Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Процессор персонального компьютера (История появление и общее представление о процессоре ПК)

Содержание:

ВВЕДЕНИЕ

Процессор – электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или центральным процессором (ЦПУ). Зная характеристики процессора, можно проанализировать его и адекватно оценить вычислительную производительность компьютерной системы. Именно поэтому, очень важно хорошо разбираться во всех основных характеристиках процессоров. Далее будет изложен материал, где будут перечислены все основные параметры ЦПУ с кратким описанием каждого. Актуальность нашей работы обусловлена тем, что компьютер прочно вошел в жизнь людей, но многие из них даже и не задумываются о сущности ПК, о том, как он устроен и из чего состоит.

Объектом нашей работы является понятие и сущность процессора.

Предметом же нашего исследования являются современные модели процессоров различных компаний производителей.

Цель данной работы заключается в изучении сущности и структуры процессора, а так же в рассмотрении некоторых моделей процессоров от разных производителей.

Для осуществления данной цели были определены следующие исследовательские задачи:

— Проанализировать основные характеристики процессора;

— Рассмотреть архитектуру процессора;

— Исследовать тенденции современного рынка процессоров, выделить самые лучшие модели, рассмотреть основные характеристики и достоинства современных процессоров.

Для решения поставленных задач использовались следующие методы: теоретический анализ исторических, публицистических, научных, социологических источников и их описание.

ГЛАВА 1. ПОНЯТИЕ И ОСНОВНЫЕ ХАРАКЕРИСТИКИ ПРОЦЕССОРА ПК

1.1История появление и общее представление о процессоре ПК

Первые компьютерные процессоры, основу которых составляло механическое реле, появились в пятидесятых годах прошлого века. Спустя какое-то время появились модели с электронными лампами, которые в итоге были заменены на транзисторы. Сами же компьютеры представляли собой довольно габаритные и дорогостоящие устройства.

Последующее развитие процессоров свелось к тому, что было принято решение входящие в них компоненты, представить в одной микросхеме. Позволило осуществить данную задумку появление интегральных полупроводниковых схем.[6]

В 1969 г. компания Busicom заказала двенадцать микросхем у Intel , которые они планировали использовать в собственной разработке – в настольном калькуляторе. Уже в то время разработчиков Intel посещала идея заменить несколько микросхем одной. Идею одобрило руководство корпорации, поскольку подобная технология позволяла существенно сократить расходы на производстве  микросхем, при этом у специалистов появилась возможность сделать процессор универсальным для использования его в других вычислительных устройствах.

Устройство управления сопроцессора и процессора обращается за всеми командами одновременно, подобно тому, как каждый байт команды проходит одновременно. Одновременная выборка позволяет сопроцессору все время знать, что делает процессор. Это необходимо для исключения возможности неподготовленного запуска команды сопроцессора. Команды сопроцессора смешиваются с командами процессора в общем потоке данных.

Математический сопроцессор позволяет компьютеру выполнять с высокой скоростью арифметику, логарифмические функции и тригонометрические операции с высокой точностью.

Сопроцессор работает параллельно с процессором. Параллельная работа уменьшает время обработки, позволяя математическому сопроцессору производить математические вычисления в то время, как процессор продолжает выполнять другие функции. [2]

Первые пять битов каждого командного кода для сопроцессора являются одинаковыми (двоичные 11011). Когда процессор и сопроцессор встречают такой код команды, то процессор вычисляет адреса всех переменных в памяти, в то время, как сопроцессор проверяет команду.

После этого сопроцессор, если это необходимо, получает адрес памяти от процессора. Для доступа к памяти сопроцессор захватывает локальную магистраль у процессора по окончанию выполнения им текущей операции. Когда сопроцессор оканчивает обмен данными с памятью, он возвращает управление локальной магистралью процессору.

Математический сопроцессор работает с несколькими типами числовых данных, разделяя их на три перечисленных ниже класса:

● двоичные целые (три типа).

● десятичные целые (один тип).

● вещественные числа (три типа).

Сопроцессор использует те же тактовый генератор и интерфейсные компоненты системной магистрали, что и процессор. Сопроцессор непосредственно связан с процессором.

Когда сопроцессору приходит неверная инструкция (например, деление на ноль или загрузка полного регистра), сопроцессор может сигнализировать процессору об этом через прерывание.

1.2 Параметры и характеристика процессора

Принцип действия процессора

Центральный процессор по праву считается сердцем любого компьютера. В его структуру входит небольших размеров кремниевый кристалл, основу которого составляет несколько миллионов транзисторов.

Подобного рода процессоры могут выполнить до нескольких миллионов задач в секунду.

Рис 1. Процесс выполнения всех команд

Процесс выполнения всех команд включает: извлечение из памяти по указанному адресу двоичного кода и последующее его преобразование во внутренний понятный для процессора код, иными словами происходит дешифрование полученной команды. Последней стадией считается выполнение команды. Для одновременного выполнения двух и более команд процессор использует считывающие информацию процедуры из памяти.

Следовательно, выполнение описанных задач нуждается в большом количестве времени, что усложняет работу центрального процессора, поскольку ему приходится ждать поступления данных. Чтобы работа процессора выполнялась быстрей, современные машины используют механизм конвейеризации, суть которого состоит в том, что пока извлекается одна команда из памяти, вторая в это время уже дешифруется, тогда как третья – выполняется. [8]

3. Параметры и характеристики процессора

Что такое процессор выяснили, теперь предлагаем рассмотреть основные характеристики процессора:

• Количество ядер. Чем больше число входящих в состав процессора ядер, тем выше его производительность.

• Разрядность процессора — означает, какое максимальное количество оперативной памяти можно установить на компьютер.

• Технический процесс. Чем этот параметр меньше, тем лучше, поскольку иными словами – это занимаемая кристаллом площадь на процессоре, следовательно, чем размер кристаллов меньше, тем большее их количество уместится, что увеличит тактовую частоту.

• Кэш процессора также является немаловажным параметром. Чем показатели его выше, тем больше данных можно сохранить в особой памяти, ускоряющей работу процессора.

• Тактовая частота. Тактом условно называется одна операция. Единицей измерения тактовой частоты считается МГц и ГГц. Так, например один МГц означает, что процессору под силу выполнить один миллион команд в секунду.

• Socket. Данный параметр позволяет стандартизировать все процессоры по подключаемым к материнской плате разъемам. [9]

4. Разрядность процессора (32/64 бит)

Бит представляет собой краткую форму двоичного разряда, представленную 0 или 1, поскольку компьютер хранит и производит операции посредствам именно этих двоичных цифр. Следовательно, напрашивается вывод, что у 32-битных процессоров имеется возможность представить числа от нуля до двух в 32-й степени, тогда как 64-х битные процессоры могут представить числа от нуля до двух в 64-й степени. Путем нехитрых подсчетов можно прикинуть, что 64-битные процессоры обрабатывают больший диапазон чисел, нежели 32-разрядные процессоры.

Термин разрядность процессора включает в себя понятие ширины шины данных, являющейся кабелем, передающим информацию из памяти ПК в процессор. Шина данных в 64-битном процессоре способна передать больший объем информации, чем шина в 32-разрядном процессоре, потратив на это одинаковое количество времени.

5. Быстродействие процессора (частота и мегагерцы)

Термин тактовая частота компьютера подразумевает количество тактовых импульсов, которое вырабатывает тактовый генератор в секунду.

Тактовая частота как различных, так и одинаковых моделей процессоров может варьироваться в широком диапазоне значений. Процессор выполняет все программные команды за необходимое число тактов. К примеру, простейшая операция сложения может быть выполнена за два такта, тогда как делению может понадобиться 25 тактов. Из всего вышесказанного следует, что чем выше показатель тактовой частоты, тем быстрее компьютером выполняются возлагаемые на него задачи. Сегодняшние ПК снабжены процессорами, тактовая частота которых — от нескольких сотен МГц до нескольких ГГц.

Быстродействие работы ПК непосредственным образом связано с его тактовой частотой, которая позволяет определить количество выполняемых им команд в секунду. [10]

Современный сверхмощный процессор персонального компьютера состоит из множества транзисторов, своеобразных переключателей, которые в свою очередь выполняют одну единственную функцию, они пропускают сигнал или останавливают его. Выбор зависит от напряжения сигнала.
Если взглянуть на это с другой стороны, то можно увидеть, из чего состоит микропроцессор, а состоит он из регистров, они же, информационно обрабатывающие ячейки.

Для связи кристала с остальными устройствами персонального компьютера используется специальная скоростная дорога, именующаяся «шиной». По ней с молниеносной скоростью «летают» крошечные электромагнитные сигналы. В этом-то и состоит принцип работы процессора компьютера или же ноутбука.

ГЛАВА 2.ОБЗОР СОВРЕМЕННЫХ ПРОЦЕССОРОВ ПК

2.1 Составляющие процессора

Быстродействие является одним из наиболее важных показателей работы процессора. Самая меньшая единица измерения времени для процессора – такт или как его еще именуют – период тактовой частоты. На все выполняемые процессором операции тратится минимум один такт.

Сегодня практически каждый процессор работает на тактовой частоте, являющейся произведением множителя и тактовой частотой системной платы. Так, например, тактовая частота Celeron 600 в более чем 9 раз превышает тактовую частоту системной платы. Аналогичным примером является Pentium III 1000, тактовая частота которого в 8,5 раз выше тактовой частоты системной платы. [12]

Довольно часто тактовая частота системной платы одновременно с множителем устанавливается посредствам перемычек или иных инструментов конфигурирования системной платы, к категории которых можно отнести соответствующие значения в установочной программе параметров BIOS.

Некоторые системы позволяют увеличить уже имеющуюся рабочую частоту процессора, данная процедура называется «разгоном». Установка большей частоты процессора позволяет увеличить и его показатели быстродействия.

7. Сравнение фирм-производителей Intel и AMD

Американская компания под названием Intel была основана в 1968 году, тогда как ее основной конкурент – компания AMD – появилась спустя год.

То, что AMD явила себя свету на год позже, нежели Intel, в существенной мере отразилось на их соперничестве. Первые процессоры от компании AMD представляли собой копии процессоров, выпущенных компанией Intel, однако этот факт не помешал AMD разработать первый 16-ядерный процессор. При этом в 2005 обычному пользователю был предложен первый 2-ядерный процессор, носящий название AMD Athlon 64 X2.

Рис. 2 AMD Athlon 64 X2.

Двухъядерные процессоры Core 2 Duo, разработанные компанией Intel, на год позже появились на соответствующем рынке, при этом стоимость процессоров AMD и сегодня намного дешевле процессоров от Intel.

Какому процессору все же стоит отдать предпочтение? Если пользователю необходимо использование компьютера для работы со сложным профессиональным программным обеспечением, то в этом случае лучше приобрести ПК с процессором от Intel. [6]

Процессоры AMD – отличный вариант для игровых ПК и в ситуациях, не требующих высокой производительности аппаратной начинки.

8. Кэш-память процессора

Кэш – не что иное, как память процессора, задачи которой схожи с задачами, возлагаемыми на оперативную память. Процессор использует кэш для хранения в нем данных. В данной разновидности памяти буферизируется наиболее часто используемая информация, за счет чего временные затраты на последующее обращение к ней в существенной мере сокращаются.

Оперативная память реализуемых сегодня компьютеров, составляет от 1 Гб, при этом кэш процессоров не превышает 8 Мб. Как видно из приведенных данных, разница в этих разновидностях памяти довольно существенная. Несмотря на это, даже указанного объема достаточно для обеспечения нормального быстродействия всей системы. Немалый интерес у пользователей сегодня вызывают процессоры с двухуровневой кэш-памятью: L1 и L2. Память первого уровня меньше памяти второго уровня и необходима она для хранения инструкций. При этом второй уровень за счет того, что он больше, используется для непосредственного хранения данных. У многих процессоров на данный момент кэш второго уровня общий.

9. Функции и технологии процессоров: MMX, SSE, 3DNow!, Hyper Threading

Современные процессоры снабжены характерными дополнительными функциями и технологиями, расширяющими их возможности:

• 3DNow!, ММХ, SSE, SSE2, SSE3 – технологии, оптимизирующие работу с объемными данными и мультимедийными файлами;

• В процессорах AMD с целью защиты от ряда вирусов предусмотрена технология NX-bit (No Execute), при этом в процессорах Intel имеется аналогичная технология XD (Execute Disable Bit);

• Cool’n’Quiet (в AMD), ТМ1/ТМ2, С1Е, EIST (в Intel) снижается потребление электрической энергии;

• В технологии AMD64 или ЕМТ64 (для процессоров Intel) нуждаются 64-битные инструкции;

• Одновременное выполнение нескольких потоков команд в некоторых процессорах Intel подразумевает наличие технологии НТ (Hyper-Threading Technology).

10. Многоядерность процессоров

Центр современных центральных микропроцессоров снабжен ядрами. Ядро представляет собой кристалл кремния, площадь которого составляет около одного квадратного сантиметра. Несмотря на небольшие размеры, микроскопические логические элементы позволили реализовать на его поверхности принципиальную схему процессора, так называемую архитектуру (chip architecture).[8]

Многоядерность процессора заключается в наличии в центральном микропроцессоре двух и более вычислительных ядер на поверхности одного процессорного кристалла, которые также могут быть заключены в одном корпусе.

Перечень преимуществ многоядерного процессора:

• появляется возможность распределить работу приложений по нескольким ядрам;

• процессы, нуждающиеся в интенсивных вычислениях, работают существенно быстрее;

• увеличивается скорость отклика приложений;

• снижение потребления электрической энергии;

• более продуктивное использование ресурсоемких мультимедийных программ;

• более комфортная работа пользователей ПК.

11. Производство процессоров [2]

Производство микропроцессоров включает минимум два важных этапа. На первом этапе производятся подложки, которым впоследствии придают проводящие свойства. На втором этапе произведенные подложки тестируются, после чего собирается и упаковывается процессор.

Сегодня такие ведущие производители процессоров, как AMD и Intel стараются наладить выпуск продукции, задействовав при этом максимально возможные сегменты рынка, максимально сократив возможный ассортимент кристаллов. Отличным тому подтверждением являются процессоры Intel Core 2 Duo. В линейку упомянутой продукции входят три процессора с разными кодовыми наименованиями: Merom, предназначенный для мобильных устройств, Conroe – для настольных версий, Woodcrest – для серверных версий. У всех трех процессоров одна технологическая основа, что дает возможность производителю принимать решение, будучи на последнем этапе производства. Так, например, если на рынке будут более востребованы мобильные процессоры, компания сфокусируется на выпуске модели Socket 479. Если возрастет потребность в настольных моделях, то компания Intel упакует кристаллы, необходимые для Socket 775. В случае роста спроса на серверные процессоры, все вышеуказанные действия будут применены для Socket 771. [2]

12. Маркировка и кодовые названия процессоров

Разнообразная продукция, произведенная на заводах крупных предприятий, обозначается кодовыми наименованиями, что является довольно удобным решением, нежели использование длинных официальных обозначений при проведении служебных разговоров и переписки. Порой о внутрифирменных кодовых названиях узнают широкие слои пользователей, однако довольно редко они употребляются в повседневном обиходе.

Ситуация с кодовыми наименованиями процессоров обратно противоположная, поскольку в последнее время они стали употребляться в разговорах и в качестве маркировки процессоров входить в официальную документацию.

При этом запомнить необходимо лишь некоторые кодовые названия, к примеру, для успешной модернизации ПК, поскольку чаще всего помимо красивого звучания и рекламных амбиций, подобные наименования никакой полезной информации для потребителя не несут.

13. Гнезда (socket) для процессоров

Сокет процессора в переводе с английского языка означает «разъем» или «гнездо». Если применить этот термин к компьютеру, то гнездом называется место установки центрального процессора. Каждая модель процессора снабжена своим вариантом разъема, связанно это с тем, что технологии изготовления процессоров совершенствовались, а потому модернизировалась их архитектура, количество транзисторов, гнезда и т.д.

Рис. 3.Сокет центрального процессора

Сокет центрального процессора имеет вид щелевого или гнездового разъёма, предназначенного для того, чтобы упростить процесс установки центрального процессора. Использование разъёмов значительно упрощает замену процессора для последующего ремонта или модернизации ПК.
14. Охлаждение процессора

Вентилятор или, как его еще называют кулер, — устройство, задача которого сводится к тому, чтобы обеспечивать охлаждение процессора. Существую разные модели кулеров, однако чаще всего они устанавливаются поверх самого процессора. [3]

Рис. 4. Вентилятор процессора

Кулеры бывают активными и пассивными. К категории пассивных кулеров относятся обычные радиаторы, довольно дешевые, потребляющие минимум электричества и при этом практически бесшумные. Активный же  кулер представляет собой радиатор с прикрепленным к нему вентилятором.

Наибольшей популярностью сегодня пользуются активные воздушные кулеры, состоящие из металлического радиатора с установленным на нем вентилятором.

Будучи механическим устройством, трущиеся детали кулера нуждаются в своевременном смазывании машинным маслом, при этом категорически запрещается для этих целей использовать масла растительного происхождения.

О необходимости смазать устройство можно узнать характерному и постепенно увеличивающемуся шуму от кулера.

15. Неисправности и ошибки в процессорах

В случае неисправности процессора, ПК может начать самостоятельно выключаться и перезагружаться, операционная система «зависать», а жёсткий диск попросту не отображаться. При этом все вышеописанное сопровождается сильным нагреванием процессора. Нередко, неисправный процессор становится причиной постоянных ошибок в работе операционной системы и сопутствующего программного обеспечения.

Ни при каких условиях нельзя неисправный процессор проверять на рабочей материнской плате, поскольку подобные действия вполне могут спровоцировать вывод из строя материнской платы.

Чаще всего процессоры подвергаются поломке по причине перегрева и некорректной сборки компьютера, что может стать причиной случайного загиба контактов процессора, а вследствие и возникновения короткого замыкания. Решить проблему в этом случае может лишь замена процессора.

2.2 Защита процессора

Для процессоров предусмотрено несколько технологий защиты от злонамеренных воздействий из Интернета и локальной сети для нанесения ущерба программам.

Технология Intel Execute Disable Bit используется для предотвращения проникновения на компьютер вирусов и других угроз безопасности, которые выполняют вредоносный код из областей памяти, которые должны использоваться только операционной системой Windowsи другими программами. Такой тип угроз безопасности наносит ущерб, занимая по очереди все области памяти, используемые программой. Затем вирус распространяется и повреждает другие программы, файлы и даже контакты электронной почты. [7]

Эта технология носит также название NX бит (NX bit) (это название объясняется тем, что в реализации технологии используется дополнительный контрольный бит) или средство DEP (термин Microsoft).

Рис. 5 Защита процессора

В отличие от брандмауэра или антивирусной программы средство DEP не препятствует установке потенциально опасных программ на компьютер. Вместо этого выполняется наблюдение, чтобы программы использовали системную память безопасным образом. Для этого DEP работает отдельно или вместе с совместимыми микропроцессорами и помечает некоторые области как «невыполняемые». Если программа пытается запустить код из защищенной области, DEP закрывает программу и отображает уведомление.

Для использования DEP на компьютере должна быть установлена операционная система Microsoft Windows ХР (SP2), Windows Vista или Windows 7.

Программное обеспечение DEP используется для защиты от некоторых типов атаквредоносного кода, но для использования возможностей DEP в полном объеме процессордолжен поддерживать технологию Intel Execute Disable Bit.

Защиту от перегрева в составе Core Temp вряд ли можно назвать функцией «маст-хэв». Во-первых, лучшая защита от перегрева любой аппаратной составляющей компьютера – это неотложный визит в сервисный центр, если проблема не решилась обычной чисткой системного блока от пыли. Во-вторых, современные процессоры AMD и Intel, как правило, обустроены такой функцией на уровне BIOS. Это те самые случаи, когда компьютер сразу же после загрузки или по прошествии нескольких минут работы самопроизвольно выключается. Срабатывает «родная» защита. А вот в случаях, когда процессор такой «родной» защитой не обустроен, можно прибегнуть к функции защиты от перегрева, предлагаемой программой Core Temp. Но даже если процессор и обустроен защитой от перегрева на уровне BIOS, эта же функция в составе Core Temp все равно будет выигрывать возможностью более гибкой настройки поведения компьютера при достижении критической температуры. Как минимум заданием своего значения последней, на пару градусов ниже предельного. [9]

Чтобы активировать и настроить функцию защиты от перегрева процессора, в меню Core Temp «Параметры» жмем пункт «Защита от перегрева».

В появившемся окне активируем опцию «Включить защиту».

В первом же блоке настроек можем отказаться от пункта «Автоматически», предусматривающего программное оповещение при достижении установленной критической температуры (ее значение определено внизу основного окошка Core Temp), и выбрать другой возможный вариант – «Включить при достижении заданной температуры». Эта настройка позволит установить свое значение критической температуры. Какое значение установить? Интервал оптимальной температуры процессора – от 35 до 55°С. Если температура достигла отметки в 65°С, уже нужно предпринимать действия по выявлению причины проблемы. Потому вместо предлагаемого программой показателя критической температуры в 90°С можно установить значение от 75 до 85°С. Возможно, это спасет процессор от полного выхода из строя. В любом случае при выходе температуры процессора за пределы оптимальной вряд ли можно рассчитывать на полноценную работу компьютера. Устройство будет тормозить.

Программа Core Temp предлагает три типа ее реакций при фиксации критической температуры процессора. Первая реакция – это оповещения самой программы в виде всплывающих подсказок и/или мигания иконки Core Temp на панели задач. Возможно, такой реакции программы будет достаточно, если пользователь за компьютером находится постоянно.

Реакция вторая – это запуск назначенной программы (исполняемого файла «.exe» или «.bat»). Это может быть, например, программа или скрипт, отправляющие нужное сообщение нужному абоненту по каналам интернет- или мобильной связи.

Третья реакция – это уже непосредственно действия, направленные на защиту процессора от перегрева. При достижении заданной критической температуры программа Core Temp сможет выключить компьютер или перевести его в спящий режим.

ГЛАВА 3. ОБЗОР ЛУЧШИХ ПРОЦЕССОРОВ 2017Г.

Частота процессора, являющаяся важным параметром этого устройства, у современных моделей находится на уровне 3–4 ГГц. И хотя некоторые из них могут увеличивать эту характеристику при разгоне или включении турбо-режима, большого значения это не имеет.

Намного важнее для запуска игр и приложений характеристики работающей вместе с центральным процессором видеокарты. [7]

Ещё один имеющий значение параметр – потребление энергии в процессе работы, от которого зависит мощность блока питания компьютера и охлаждающего кулера. Этот показатель значительно ниже у моделей марки Intel и выше у процессоров AMD. Однако, чем больше производительность устройства, тем меньше разница в энергопотреблении между топовыми версиями – независимо от производителя, они имеют мощность около 90 Вт.

От количества ядер и потоков зависит скорость обработки данных. Чем больше эти цифры, тем выше вероятность запуска на компьютере не только современной и требовательной к ресурсам игры, но и любых приложений в течение нескольких следующих лет. Большинство современных процессоров имеют от 4 до 8 ядер. А двухъядерные считаются практически устаревшими – особенно, если пользоваться ими для игр.

Ryzen 7 1800Х — лучший игровой процессор

Вышедшая в 2017 году серия процессоров серия Ryzen 7 включает в себя целый ряд топовых моделей, старшей из которых является 1800Х. Производительность каждого потока и ядра уступает возможностям похожей по параметрам модели Intel Core i7, однако устройство выигрывает за счёт их количества. Восьмиядерный процессор обрабатывает большое количество информации и может разгоняться с 3,6 до 4 ГГц.

К дополнительным плюсам покупки процессора можно отнести технологию Neural Net Prediction, фактически, представляющую собой встроенный искусственный интеллект для ускорения обработки данных. А среди минусов можно отметить отсутствие «коробочных версий», то есть моделей, сразу укомплектованных мощным кулером. Систему охлаждения для Ryzen 7 придётся приобретать отдельно.

Характеристики модели:

сокет: АМ4;

частота (обычная/турбо): 3,6/4,0 ГГЦ;

кэш L3: 16 Мб;

ядра/потоки: 8/16;

мощность: 95 Вт;

цена: от 28000 руб.

Core i7-7700K — максимальная производительность от Intel

Модельный ряд процессоров Интел тоже имеет своего лидера – i7-7700K, отличающегося высокой производительностью и тактовой частотой. При этом устройство потребляет сравнительно много электроэнергии – почти столько же, сколько топовый AMD. А частота процессора может изменяться в пределах 4,2–4,7 ГГц – достаточно для поддержки любых, даже самых требовательных игр 2016-го, 2017-го и, скорее всего, 2018-го года.

Хотя для того чтобы устройство запускало ресурсоёмкие приложения его следует использовать вместе с подходящей по объёму памятью и видеокартой (от 8 Гб и от 4 Гб, соответственно). Возможностей же встроенного графического процессора для игры не хватит – зато будет достаточно для проигрывания видео в лучшем на сегодняшний день разрешении.

Основные параметры:

потребление энергии: 91 Вт;

сокет: 1151;

частота: 4,2 ГГц (4,5 ГГЦ в турбо-режиме);

кэш-память L3: 8 Мб;

число ядер/процессов: 4/4;

средняя цена: 25000 руб.

Core i5-7500 — быстрый игровой процессор

Если цены выше 20 тысяч рублей показались пользователю слишком высокими, он может купить процессор Intel предыдущей серии – Core i5-7500.

Цена будет вдвое меньше по сравнению с моделями i7, а производительность и размеры кэш-памяти третьего уровня практически не уступают «старшим» версиям. При наличии хорошей видеокарты и 8–16 Гб ОЗУ с помощью этого процессора можно запустить любую выпущенную на сегодняшний день игру.

К преимуществам модели можно отнести встроенное графическое ядро Intel HD Graphics 630, поддерживающее видеоролики с разрешением 4К. А поддержка технологии DirectX 12 обеспечивает ещё лучшее взаимодействие с играми, позволяя назвать процессор и быстрым, и игровым.

Характеристики модели:

мощность, Вт: 65;

частота, ГГц: 3,4–3,8;

сокет: 1151;

потоки и ядра: 4/4;

кэш L3, Мб: 6;

цены, руб.: от 11600 руб.

Ryzen 5 1600X — AMD среднего уровня

Более экономичный, но практически не уступающий по возможностям топовой модели вариант есть и в линейке Ryzen 5 от AMD. Процессор 1600Х входит в пятёрку лучших предложений производителя. Однако стоит почти на 40% меньше.

Рабочая частота и кэш модели полностью соответствуют серии Rysen 7, а единственным важным отличием можно назвать меньшее количество ядер. Впрочем, если не использовать процессор на полную мощность, разница будет практически незаметной. Тем более что скорость работы устройства повышается благодаря тому же встроенному «искусственному интеллекту».

Технические параметры:

версия сокета: AM4;

частота: 3,6 (4,0 в турбо-режиме);

кэш L3: 16 Мб;

ядра/потоки: 6/12;

потребление энергии: 95 Вт;

стоимость: от 16000 руб.

Intel Core i3-7100 — хороший игровой процессор

Пользователям, предпочитающим собирать свой компьютер на базе процессоров Intel и при этом не платить за системный блок больше $1000, стоит обратить внимание на модель Core i3-7100.

Устройство с двумя ядрами, но с четырьмя потоками справится с запуском даже тех игр, в минимальных требованиях к которым стоит параметр Core i5 или i7. Для этого процессор следует устанавливать на ПК с достаточным количеством оперативной и графической памяти. Хотя в эту модель уже встроены и поддержка DirectX 12, и интегрированное видео, которые позволяют ей работать даже без дискретной видеокарты. [1]

Основные характеристики:

частота и сокет: 3,9 ГГц, 1151;

кэш-память L3: 3 Мб;

число потоков/ядер: 4/2;

энергопотребление процессора: 51 Вт;

стоимость: 6300–9700 руб.

AMD FX-6300 — выгодный и быстрый

Производитель AMD, продукция которого всегда отличалась меньшей по сравнению с моделями Intel стоимостью, позволяют подобрать отличную альтернативу и бюджетного игрового процессора.

Например, FX-6300, в комплекте к которому может идти недорогая материнская плата и 8 Гб ОЗУ.

Этот набор обеспечит работу с большинством современных игр и приложений. Более того, с помощью процессора FX-6300 вполне можно смотреть два разных фильма на двух мониторах, записывать стримы и обрабатывать видео.

Особенности модели:

сокет: AM3+;

параметры энергопотребления: 95 Вт;

частота процессора: 3,5 ГГц;

кэш память 3 уровень: 8 Мб;

ядра и потоки: 6/6;

цены в сети: от 4400 руб.

Pentium G4560 — дешёвый игровой процессор

Ещё одной бюджетной моделью Intel является Pentium G4560, которую можно купить, собирая недорогой игровой ПК.

Если пользоваться для сборки этим процессором, стоимость комплекта (без монитора) не превысит $500. А ресурсов получившегося в результате компьютера хватит или для запуска современных игр на минимальных настройках, или для более старых игровых приложений.

Лучше всего к такому процессору подойдёт соответствующая ему по цене и производительности видеокарта RX 460 или GTX 7хх (например, Nvidia 750 Ti).

Особенности процессора:

слот: Socket 1151;

частота: 3,5 ГГц;

энергопотребление: 54 Вт;

кэш-память 3 ур.: 3 Мб;

ядра/потоки: 2/4;

цены: от 3500 руб.

Athlon X4 860K — бюджетный процессор от AMD

Если для пользователя не имеет значения энергопотребление процессора, желательно обратить внимание на модель X4 860K, отличиями которой является оптимальное соотношение производительности и цены.

Всего за 2800–3000 рублей пользователь получает в своё распоряжение устройство без встроенного графического процессора, зато с бесшумным кулером и четырьмя ядрами. Тем более что ещё одним преимуществом процессора является совместимость с недорогими материнскими платами для сокета FM2+, хотя они и не поддерживают ни современную память, ни новые видеокарты. [13]

Характеристики:

сокет процессора: FM2+;

частота: 3,7 ГГц;

количество ядер и потоков: 4/4;

кэш-память третьего уровня: нет;

мощность: 95 Вт;

цена: от 2800 рублей.

AMD A10-7890K – большие возможности и экономия на видео

Для пользователей, которые предпочитают пользоваться встроенной графикой, неплохим вариантом станет процессор AMD A10-7890K. Среди его преимуществ – возможность запуска многих современных игровых приложений даже без использования мощной видеокарты.

Характеристики устройства примерно сравнимы с графическими процессорами RX460, а, значит, подходят для большинства киберспортивных игр типа DOTA2 и CS:GO с высоким качеством изображения.

Впоследствии к A10-7890K можно приобрести дискретную видеокарту, расширив возможности использования компьютера. Нередко именно так и поступают геймеры, покупающие детали для бюджетного игрового ПК поэтапно – по мере своих финансовых возможностей.

Параметры детали:

Socket: FM2+;

частота процессора: 4,1 ГГц;

ядра/потоки: 4/4;

потребление мощности: 95 Вт;

средняя цена: 8000 руб.

A10-7860K — самый выгодный из игровых процессоров

При желании купить неплохой по возможностям и недорогой процессор со встроенной графикой, можно обратить внимание на A10-7860K – «младшую» модель А10-7890К.

Скорость работы и большинство характеристик устройств мало отличаются друг от друга. Но, выбирая более доступный вариант, стоимость сборки компьютера уменьшают ещё на $30–35, практически не замечая снижения производительности.[5]

Параметры процессора:

количество ядер/потоков: 4/4;

сокет: FM2+;

частота: 3,6 ГГЦ;

мощность: 65 Вт;

стоимость в сети: 6000 руб.

Выводы

По результатам обзора лучших в своём классе современных процессоров можно сделать выводы о неплохом ассортименте современного рынка.

В зависимости от финансовых возможностей и требований к компьютеру, любой пользователь может найти подходящий чипсет.

Например, Intel i7 и Ryzen 7 для мощных игр и работ с графикой. Или Athlon X4 860K и Pentium G4560 для игровых приложений с менее серьёзными требованиями. А геймерам, которые хотят сэкономить, запускать более или менее современные игры, стоит отдать предпочтение сериям i5 от Intel или Ryzen 5 от AMD.

ЗАКЛЮЧЕНИЕ

Самым главным элементом  в компьютере, его "мозгом", является микропроцессор - небольшая (в несколько  сантиметров) электронная схема, выполняющая  все вычисления и обработку информации. Микропроцессор умеет производить сотни различных операций и делает это со скоростью в несколько десятков или даже сотен миллионов операций в секунду. В компьютерах типа IBM PC используются микропроцессоры фирмы INTEL, а также совместимые с ними микропроцессоры других фирм.
     Каждый  микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство и устройство управления. Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора.

     В арифметико-логическое устройство производится арифметическая и логическая обработка  данных. Устройство управления реализует  временную диаграмму и вырабатывает необходимые управляющие сигналы  для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

Структуры различных типов микропроцессора могут существенно различаться, однако с точки зрения пользователя наиболее важными параметрами являются архитектура, адресное пространство памяти, разрядность шины данных, быстродействие. Архитектуру микропроцессора определяет разрядность слова и внутренней шины, данных микропроцессора. Первые микропроцессоры основывались на 4-разрядной архитектуре. Первые ПЭВМ использовали микропроцессоры с 8-разрядной архитектурой, а современные микропроцессоры основаны на 32- и 64-разрядной архитектуре.

СПИСОК ЛИТЕРАТУРЫ

  1. Бодров, О.А. Предметно-ориентированные экономические информационные системы: Учебник для вузов / О.А. Бодров. - М.: Гор. линия-Телеком, 2013. - 244c.
  2. Бородакий, Ю.В. Информационные технологии. Методы, процессы, системы / Ю.В. Бородакий, Ю.Г. Лободинский. - М.: ГЛТ , 2014. - 456c.
  3. Варфоломеева, А.О. Информационные системы: Учебное пособие / А.О. Варфоломеева, А.В. Коряковский, В.П. Романов. - М.: НИЦ ИНФРА-М, 2015. - 283c.
  4. Васильков, А.В. Информационные системы и их безопасность: Учебное пособие / А.В. Васильков, А.А. Васильков, И.А. Васильков. - М.: Форум, 2015. - 528c.
  5. Гвоздева, В.А. Информатика, автоматизированные информационные технологии и системы: Учебник / В.А. Гвоздева. - М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2013. - 544c.
  6. Грекул В.И., Денищенко Г.Н., Коровкина Н.Л. Проектирование информационных систем. 2015. – 434с.
  7. Горбенко, А.О. Информационные системы в экономике / А.О. Горбенко. - М.: БИНОМ. ЛЗ, 2014. - 292c.
  8. Емельянов, С.В. Информационные технологии и вычислительные системы: Интернет-технологии. Математическое моделирование. Системы управления. Компьютерная графика / С.В. Емельянов. - М.: Ленанд, 2012. - 96c.
  9. Зиндер Е.З. Бизнес-реинжиниринг и технологии системного проектирования. Учебное пособие. − М.: Центр Информационных Технологий, 2016. – 453с.
  10. Романова, Ю.Д. Информационные технологии в управлении персоналом: Учебник и практикум / Ю.Д. Романова, Т.А. Винтова, П.Е. Коваль. - Люберцы: Юрайт, 2016. - 291 c.
  11. Исаев, Г.Н. Информационные технологии.Учебное пособие. / Г.Н. Исаев. - М.: Омега-Л, 2015. - 464c.
  12. Щипицина, Л.Ю. Информационные технологии в лингвистике: Учебное пособие / Л.Ю. Щипицина. - М.: Флинта, 2015. - 128 c.
  13. Ээльмаа, Ю.В. Информационные технологии на уроках литературы: Пособие для учителей общеобр. учреждений / Ю.В. Ээльмаа, С.В. Федоров. - М.: Просв., 2012. - 176 c.
  14. Ясенев, В.Н. Информационные системы и технологии в экономике: Учебное пособие для студентов вузов / В.Н. Ясенев. - М.: ЮНИТИ-ДАНА, 2012. - 560 c.