы всецело удовлетворить ваши нужды, вам следует учитывать такие параметры, как:

•высокая тактовая частота;

•количество ядер;

•частота системной шины;

•размер системного КЭШа;

•тип кулера.

В зависимости от количества ядер изменяется вероятность того, что ваш процессор сможет тянуть какие-то игры последнего поколения или же самые современные утилиты, предназначенные для работы с различными 3D-моделями. Частота системной шины непосредственно влияет на производительность оборудования, причем не менее важным является и размер системного КЭШа, так как в нем хранится программный код и вся необходимая пользователю информация. Таким образом, чем более быстродействующей будет память, тем более производительным будет и само устройство.

Не менее важно обращать свое внимание на качество установленного кулера, ведь, приобретая последние модели CPU, но не обеспечивая им необходимое охлаждение, в конечном итоге вы рискуете не только не получить удовольствия от современных игр, но еще и нарваться на скоропостижную замену этого компонента, которая будет начинаться с постоянного отключения компьютера.

Если вас интересуют в преимущественном большинстве случаев разнообразные видеоигры, то в таком случае вам следует сделать выбор в пользу процессоров AMD, так как они отличаются гораздо большей совместимостью с современными видеокартами. При этом стоит отметить, что и стоимость таких устройств при одинаковых характеристиках на порядок меньше по сравнению с устройствами от конкурирующей компании [15].

Если же вы интересуетесь многозадачностью, то в таком случае вам стоит обратить свое внимание на предложения от компании Intel. Так как процессоры от этой компании функционируют на порядок более быстро и эффективно, а также отличаются большей тактовой частотой по сравнению с предыдущими, пользователи часто отдают предпочтение именно им. Но на самом деле не стоит забывать о том, что и стоимость таких комплектующих приблизительно на 40% выше по сравнению с предложениями от AMD, имеющими аналогичные характеристики.

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, Core i3, i5, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков [6].

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Intel Core i3

Intel Core i3 – это процессор, назначение и возможности которого на порядок опережали аналогичные модели своего времени. Это был двухъядерный процессор нового поколения, предназначенный для ПК начального уровня. Устройство оснащалось встроенным контроллером оперативной памяти. Стоит отметить, что в таких процессорах присутствует встроенный контроллер модели PCI Express 2.0 x16, и именно за счет него графический ускоритель может непосредственно подключаться к CPU. Для всех моделей данного типа стандартная тактовая частота составляет 133 МГц [2].

Intel Core i5

Данная серия процессоров отличается продвинутой интеллектуальной производительностью, которая значительно увеличивается в том случае, если появляется необходимость в реализации различных ресурсоемких приложений. Такие устройства могут полностью автоматически распределять доступную мощность между процессами в зависимости от поставленных задач и потребностей пользователя.

Стоит отметить, что в данной серии помимо двухъядерных появились также четырехъядерные модели последнего поколения, а сами устройства активно используются по сегодняшний день в ПК среднего уровня. В процессорах применяется встроенный двухканальный контроллер оперативной памяти, напряжение которого составляет всего 1.6 В. Как и в предыдущем случае, в этом процессоре применяется точно такой же встроенный контроллер, а видеокарта в режиме х16 может подключаться непосредственно к чипу в тех моделях, где присутствует встроенное графическое ядро GMA HD. Для того чтобы обеспечить оптимальный запуск ресурсоемких приложений, в данной линейке процессоров решили реализовать технологию Turbo Boost, в которой осуществляется автоматическое повышение тактовой частоты в случае такой необходимости.

Intel Core i7

Данная серия процессоров включает в себя четырехъядерные и шестиядерные устройства. Данное оборудование представляет собой процессоры последнего поколения, которые используются в персональных компьютерах самого высшего класса.

2.2 Графический процессор

В современных устройствах применяется графический процессор, который еще обозначают как GPU. Что это и каков его принцип работы? GPU (Graphics Processing Unit) - процессор, основная задача которого - обработка графики и вычислений с плавающей точкой. GPU облегчает работу главного процессора, если идет речь о тяжелых играх и приложениях с 3D-графикой.

Графический процессор создает графику, текстуры, цвета. Процессор, который обладает несколькими ядрами, может работать на высоких скоростях. У графического много ядер, функционирующих преимущественно на низких скоростях. Они занимаются вычислениями пикселей и вершин. Обработка последних в основном происходит в системе координат. Процессор графический обрабатывает различные задачи, создавая на экране трехмерное пространство, то есть объекты в нем перемещаются.

Принцип работы

Что делает графический процессор? Он занимается обработкой графики в формате 2D и 3D. Благодаря GPU компьютеру быстрее и легче удается выполнять важные задачи. Особенность графического процессора состоит в том, что он увеличивает скорость расчета графической информации на максимальном уровне. Его архитектура устроена так, что позволяет более эффективно обрабатывать визуальную информацию, чем центральный CPU компьютера.

Он отвечает за расположение трехмерных моделей в кадре. Кроме того, каждый из типов графического процессора фильтрует треугольники, входящие в него. Он определяет, какие на виду, удаляет те, которые скрываются за другими объектами. Прорисовывает источники света, определяет, каким образом эти источники влияют на цвет. Графический процессор создает изображение, выдает его пользователю на экран [4].

Чем обусловлена эффективная работа графического процессора? Температурой. Одна из проблем ПК и ноутбуков - перегрев. Именно это становится главной причиной того, почему устройство и его элементы быстро выходят из строя. Проблемы с GPU начинаются, когда температура процессора превышает 65 °С. В этом случае пользователи замечают, что процессор начинает работать слабее, пропускает такты, чтобы самостоятельно понизить увеличенную температуру.

Температурный режим 65-80 °С - критический. В этом случае начинается перезагрузка системы (аварийная), компьютер выключается самостоятельно. Пользователю важно отслеживать, чтобы температура графического процессора не превышала 50 °С. Нормальной считается t 30-35 °С в простое, 40-45 °С при многочасовой нагрузке. Чем ниже температура, тем выше производительность компьютера. Для материнской платы, видеокарты, корпуса и жестких дисков - свои температурные режимы.

Но многих пользователей также беспокоит вопрос, как же уменьшить температуру процессора, чтобы повысить эффективность его работы. Для начала нужно выяснить причину перегрева. Это может быть засорение системы охлаждения, высохшая термопаста, вредоносная программа, разгон процессора, сырая прошивка БИОСа. Самое простое, что может сделать пользователь, - это заменить термопасту, которая находится на самом процессоре. Кроме того, нужно произвести чистку системы охлаждения. Еще специалисты советуют установить мощный кулер, улучшить циркуляцию воздуха в системном блоке, увеличить скорость вращения на графическом адаптере кулера. Для всех компьютеров и графических процессоров одинаковая схема понижения температуры. Важно следить за устройством, вовремя его чистить [7].

Графический процессор расположен на видеокарте, его главная задача - это обработка 2D и 3D графики. Если на компьютере установлен GPU, то процессор устройства не выполняет лишнюю работу, поэтому функционирует быстрее. Главная особенность графического в том, что его основная цель - это увеличение скорости расчета объектов и текстур, то есть графической информации. Архитектура процессора позволяет им работать намного эффективнее, обрабатывать визуальную информацию. Обычному процессору такое не под силу.

Что это - графический процессор? Это компонент, входящий в состав видеокарты. Существует несколько видов чипов: встроенный и дискретный. Специалисты утверждают, что лучше справляется со своей задачей второй. Его устанавливают на отдельные модули, так как отличается он своей мощью, но ему необходимо отличное охлаждение. Встроенный графический процессор есть практически во всех компьютерах. Его устанавливают в CPU, чтобы сделать потребление энергии в несколько раз ниже. С дискретными по мощи он не сравнится, но тоже обладает хорошими характеристиками, демонстрирует неплохие результаты.

Это что? Так называется область деятельности, в которой для создания изображений и обработки визуальной информации используют компьютерные технологии. Современная компьютерная графика, в том числе научная, позволяет графически обрабатывать результаты, строить диаграммы, графики, чертежи, а также производить различного рода виртуальные эксперименты.

С помощью конструктивной графики создаются технические изделия. Существуют и другие виды компьютерной графики:

•анимационная;

•мультимедийная;

•художественная;

•рекламная;

•иллюстративная.

С технической точки зрения компьютерная графика - это двухмерные и трехмерные изображения.

CPU и GPU: разница

В чем разница между этими двумя обозначениями? Многие пользователи в курсе, что графический процессор (что это - рассказано выше) и видеокарта выполняют разные задачи. Кроме того, они отличаются по своей внутренней структуре. И CPU, и GPU - это процессоры, которые обладают многими сходными чертами, но сделаны они для разных целей.

CPU выполняет определенную цепочку инструкций за короткий промежуток времени. Он сделан так, что формирует одновременно несколько цепочек, разбивает поток инструкций на множество, выполняет их, затем снова сливает в одно целое в конкретном порядке. Инструкция в потоке находится в зависимости от тех, что за ней следуют, поэтому в CPU содержится малое число исполнительных блоков, здесь главный приоритет отдается скорости выполнения, уменьшению простоев. Все это достигается при помощи конвейера и кэш-памяти.

У GPU другая важная функция - рендеринг визуальных эффектов и 3D-графики. Работает он проще: на входе получает полигоны, проводит необходимые логические и математические операции, на выходе выдает координаты пикселей. Работа GPU - это оперирование большим потоком разных задач. Его особенность в том, что он наделен большим объемом памяти, но медленно работает по сравнению с CPU. Кроме того, в современных GPU более 2000 исполнительных блоков. Отличаются они между собой методами доступа к памяти. Например, графическому не нужна кэшированная память большого размера. У GPU пропускная способность больше. Если объяснять простыми словами, то CPU принимает решения в соответствии с задачами программы, а GPU производит множество одинаковых вычислений.

2.3 Принцип работы процессора

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

•количество ядер;

•число потоков;

•размер кэша (внутренней памяти);

•тактовая частота;

•быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в сведениях о системе. Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная тактовая частота является всего лишь усредненным показателем.

Количество ядер – показатель, определяющий число вычислительных центров процессора (не путать с потоками – количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие – операционную и операндную [8].

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

•выработка;

•дешифрование;

•выполнение команды;

•обращение к памяти самого процессора

•сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

•математические действия на основе арифметико-логического устройства;

•перемещение данных (информации) из одного типа памяти в другой;

•принятие решения по исполнению команды, и на его основе – выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого конфигурацию системы (msconfig) и дополнительные параметры загрузки.

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор – «умирает» вся компьютерная система.

Компьютер состоит из множества различных деталей, каждая из которых выполняет свои определённые функции. Все вместе они обеспечивают стабильную работоспособность всей системы в целом. Многие говорят, что самым важным элементом является процессор, однако и он достаточно сложен. Говоря о его архитектуре, мы часто рассматриваем ядро процессора, так как именно оно определяет возможности.

Почему стоит рассматривать процессор, как один из важнейших элементов, особенно при сборке? Потому что во многом именно он определяет качественные и функциональные возможности компьютера как такового. Непосвящённому пользователю достаточно сложно разобраться во всех аспектах, даже после прочтения соответствующей литературы, а форумы и вовсе не дают однозначного ответа, потому что они заполнены спорами относительно того, какой бренд лучше - AMD или Intel. И порой в этих спорах ядро процессора и его функции и возможности не рассматриваются вовсе [15].

Если какие-то моменты, связанные непосредственно с эксплуатацией того или иного процессора, ещё можно узнать на форумах, то конкретные характеристики необходимо рассматривать самому. Производители всегда предоставляют такую информацию в подробностях, если, конечно, она скажет о чём-нибудь пользователю.

Сейчас на рынке главенствуют многоядерные процессоры. Соответственно, ядро процессора, а точнее их совокупность, определяют в первую очередь производительность. Основной характеристикой считается частота работы процессора, т.е. его быстродействие и оперативность.

Продвинутые пользователи знают о возможностях разгона процессора, т.е. повышения его частоты. Практически у любой модели можно увеличить производительность, однако, не у всех она будет эффективной. Другими словами, если взять два процессора, работающие примерно на одинаковой частоте, то у них может быть разный разгонный потенциал. Следовательно, перспективы и возможности отличаются.

Как правило, основным ограничением становится температура ядра процессора, потому что при повышении частоты увеличивается нагрузка, он начинает нагреваться, а это уже губительно сказывается на его состоянии. При длительной работе в таком режиме ядро процессора начнёт разрушаться и выходить из строя, в конце концов, чип просто сгорит.

Впрочем, одной ориентироваться на одну только частоту неправильно - кэш и частота шины также оказывают важное влияние на возможности и итоговые характеристики. Процессор постоянно обрабатывает различную информацию, однако она поступает не напрямую, а хранится некоторое время в кэше - промежуточном звене между оперативной памятью и процессором. От скорости работы кэша очень часто зависит быстродействие системы. Частота шины определяет скорость обмена данными между процессором и материнской платой.

Пресловутое количество ядер сейчас активно обсуждается, потому что одни говорят, что чем больше, тем лучше, другие наоборот утверждают, что лучше не торопиться с выбором процессора с большим количеством ядер.

Наиболее распространённым вариантов являются двуядерные модели. Такие чипы уже начали внедрять даже в мобильные аппараты, так что удивить кого-то сложно. Возникает вопрос, стоит ли переходить на четырёхядерные и более процессоры? Сейчас ситуация повторяется как и с внедрением первых многоядерных моделей - прирост производительности на деле оказывается не таким большим. Пользователи не знают, как отключить ядро процессора или заставить то или иное приложение использовать все возможности, потому что далеко не все приложения оптимизированы под такие модели. При этом прирост в цене достаточно существенный, но иногда стоит выбрать более простую, но и быструю и производительную модель, нежели гнаться за количеством ядер.

Глава 3 Увеличение производительности процессора на компьютере

Производительность - один из важнейших параметров компьютера. Он означает, насколько быстро устройство будет выполнять отдаваемые пользователем команды. Зачастую этот параметр сильнее всего обусловливается комплектующими компьютера. К примеру, два компьютера, имеющие одинаковый процессор, но разные объемы оперативной памяти, будут иметь разную производительность.

В обыкновенной работе ПК разница в производительности может быть не слишком заметна. Однако она играет решающую роль для людей, работающих с большим количеством программ, а также в различных играх. Чем быстрее откликается на действия компьютер, тем меньше задержка в игре, тем реже игра зависает и быстрее запускается. Особенно это важно и заметно в мультиплеерных играх, когда скорость реакции как человека, так и устройства играет зачастую ключевую роль.

В основном этот параметр измеряется каким-либо числом, которое чем больше, тем лучше. Есть много различных способов узнать производительность компьютера. Можно, к примеру, воспользоваться программами, которые во множестве существуют на просторах Интернета. Также в операционной системе Windows можно посмотреть индекс производительности [9] .

Для этого нужно зайти в панель управления и найти там вкладку "Система и безопасность". В ней нужно выбрать "Система". В этой вкладке можно узнать основные параметры компьютера, в которые входит индекс производительности. Его можно проверить. Результаты сохраняются.

В качестве итоговой оценки система всегда выбирает наименьшее значение из показателей всех компонентов. В процессе апгрейда своего устройства желательно периодически проверять этот показатель, для того чтобы знать, как ПК реагирует на то или иное действие.

Итак, с местонахождением данных о производительности все понятно. Какие есть способы увеличить производительность процессора? Их несколько, и стоит подробно рассмотреть каждый.

Для увеличения производительности устройства можно воспользоваться несколькими способами.

Начать нужно с проверки системы на вирусы. Очень часто бывает так, что где-нибудь в уголке сидит вирус и по чуть-чуть "подъедает" производительность. Для этого можно воспользоваться любым хорошим антивирусом.

Если это не помогло, увеличить производительность можно, используя разгон процессора либо при помощи настроек ПК, очистки ОЗУ и прочего. Для начала: что такое разгон? Чтобы объяснить это понятие, нужно сказать, что у каждого процессора есть определенная частота, на которой он работает. Частота измеряется в герцах и является основной характеристикой процессора. При помощи некоторых манипуляций можно увеличить частоту, на которой он работает. Стоит сразу отметить, что дело это не то чтобы очень практичное: производительность ПК повышается от силы на 15 %. Кроме того, при превышении процессором тактовой частоты система теряет надежность.

Многие, услышав о разгоне, задают вопрос: а не сгорит ли система? Ответить на него можно словами о том, что только в 0,1 % случаев повреждения невозможно исправить. Однако, собираясь разгонять свое устройство, важно помнить, что именно вам может не повезти.

Определенно разогнать процессор на стационарном компьютере проще, чем на ноутбуке. Во-первых, потому что разгон всегда сопровождается выделением большего количества тепла, а следовательно, понадобится более мощная система охлаждения, которую заменить на ПК не в пример проще, чем на ноуте.

Во-вторых, работать с компонентами ПК в целом проще, чем с компонентами ноутбука. Как тогда увеличить производительность процессора на ноутбуке? Да так же, как на ПК, просто нужно внимательнее следить за температурой процессора и ни в коем случае не допускать его перегревания. Рассмотрим несколько процессоров и способы их разгона.

AMD

Для того чтобы увеличить производительность процессора AMD, разогнав его, понадобится специальная программа. К примеру, AMD OverDrive. Она хорошо подходит для процессоров типа AMD. Кроме того, будет нужна утилита для постоянного измерения температуры процессора. Например, Speed Fan. Обе программы легко находятся в Интернете. Для более четкого примера возьмем конкретный процессор - AMD Athlon 64 X2. Как увеличить производительность данного процессора?

Нужно запустить обе этих программы и в AMD OverDrive выбрать вкладку Advanced. Там есть опция Clock/Voltage, одну из строчек которой - Select All Cores ("Выбрать все ядра") - нужно отметить галочкой. После этих действий можно начинать разгонять процессор через множитель частоты. Согласно мнению многих айтишников, AMD Athlon 64 Х2 использует достаточно мало от своих ресурсов, поэтому можно сразу ставить 13-14. После пары минут работы процессора на этой частоте нужно замерить его температуру. Если та не достигает 70 °С, а компьютер работает без сбоев, множитель можно увеличить на 1 [15].

Разгон можно производить и через BIOS, но с данным процессором это проще сделать через стороннюю утилиту.

Intel

Intel - очень популярный производитель оборудования для ПК, и у него есть много различных устройств, для которых могут потребоваться различные программы и настройки. Для данного примера возьмем процессор Intel Core i5. Как увеличить производительность процессора этой фирмы? Можно также воспользоваться программой. Понадобятся утилита для измерения температуры и прога для разгона, к примеру CPU-Z. Порядок действий будет аналогичен разгону AMD.

Второй вариант, как увеличить производительность процессора Intel, разогнав его - использование BIOS. Для того чтобы войти в него, при запуске компьютера нужно дождаться момента инициализации BIOS компонентов ПК и после нажать кнопку Delete (Del). После этого перейти в опцию BIOS FEATURES и найти там Super Speed. В этой вкладке будет раздел Overlock, в котором нужно выбрать раздел Optimal Referens. В нем будет опция Manual, которую нужно выставить. После данных действий на экране появятся все данные о процессоре. Нам понадобятся его частота, данные о шинах и множитель. Далее нужно найти пункт BSLK frequency, где по чуть-чуть необходимо увеличивать частоту. Найдя оптимальное значение, нужно сохранить настройки и выйти из BIOS, перезагрузив ПК.

Многие также интересуются увеличением производительности у конкретных устройств, задаваясь вопросом: что сделать, чтобы увеличить производительность процессора 535U4C-S02 от Samsung, например. Что же, для решения этой проблемы необходимо просто узнать компоненты ПК. В данном ноутбуке стоит процессор AMD Dual-Core A6-4455M APU, следовательно и процесс разгона для него будет аналогичен всем прочим AMD. Либо можно воспользоваться одним из способов увеличения производительности без воздействия на процессор - они универсальны для всех устройств.

Несмотря на мифы о том, что увеличить производительность можно только с помощью разгона, существует много способов сделать это, обойдя взаимодействие с процессором напрямую:

•Первый - правильная настройка ПК. То есть установка точного количества ядер процессора для более полного использования потенциала, оптимизация визуальных эффектов.

•Второй - дефрагментация диска.

•Третий - регулярная очистка и отладка ОЗУ. Скапливающийся в оперативной памяти мусор в виде устаревших и смененных разрешений, старых ссылок, настроек неиспользуемых программ сильно замедляет ее работу, что сказывается на общей производительности компьютера.

•Четвертый - удаление старых, неиспользуемых программ, настройка фоновых процессов.

•Пятый - отладка автозагрузки.

Увеличение производительности ПК при помощи настроек операционной системы

Как увеличить производительность процессора в Windows 7, 8, 10? Основной способ основан на настройке операционной системы.

Дело в том, что по умолчанию в Windows включено много различных эффектов, дающих пользователю красивую картинку. Полупрозрачные окна, плавные переходы, тени, отбрасываемые объектами. Если есть желание добиться наилучшей производительности системы, все их стоит выключить [11].

Для того чтобы войти в панель управления дополнительными элементами, в поиске нужно вбить: "Визуальные эффекты". Пользователю понадобится вкладка "Настройка представления и производительности системы". В ней нужно найти панель управления визуальными эффектами. По умолчанию, почти все они включены, и для улучшения производительности нужно переставить галочку на "Обеспечить наилучшее быстродействие".

Следующий пункт подходит только тем, кто использует сторонние антивирусы. У "Виндовс" есть свой встроенный, который в этом случае можно отключить. Для этого нужно зайти в панель управления и найти там "Включение и отключение брандмауэра Windows". В левом меню нужно выбрать пункт "Отключить брандмауэр Windows" для каждого вида сети и нажать ОК.

Теперь нужно остановить работу самой службы. Для этого придется вернуться в панель управления, выбрать "Администрирование" и найти там строку "Брандмауэр Windows". Нажав правую кнопку мыши, нужно выбрать "Свойства" и остановить службу. После этого в графе "Тип запуска" нужно выбрать "Отключена". После этого можно смело жать "Применить".

Еще один способ увеличить производительность процессора Windows 7, 8, 10 - настройка количества используемых компьютером ядер процессора. Для начала нужно узнать их количество. Зная название процессора, это можно легко узнать в Интернете. Название процессора можно узнать во вкладке "Система" в панели управления. Далее нужно нажать комбинацию клавиш Win+R и в появившемся окне вписать msconfig. Далее нужно найти вкладку "Загрузка" и выбрать "Дополнительные параметры загрузки". Пункт "Число процессоров" нужно отметить галочкой и выбрать число, соответствующее количеству ядер.

Вообще дефрагментация диска - крайне нужная опция, которую пользователи никогда не проводят. Можно только поблагодарить разработчиков ОС Windows за то, что в настройках по умолчанию стоит еженедельная дефрагментация. Дело в том, что при удалении программы на диске остается пустое место, в которое система не всегда может впихнуть новую программу из-за разницы размеров. И даже если найдется небольшая программка, которая в пустоту поместится, скорее всего, рядом окажется немного пространства, которое уже ничем не заполнить. Дефрагментация удаляет эти "дыры".

Для того чтобы попасть в эту панель, нужно просто вбить "Дефрагментация диска" в поиск по системе. Здесь нужно по очереди проанализировать все диски, а после выбрать диск, фрагментация которого не равна нулю, и запустить дефрагментацию.

Оперативная память играет крайне важную роль в производительности ПК. Однако со временем она забивается различным "мусором". Чтобы она продолжала работать в оптимальном режиме, ее время от времени нужно чистить.

Для этого в поиске по системе нужно вбить "Диагностика проблем оперативной памяти компьютера". В выскочившем меню нужно выбрать первый способ.

Компьютер совершит перезагрузку и начнет анализ ОЗУ. Процесс занимает много времени, так что проводить его стоит, только когда пользователь уверен, что прямо сейчас ПК ему не понадобится. После окончания устройство снова перезагрузится и предоставит пользователю полную информацию о проведенной работе.

Казалось бы, как влияют на работу ПК программы, которые пользователь давно не использует? Однако они занимают место на жестком диске, тормозят работу ОЗУ. Также компьютеру требуется больше времени, чтобы загрузиться и выключиться, потому что система судорожно ищет место для файлов сохранения.

Поэтому рекомендуется удалять все старые и ненужные программы с ПК. Можно воспользоваться панелью управления, а можно - сторонним софтом. Одним из лучших является Your Unin-Staller. Эта программа, в отличие от системы Windows, удаляет не только само приложение, но и все его временные и дополнительные файлы.

Этот пункт влияет только на запуск ПК, но он все равно важен. Автозагрузка - система Windows, которая запускает программы сразу после входа пользователя в систему. Чем больше программ активно в автозагрузке, тем дольше будет загружаться ПК.

Для того чтобы войти в настройки автозагрузки, нужно нажать сочетание клавиш Win + R. Появится окно с названием "Выполнить", в которое нужно вписать строку msconfig. Откроется конфигурация системы. В ней нужно найти вкладку "Автозагрузка" и снять галочки со всех пунктов, которые не нужны.

Первое, чем нужно воспользоваться, если игроку кажется, что игра тормозит, - любая утилита для измерения fps. В некоторых играх она бывает встроенной. Касательно этого числа: fps показывает количество кадров в секунду, следовательно, чем он больше, тем лучше. Однако, если он держится на низком уровне, нужно предпринять несколько действий.

Во-первых, если вы интересуетесь, как увеличить производительность процессора для игр и только для них, в первую очередь стоит обратить внимание на внутриигровые настройки. За счет снижения уровня графики, подбора правильного расширения экрана, уменьшения количества эффектов можно сильно повысить производительность системы, не парясь с разгоном диска или поисками нужных настроек ПК.

Во-вторых, помочь может настройка видеокарты, ведь именно это устройство отвечает за графику. Перед тем как калибровать ее, следует обновить драйверы: иногда бывает, что тормоза случаются из-за устаревшего софта. Если проблема не исчезла, уже можно лезть в настройки видеокарты. Для этого нужно на пустое место на рабочем столе кликнуть правую кнопку мыши и выбрать "Панель управления (название фирмы-производителя видеокарты, к примеру Nvidia)". Там пользователю понадобится вкладка "Управление 3D-параметрами". Здесь есть много настроек, которые улучшают графику в играх и которые вполне можно убрать без особого ущерба. К примеру, V-Sync (вертикальная синхронизация), тройная буферизация, анизотропная фильтрация.

Заключение

Данная курсовая работа посвящена изучению архитектуры, функционированию центрального процессора персонального компьютера.

Изучили определение центрального процессора, приведены основные характеристики. В работе приведена схема структуры Центрального процессора, описана работа основных регистров.

Рассмотрели основные виды и назначения процессора ПК.

ЦП ‒ это миниатюрная кремниевая пластина прямоугольной формы, которая содержит миллионы транзисторов (полупроводников). Именно они реализуют все функции, которые выполняет процессор.

Почти все современные процессоры состоят из следующих компонентов:

1.Несколько ядер (редко 2, чаще 4 или 8), которые выполняют все функции. По сути, ядро представляет собой отдельный миниатюрный процессор. Несколько интегрированных в основной чип ядер параллельно работают над задачами, что ускоряет процесс обработки данных. Однако не всегда большее количество ядер означает более быструю работу чипа.

2.Несколько уровней памяти КЭШ (2 или 3), благодаря чему время взаимодействия ОЗУ и процессора сокращается. Если информация находится в КЭШе, то время доступа к ней минимизировано. Следовательно, чем большим будет объем КЭШа, тем больше информации в него поместится и тем быстрее будет сам процессор.

3.Контроллер ОЗУ и системной шины.

4.Регистры ‒ ячейки памяти, где хранятся обрабатываемые данные. Они всегда имеют ограниченный размер (8, 16 или 32 бит).

5.Сопроцессор. Отдельное ядро, которое предназначается для выполнения операций определенного типа. Чаще всего в виде сопроцессора выступает графическое ядро (видеокарта).

6.Адресная шина, которая связывает чип со всеми подключенными к материнской плате устройствами.

7.Шина данных – для связи процессора с оперативной памятью. По сути, шина представляет собой набор проводников, посредством которых передается или принимается электрический сигнал. И чем больше будет проводников, тем лучше.

8.Шина синхронизации – позволяет контролировать такты и частоту работы процессора.

9.Шина перезапуска – обнуляет состояние чипа.

Таким образом, центральный процессор (ЦП или в английском варианте CPU) является сердцем любой компьютерной системы. На него возложены все вычислительные операции, причем не только арифметические или вычисления с плавающей запятой (изменяющаяся мантисса), но и логические.

Сам процессор представляет собой небольшую квадратную пластину (чип), внутри которой находятся миллионы транзисторов. Иногда это устройство называют еще интегральной микросхемой.

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Библиография

Нормативно-правовые документы

1. Конституция Российской Федерации от 12 декабря 1993 г. (с изм. и доп., вступ. в силу с 21.07.2014)

Научная литература

  1. Босова Л.Л Информатика и ИКТ 6 класс [Текст]: Учебник/ Босова Л.Л .- М.: Изд-во "БИНОМ. Лаборатория знаний", 2016. - 208 с.;
  2. Босова Л.Л Информатика и ИКТ 7 класс [Текст]: Учебник/ Босова Л.Л..- М.: Изд-во "БИНОМ. Лаборатория знаний", 2018. - 229 с.; .
  3. Куликовский Л.Ф., Мотов В.В. Теоретические основы информационных процессов: Учеб. пособие для вузов по спец. "Автоматика и механизация процессов обработки и выдачи информации". – М.:Высшая школа, 2017. – 248с.
  4. В.М. Лачинов, А.О.Поляков Информодинамика или Путь к Миру открытых систем http://www.inftech.webservis.ru/it/information/index.html
  5. Энциклопедия "Кругосвет" www.krugosvet.ru
  6. Инженер Мареев Новая теория информации www.eme.ru
  7. Лидовский В.В. Теория информации. Учебное пособие. - М.: Компания Спутник+, 2014г.
  8. Вернер М. Основы кодирования Учебник для вузов. – М.: Техносфера,2018. – 288с.
  9. Котоусов А.С. Теоретические основы радиосистем. Радиосвязь, радиолокация, радионавигация. – М.: Радио и связь, 2014. – 224с.
  10. Гаранин М.В., Журавлев В.И., Кунегин С.В. Системы и сети передачи информации: Учеб. пособие для вузов. – М.: Радио и связь, 2017. – 336с.
  11. Липкин И.А. Статистическая радиотехника. Теория информации и кодирования. – М.: "Вузовская книга", 2012. – 216с.
  12. Быховский М.А. Круги памяти (Очерки истории развития радиосвязи и вещания в XX столетии). Серия изданий "История электросвязи и радиотехники". – М.: МЦНТИ, ООО "Мобильные коммуникации", 2014. – 224с.
  13. Рузайкин Г. Теория информации и информационные технологии //Открытые системы, 2018, № 07-08
  14. 12. Просиз Дж. Цифровая связь. Пер. с англ. /Под ред. Д.Д.Кловского. – М.: Радио и связь, 2019. – 800с.
  15. Шульгин В.И. Основы теории передачи информации. Учебное пособие. Ч.1-2. – Харьков: ХАИ, 2013.
  16. Котоусов А.С. Теоретические основы радиосистем. Радиосвязь, радиолокация, радионавигация. – М.: Радио и связь, 2012
  17. Скляр Б. Цифровая связь. Теоретические основы и практическое применение, 2-е издание. : Пер. с англ. – М.: Издательский дом "Вильямс", 2018. – 1104с.
  18. Семакин И.Г. Информатика и ИКТ для 8-9 классов [Текст]: Учеб. по базовому курсу / Семакин И.Г., Залогова Л.А, Русаков С.В., Шестакова Л.В.. М.: Изд-во "БИНОМ. Лаборатория знаний", 2019. - 320 с.; .
  19. Угринович Н.Д «Информатика и ИКТ» Базовый курс. 9 класс [Текст]: Учебник/ Угринович Н.Д.- М.: Изд-во "БИНОМ. Лаборатория знаний", 2017. 295 с.;
  20. Могилев А.В. Информатика [Текст]: Учеб. для студентов пед. вузов/ Могилев А.В., Пак Н.И., Хённер Е.К. М.: Академия, 2014. - 848 с.