Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Классификация языков программирования высокого уровня (Язык программирования)

Содержание:

Введение


По мере развития вычислительной техники возникали разные методики программирования. На каждом этапе создавался новый подход, который помогал программистам с растущим усложнением программ.

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования. Смысл появления такого языка – оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм.

Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко.

Связь между языком, на котором мы думаем, программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. По этой причине ограничивать свойства языка только целями исключения ошибок программиста в лучшем случае опасно. Как и в случае с естественными языками, есть огромная польза быть, по крайней мере, двуязычным. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Например, серьезные ограничения концепции указателя заставляют программиста применять вектора и целую арифметику, чтобы реализовать структуры, указатели и т.п. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств.

Может показаться удивительным, но конкретный компьютер способен работать с программами, написанными на его родном машинном языке. Существует почти столько же разных машинных языков, сколько и компьютеров, но все они суть разновидности одной идей простые операции производятся со скоростью молнии на двоичных числах.

Персональные компьютеры  IBM  используют машинный язык микропроцессоров семейства 8086, т.к. их аппаратная часть основывается именно на данных микропроцессорах.

Можно писать программы непосредственно на машинном языке, хотя это и сложно. На заре компьютеризации (в начале 1950-х г.г.), машинный язык был единственным языком, большего человек к тому времени не придумал. Для спасения программистов от сурового машинного языка программирования, были созданы языки высокого уровня (т.е. немашинные языки), которые стали своеобразным связующим мостом между человеком и машинным языком компьютера. Языки высокого уровня работают через трансляционные программы, которые вводят "исходный код" (гибрид английских слов и математических выражений, который считывает машина), и в конечном итоге заставляет компьютер выполнять соответствующие команды, которые даются на машинном языке. Существует два основных вида трансляторов: интерпретаторы, которые сканируют и проверяют исходный код в один шаг, и компиляторы, которые сканируют исходный код для производства текста программы на машинном языке, которая затем выполняется отдельно.
 


1. Язык программирования

Язык программирования – формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под ее управлением.

Со времени создания первых программируемых машин человечество придумало уже более восьми с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие:

Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.

Задача: язык программирования отличается от естественных языков тем, что предназначен для передачи команд и данных от человека компьютеру, в то время, как естественные языки используются для общения людей между собой. В принципе, можно обобщить определение «языков программирования» — это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.

Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.

Структурное программирование

Следующий шаг был сделан в 1954 году, когда был создан первый язык высокого уровня — Фортран (англ. FORTRAN – FORmula TRANslator). Языки высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека, с помощью них, можно писать программы до нескольких тысяч строк длиной. Однако легко понимаемый в коротких программах, этот язык становился нечитаемым и трудно управляемым, когда дело касалось больших программ. Решение этой проблемы пришло после изобретения языков структурного программирования (англ.structured programming language), таких как Алгол (1958), Паскаль (1970), Си (1972).

Структурное программирование предполагает точно обозначенные управляющие структуры, программные блоки, отсутствие инструкций безусловного перехода (GOTO), автономные подпрограммы, поддержка рекурсии и локальных переменных.

Суть такого подхода заключается в возможности разбиения программы на составляющие элементы.

Также создавались функциональные (аппликативные) языки (Пример: Lisp — англ. LISt Processing, 1958) и логические  языки (пример Prolog  англ. PROgrammin in LOGic, 1972).

Хотя структурное программирование, при его использовании, дало выдающиеся результаты, даже оно оказывалось несостоятельным тогда, когда программа достигала определенной длины. Для того чтобы написать более сложную (и длинную) программу, нужен был новый подход к программированию.
 


1.1 Начало развития


Первые  программы  заключались в установке ключевых переключателей на передней панели вычислительного устройства. Очевидно, таким способом можно было составить только небольшие программы.

С развитием компьютерной техники появился машинный язык, с помощью которого программист мог задавать команды, оперируя с ячейками памяти, полностью используя возможности машины. Однако использование большинства компьютеров на уровне машинного языка затруднительно, особенно это касается ввода-вывода. Поэтому от его использования пришлось отказаться.

Например, для организации чтения блока данных с гибкого диска программист может использовать 16 различных команд, каждая из которых требует 13 параметров, таких как номер блока на диске, номер сектора на дорожке и т. п. Когда выполнение операции с диском завершается, контроллер возвращает 23 значения, отражающие наличие и типы ошибок, которые надо анализировать.

«Слова» на машинном языке называются инструкции, каждая из которых представляет собой одно элементарное действие для центрального процессора, такое, например, как считывание информации из ячейки памяти.

Каждая модель процессора имеет свой собственный набор машинных команд, хотя большинство из них совпадает. Если Процессор А полностью понимает язык Процессора Б, то говорится, что Процессор А совместим с Процессором Б. Процессор Б будет называться не совместимым с Процессором А если А имеет команды, не распознаваемые Процессором Б.

На протяжении 60-х годов запросы на разработку программного обеспечения возросли и программы стали очень большими. Люди начали понимать, что создание программного обеспечения – гораздо более сложная задача, чем они себе представляли. Это привело к тому, что было разработано структурное программирование. С Развитием структурного программирования следующим достижением были процедуры и функции. К примеру, если есть задача, которая выполняется несколько раз, то ее можно объявить как функцию или процедуру и в выполнении программы просто вызывать ее. Общий код программы в данном случае становиться меньше. Функции позволяют создавать модульные программы.

Следующим достижением было использование структур, благодаря которым перешли к классам. Структуры – это составные типы данных, построенные с использованием других типов. Например, структура время. В нее входит: часы, минуты, секунды. Программист мог создать структуру время и работать с ней, как с отдельной структурой. Класс – это структура, которая имеет свои переменные и функции, которые работают с этими переменными. Это было очень большое достижение в области программирования. Теперь программирование можно было разбить на классы и тестировать не всю программу, состоящую из 10’000 строк кода, а разбить программу на 100 классов, и тестировать каждый класс. Это существенно облегчило написание программного продукта.
 


1.2 Классификация языков программирования


1. Машинно-ориентированные языки

Машинно-ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.). Машинно-ориентированные языки позволяют использовать все возможности и особенности машинно-зависимых языков:


  1. высокое качество создаваемых программ (компактность и скорость выполнения);

  2. возможность использования конкретных аппаратных ресурсов;

  3. предсказуемость объектного кода и заказов памяти;

  4. для составления эффективных программ необходимо знать систему команд и особенности функционирования данной ЭВМ;

  5. трудоемкость процесса составления программ (особенно на машинных языках и ЯСК), плохо защищенного от появления ошибок;

  6. низкая скорость программирования;

  7. невозможность непосредственного использования программ, составленных на этих языках, на ЭВМ других типов.


Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы.


1.1. Машинный язык

Как я уже упоминал, в введении, отдельный компьютер имеет свой определенный Машинный язык (далее МЯ), ему предписывают выполнение указываемых операций над определяемыми ими операндами, поэтому Машинный язык является командным. Однако, некоторые семейства ЭВМ (например, ЕС ЭВМ, IBM/370/ и др.) имеют единый машинный язык для ЭВМ разной мощности. В команде любого из них сообщается информация о местонахождении операндов и типе выполняемой операции.

В новых моделях ЭВМ намечается тенденция к повышению внутренних языков машинно-аппаратным путем реализовывать более сложные команды, приближающиеся по своим функциональным действиям к операторам алгоритмических языков программирования.


1.2. Языки символического кодирования 

Продолжим рассказ о командных языках, Языки Символического Кодирования (далее ЯСК), так же, как и машинный язык, являются командными. Однако коды операций и адреса в машинных командах, представляющие собой последовательность двоичных (во внутреннем коде) или восьмеричных (часто используемых при написании программ) цифр, в ЯСК заменены на символы (идентификаторы), форма написания которых помогает программисту легче запоминать смысловое содержание операции. Это обеспечивает существенное уменьшение числа ошибок при составлении программ.

Использование символических адресов – первый шаг к созданию ЯСК. Команды ЭВМ вместо истинных (физических) адресов содержат символические адреса. По результатам составленной программы определяется требуемое количество ячеек для хранения исходных промежуточных и результирующих значений. Назначение адресов, выполняемое отдельно от составления программы в символических адресах, может проводиться менее квалифицированным программистом или специальной программой, что в значительной степени облегчает труд программиста.


1.3. Автокоды 

Есть также языки, включающие в себя все возможности ЯСК, посредством расширенного введения макрокоманд - они называются Автокоды.

В различных программах встречаются некоторые достаточно часто использующиеся командные последовательности, которые соответствуют определенным процедурам преобразования информации. Эффективная реализация таких процедур обеспечивается оформлением их в виде специальных макрокоманд и включением последних в язык программирования , доступный программисту. Макрокоманды переводятся в машинные команды двумя путями – расстановкой и генерированием. В постановочной системе содержатся «остовы» - серии команд, реализующих требуемую функцию, обозначенную макрокомандой. Макрокоманды обеспечивают передачу фактических параметров, которые в процессе трансляции вставляются в «остов» программы, превращая её в реальную машинную программу.

В системе с генерацией имеются специальные программы, анализирующие макрокоманду, которые определяют, какую функцию необходимо выполнить и формируют необходимую последовательность команд, реализующих данную функцию. 

Обе указанных системы используют трансляторы с ЯСК и набор макрокоманд, которые также являются операторами автокода.

Развитые автокоды получили название Ассемблеры. Сервисные программы и пр., как правило, составлены на языках типа Ассемблер. Более полная информация об языке Ассемблера см. ниже.


1.4. Макрос 

Язык, являющийся средством для замены последовательности символов описывающих выполнение требуемых действий ЭВМ на более сжатую форму - называется Макрос (средство замены).

В основном, Макрос предназначен для того, чтобы сократить запись исходной программы. Компонент программного обеспечения, обеспечивающий функционирование макросов, называется макропроцессором. На макропроцессор поступает макроопределяющий и исходный текст. Реакция макропроцессора на вызов-выдача выходного текста. Макрос одинаково может работать, как с программами, так и с данными.


2. Машинно-независимые языки 

Машинно-независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС. 

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на машинный язык.

Т.о., командные последовательности (процедуры, подпрограммы), часто используемые в машинных программах, представлены в высокоуровневых языках отдельными операторами. Программист получил возможность не расписывать в деталях вычислительный процесс на уровне машинных команд, а сосредоточиться на основных особенностях алгоритма.


2.1. Проблемно – ориентированные языки

С расширением областей применения вычислительной техники возникла необходимость формализовать представление постановки и решение новых классов задач. Необходимо было создать такие языки программирования, которые, используя в данной области обозначения и терминологию, позволили бы описывать требуемые алгоритмы решения для поставленных задач, ими стали проблемно – ориентированные языки. Эти языки, языки ориентированные на решение определенных проблем, должны обеспечить программиста средствами, позволяющими коротко и четко формулировать задачу и получать результаты в требуемой форме.

Проблемных языков очень много, например:


  1. Фортран, Алгол – языки, созданные для решения математических задач;

  2. Simula, Слэнг - для моделирования;

  3. Лисп, Снобол – для работы со списочными структурами.



2.2. Универсальные языки 

Универсальные языки были созданы для широкого круга задач: коммерческих, научных, моделирования и т.д. Первый универсальный язык был разработан фирмой IBM, ставший в последовательности языков PL/1. Второй по мощности универсальный язык называется Алгол-68. Он позволяет работать с символами, разрядами, числами с фиксированной и плавающей запятой. PL/1 имеет развитую систему операторов для управления форматами, для работы с полями переменной длины, с данными организованными в сложные структуры, и для эффективного использования каналов связи. Язык учитывает включенные во многие машины возможности прерывания и имеет соответствующие операторы. Предусмотрена возможность параллельного выполнение участков программ.

Программы в PL/1 компилируются с помощью автоматических процедур. Язык использует многие свойства Фортрана, Алгола, Кобола. Однако он допускает не только динамическое, но и управляемое и статистическое распределения памяти.


2.3. Диалоговые языки 

Появление новых технических возможностей поставило задачу перед системными программистами - создать программные средства, обеспечивающие оперативное взаимодействие человека с ЭВМ их назвали диалоговыми языками.

Эти работы велись в двух направлениях. Создавались специальные управляющие языки для обеспечения оперативного воздействия на прохождение задач, которые составлялись на любых раннее неразработанных (не диалоговых) языках. Разрабатывались также языки, которые кроме целей управления обеспечивали бы описание алгоритмов решения задач.

Необходимость обеспечения оперативного взаимодействия с пользователем потребовала сохранения в памяти ЭВМ копии исходной программы даже после получения объектной программы в машинных кодах. При внесении изменений в программу с использованием диалогового языка система программирования с помощью специальных таблиц устанавливает взаимосвязь структур исходной и объектной программ. Это позволяет осуществить требуемые редакционные изменения в объектной программе. Одним из примеров диалоговых языков является Бэйсик. 

Бэйсик использует обозначения подобные обычным математическим выражениям. Многие операторы являются упрощенными вариантами операторов языка Фортран. Поэтому этот язык позволяет решать достаточно широкий круг задач.

 2.4. Непроцедурные языки

Непроцедурные языки составляют группу языков, описывающих организацию данных, обрабатываемых по фиксированным алгоритмам (табличные языки и генераторы отчетов), и языков связи с операционными системами.

Позволяя четко описывать как задачу, так и необходимые для её решения действия, таблицы решений дают возможность в наглядной форме определить, какие условия должны быть выполнены прежде чем переходить к какому-либо действию. Одна таблица решений, описывающая некоторую ситуацию, содержит все возможные блок-схемы реализаций алгоритмов решения.

Табличные методы легко осваиваются специалистами любых профессий.

Программы, составленные на табличном языке, удобно описывают сложные ситуации, возникающие при системном анализе.
 


1.3 Эволюция языков программирования


В развитии инструментального программного обеспечения рассматривают пять поколений языков программирования. Языки программирования как средство общения человека с ЭВМ от поколения к поколению улучшали свои характеристики, становясь все более доступными в освоении непрофессионалам.

Первые три поколения языки программирования характеризовались более сложным на бором зарезервированных слов и синтаксисом.

Языки четвертого поколения все еще требуют соблюдения определенного синтаксиса при на писании программ, но он значительно легче для освоения.

Естественные языки программирования, разрабатываемые в настоящее время, составят пятое поколение и позволят определять необходимые процедуры обработки информации, используя предложения языка, весьма близкого к естественному и не требующего соблюдения особого синтаксиса.


Поколения


Языки программирования


Характеристика


Первое


Машинные


Ориентированы на использование в конкретной ЭВМ, сложны в освоении, требуют хорошего знания архитектуры ЭВМ


Второе


Ассемблеры, Макроассемблеры


Более удобны для использования, но,   по-прежнему машинно-зависимы


Третье


Языки высокого уровня


Мобильные, человеко-ориентированные,

проще в освоении


Четвертое


Непроцедурные, объектно-ориентированные, языки запросов,

параллельные


Ориентированы на непрофессионального пользователя и на ЭВМ с параллельной архитектурой


Пятое


Языки искусственного интеллекта,

экспертных систем и баз знаний,

естественные языки


Ориентированы на повышение интеллектуального уровня ЭВМ и интерфейса с языками


Языки программирования первого поколения представляли собой набор машинных команд в двоичном (бинарном) или восьмеричном формате, который определялся архитектурой конкретной ЭВМ.

Каждый тип ЭВМ имел свой языки программирования, программы на котором были пригодны только для данного типа ЭВМ. От программиста при этом требовалось хорошее знание не только машинного языка, но и архитектуры ЭВМ.

Второе поколение языков программирования характеризуется созданием языков ассемблерного типа (ассемблеров, макроассемблеров), позволяющих вместо двоичных и других форматов машинных команд использовать их мне монические символьные обозначения (имена). Являясь существенным шагом вперед, ассемблерные языки все еще оставались машинно-зависимыми, а программист все также должен был быть хорошо знаком с организацией и функционированием аппаратной среды конкретного типа ЭВМ.

При этом ассемблерные программы все так же затруднительны для чтения, трудоемки при отладке и требуют больших усилий для переноса на другие типы ЭВМ. Однако и сейчас ассемблерные языки используются при необходимости разработки высокоэффективного программного обеспечения (минимального по объему и с максимальной производительностью).

Третье поколение языков программирования начинается с появления в 1956 г. первого языка высокого уровня — Fortran, разработанного под руководством Дж. Бэкуса в фирме IBM. За короткое время Fortran становится основ ным ЯП при решении инженерно-технических и научных задач. Первоначально Fortran обладал весьма ограниченными средствами обеспечения работы с символьной информацией и с системой ввода-вывода. Однако постоянное развитие языка сделало его одним из самых распространенных ЯВУ на ЭВМ всех классов — от микро - до супер ЭВМ, а его версии используются и для вычислительных средств нетрадиционной параллельной архитектуры.


1. Ассемблер

Язык Ассемблера – это символическое представление машинного языка. Он облегчает процесс программирования по сравнению с программированием в машинных кодах.

Программисту не обязательно употреблять настоящие адреса ячеек памяти с размещенными в них данными, участвующими в операции, и вычисляемые результаты, а также адреса тех команд, к которым программа не обращается.

Некоторые задачи, например, обмен с нестандартными устройствами обработки данных сложных структур невозможно решить с помощью языков программирования высокого уровня. Это под силу ассемблеру.

В принципе, язык Ассемблер является машинным языком. И программист реализующий какую-либо задачу на языках высокого уровня, с помощью Ассемблера может определить осмыслено ли решение данной задачи, с точки зрения использования ЭВМ.

Умея разобраться в распечатке языка ассемблера, дает возможность облегчить поиск ошибок в программах, т.к. некоторые языки являются компиляторами (см. п. 1.2.).

2. Лисп

Один из самых старых языков программирования Фортран был создан в 50-х гг. нашего века. Фортран и подобные ему языки программирования (Алгол, ПЛ/1) предназначались для решения вычислительных задач, возникающих в математике, физике, инженерных расчетах, экономике и т.п. Эти языки в основном работают с числами.

Второй старейший язык программирования Лисп (List Information Symbol Processing), Дж. Маккарти в 1962 г. скорее для работы со строками символов, нежели для работы с числами. Это особое предназначение Лиспа открыло для программистов новую область деятельности, известную ныне, как «искусственный интеллект». В настоящее время Лисп успешно применяется в экспертных системах, системах аналитических вычислений и т.п.

Обширность области возможных приложений Лиспа вызвала появление множества различных диалектов Лиспа. Это легко объяснимо: применение Лиспа для понимания естественного языка требует определенного набора базисных функций, отличных, например, от используемого в задачах медицинской диагностики.

Существование множества различных диалектов Лиспа привело к созданию в начале 80-х гг. Common LISP Комитета, который должен был выбрать наиболее подходящий диалект Лиспа и предложить его в качестве основного. Этот диалект, выбранный Комитетом в 1985г., получил название Common LISP . В дальнейшем он был принят в университетах США, а также многими разработчиками систем искусственного интеллекта, в качестве основного диалекта языка Лисп.

Язык программирования Лисп существенно отличается от других языков программирования, таких, как Паскаль, Си и т.п. Работа с символами и работа с числами как с основными элементами требует разных способов мышления.

Первоначально Лисп был задуман как теоретическое средство для рекурсивных построений, а сегодня он превратился в мощное средство, обеспечивающее программиста разнообразной поддержкой, позволяющей ему быстро строить прототипы весьма и весьма серьезных систем.

Профессор Массачусетского технологического института Дж. Самман заметил, что математическая ясность и предельная четкостьЛиспа – это еще не все. Главное – Лисп позволяет сформулировать и запомнить «идиомы», столь характерные для проектов по искусственному интеллекту.


3. Фортран

Одним из первых и наиболее удачных компиляторов стал язык Фортран, разработанный фирмой IBM. Профессор Дж. Букс и группа американских специалистов в области программирования в 1954 году опубликовало первое сообщение о языке. Дословно, название языка FORmulae TRANslation – преобразование формул.

Среди причин долголетия Фортрана (а он один из самых распространенных языков в мире), можно отметить простую структуру, как самого Фортрана, так и предназначенных для него трансляторов. Программа  на Фортране записывается в последовательности предложений или операторов (описание некоего преобразования информации), и оформляется по определенным стандартам. Эти стандарты накладывают ограничения, в частности, на форму записи и расположения частей оператора в строке бланка для записи операторов. Программа, записанная на Фортране, представляет собой один или несколько сегментов (подпрограмм) из операторов. Сегмент, управляющий работой всей программы в целом, называется основной программой.

Фортран был задуман для использования в сфере научных и инженерно-технических вычислений. Однако на этом языке легко описываются задачи с разветвленной логикой (моделирование производственных процессов, решение игровых ситуаций и т.д.), некоторые экономические задачи и особенно задачи редактирования (составление таблиц, сводок, ведомостей и т.д.).

Модификация языка Фортран, появившиеся в 1958 году, получила название Фортран II и содержала понятие подпрограммы и общих переменных для обеспечения связи между сегментами.

К 1962 году относится появление языка, известного под именем Фортран IV и ставшего наиболее употребительным в настоящее время. К этому же времени относится и начало деятельности комиссии при Американской Ассоциации Стандартов (ASA), которая выработала к 1966 году два стандарта – языки Фортран и базисный (основной) Фортран (Basic FORTRAN). Эти языки приблизительно соответствуют модификациям IV и II, однако базисный Фортран является подмножеством Фортрана, в то время, как Фортран II таковым для Фортрана IV не является. Язык Фортран до сих пор продолжает развиваться и совершенствоваться, оказывая влияние на создание и развитие других языков. Например, Фортран заложен в основу Basic – диалогового языка, очень популярного для решения небольших задач, превосходного языка для обучения навыкам использования алгоритмических языков в практике программирования. Разработан этот язык – Beginner’s All –purpose Symbolic Instruction Code – группой сотрудников Вычислительного центра Дармутского колледжа, штат Нью-Хемпшир созданный в 19…. . Но это уже следующий язык.

4. Бейсик

Как знаменитые гамбургеры, бейсбол и баскетбол, Бейсик - это продукт Новой Англии. Как я говорил, созданный в 1964г., как язык обучения программированию. Бейсик является общепринятым акронимом от "Beginner's All-purpose Symbolic Insruction Code" (BASIC) – Многоцелевой Символический Обучающий Код для Начинающих.

Вскоре как обучаемые, так и авторы программ обнаружили, что Бейсик может делать практически все то, что делает скучный неуклюжий Фортран. А так как Бейсику было легко обучиться и легко с ним работать, программы на нем писались обычно быстрее, чем на Фортране. Бейсик был также доступен на персональных компьютерах, обычно он встроен в ПЗУ. Так Бейсикзавоевал популярность. Интересно, что спустя 20 лет после изобретения Бейсика, он и сегодня самый простой для освоения из десятков языков общецелевого программирования, имеющихся в распоряжении любителей программирования. Более того, он прекрасно справляется с работой.

Несмотря на высказывания снобов - сторонников языков Си и Паскаля, Бейсик считается деловым языком, снабженным мощными средствами решения специфических задач, которые обычно большинство пользователей решают при помощи небольших компьютеров, а именно: работая с файлами и выводя текстовое и графическое изображение на экране дисплея.

Несмотря на отдельные недостатки Бейсика, никто не будет отрицать, что Кемени и Куртс достигли основной цели: сделать программирование доступнее для большего числа людей.

Исторически Бейсик обычно реализовался как интерпретатор (знакомым изомером является сам интерпретаторный Бейсик). Причинами перехода от любительского уровня к профессиональному являются многочисленные расширения классической версии языка: возможность отключения нумерации строк, многостроковые структурированные программные конструкции, структуры типа "запись", поименованные подпрограммы с параметрами и локальные переменные.

Более того, с появлением транслятора QuickBasic фирмы Microsoft разработчики получили возможность строить на Бейсикеприложения из раздельно откомпилированных модулей, некоторые из которых могут быть написаны на других языках. Теперь, как и в случае других ведущих языков программирования, разработчик имеет выбор из нескольких промышленных библиотек подпрограмм, которые содержат готовые решения для распространенных задач программирования.

5. Рефал

Несомненно надо рассказать и о некоторых языках программирования созданных у нас на родине. Один из таких языков является Рефал, разработанный у нас в России (СССР), в 1966г. ИПМ АН СССР. Этот язык прост и удобен для описания манипуляций над произвольными текстовыми объектами.

Рефал широко применяется при разработке трансляторов с алгоритмических языков как универсальных и проблемно – ориентированных, так и автокодов. Кроме использования в задачах трансляции, Рефал имеет такие важные сферы применения, как машинное выполнение громоздких аналитических выкладок в теоретической физике и прикладной математике; проектирование «умных» информационных систем, осуществляющих нетривиальную логическую обработку информации; машинное доказательство теорем; моделирование целенаправленного поведения; разработка диалоговых обучающих систем; исследования в области искусственного интеллекта и т.п.

Программирование на Рефале имеет специфику, связанную, прежде всего, с тем, что Рефал является языком функционального типа в отличие от обычных операторных языков типа Алгол, Фортран и т.д.. Если программа на операторных языках – ни что иное, как совокупность приказов-операторов, то программа на Рефале представляет собой по существу описание связей и отношений между определенными понятиями.

Вследствие того, что в Рефале программист сам определяет структуру обрабатываемой информации, эффективность программы существенно зависит от удачного или неудачного выбора этой структуры. Для задания структур в Рефале используются скобки, а специфика всех реализаций языка такова, что использование скобок резко повышает эффективность выполнения программы. Это достигается с помощью адресного соединения скобок.

Определенной спецификой обладают и переменные типа «выражения» – имеется в виду их способность удлиняться при отождествлении. Правильное использование переменных этого типа также позволяет значительно повысить эффективность Рефал – программы.

 6. Пролог и Пролог 

Пролог - это язык, предназначенный для поиска решений. Это декларативный язык, то есть формальная постановка задачи может быть использована для ее решения. Пролог определяет логические отношения в задаче, как отличные от пошагового решения этой задачи.

Центральной частью Пролога являются средства логического вывода, которые решают запросы, используя заданное множество фактов и правил, к которым обращаются как к утверждениям. Пролог также не имеет деления переменных на типы и может динамически добавлять правила и факты к средствам вывода. Таким образом, это гибкий язык, и он более пригоден для объектно-ориентированного расширения, чем язык со строго заданными типами, например, Паскаль. Пролог   представляет собой дополнение к стандартному Прологу.

  Все свойства языка по-прежнему доступны программистам. Следовательно, Пролог  можно отнести к группе гибридных языков, представителями которой считаются Object Pascal и C . Расширение Пролог  поддерживает все свойства, присущие обычно объектно-ориентированным языкам: концепции объектов и классов, единичное и многократное наследование, разбиение на подклассы и передачу сообщений. Поддерживаются также некоторые усовершенствованные свойства, существующие в таких языках, как C и Smalltalk, включая общие и частные методы.

Интересным свойством является поддержка в языке программирования с управлением данными. Эта техника, которая может быть еще названа программированием, "управляемым событиями", используется в большинстве языков объектно-ориентированного программирования, особенно в тех, которые разработаны для машин с интерфейсом, управляемым "мышью".

Объектно-ориентированная программа реагирует на события, которые определяют поток управления. В Прологе  программирование с управлением данными достигается при помощи концепции демонов. Демон представляет собой объект, методы которого вызываются в случае определенных событий и могут быть таким образом использованы для поддержки программирования с управлением данными.

Сам язык основан на концепции передачи сообщений. Программа на Прологе  строится вокруг множества объектов Пролога , которые обмениваются сообщениями. В этом смысле Пролог  ближе к чистому объектно-ориентированному языку, такому, как Smalltalk, чем C или Object Pascal. 

Определения объектов строятся исходя из вызовов Open_Object [имя_объекта] и Close_Object [имя_объекта], а методы определяются практически так же, как в других объектно-ориентированных языках. Для задания наследования можно явным образом указать, какой метод какого объекта должен наследоваться, что является необходимым для многократного наследования.

7. Лекс

Лекс – генератор программ лексического анализа. Лексический анализ – это распознавание лексем во входном потоке символов. Предположим, что задано некоторое конечное множество слов (лексем) в некотором языке и некоторое входное слово. Необходимо установить, какой элемент множества (если он существует) совпадает с данным входным словом. Обычно лексический анализ выполняется так называемым лексическим анализатором. Лексический анализатор – это программа. Лексический анализ применяется во многих случаях, например, для построения пакетного редактора или в качестве распознавателя директив в диалоговой программе и т.д. Однако, наиболее важное применение лексического анализатора – это использование его в компиляторе. Здесь лексический анализатор выполняет функцию программы ввода данных.

Лексический анализатор выполняет первую стадию компиляции – читает строки компилируемой программы, выделяет лексемы и передает их на дальнейшие стадии компиляции (грамматический разбор, кодогенерацию и т.д.).

Лексический анализатор распознает тип каждой лексемы и соответствующим образом помечает ее. Например, при компиляции Си-программы могут быть выделены следующие типы лексем: число, идентификатор, оператор, ограничитель и т.д.

Лексический анализатор должен не только выделить лексему, но и выполнить некоторые преобразования. Например, если лексема – число, то его необходимо перевести во внутреннюю (двоичную) форму записи как число с плавающей или фиксированной запятой. А если лексема – идентификатор, то его необходимо разместить в таблице, чтобы в дальнейшем обращаться к нему не по имени, а по адресу в таблице.

Хотя лексический анализ по своей идее прост, тем не менее, эта фаза работы компилятора часто занимает больше времени, чем любая другая. Частично это происходит из-за необходимости просматривать и анализировать исходный текст символ за символом. Иногда даже бывает необходимо вернуть прочитанный символ во входной поток с тем, чтобы повторить просмотр и анализ.

8. Cи

Си – это язык программирования общего назначения, хорошо известный своей эффективностью, экономичностью, и переносимостью. Указанные преимущества Си обеспечивают хорошее качество разработки почти любого вида программного продукта. Использование Си в качестве инструментального языка позволяет получать быстрые и компактные программы. Во многих случаях программы, написанные на Си, сравнимы по скорости с программами, написанными на языке ассемблера. При этом они имеют лучшую наглядность и их более просто сопровождать. Си сочетает эффективность и мощность в относительно малом по размеру языке.

Си – это замечательный язык, и хотя некоторым он не нравится, но все же большинство программистов его любят. На Си вы можете создавать программы, которые делают все, что вы пожелаете. Нет другого такого языка, который бы так же стимулировал к программированию. Создается впечатление, что остальные языки программирования воздвигают искусственные препятствия для творчества, а Си – нет. Использование этого языка позволяет сократить затраты времени на создание работающих программ. Сипозволяет программировать быстро, эффективно и предсказуемо. Еще одно преимущество Си заключается в том, что он позволяет использовать все возможности вашей ЭВМ. Этот язык создан программистом для использования другими программистами, чего о других языках программирования сказать нельзя.

9. Си 

Безусловно, Си  восходит, главным образом, к Cи. Cи сохранен как подмножество, поэтому сделанного в Cи акцента на средствах низкого уровня достаточно, чтобы справляться с самыми насущными задачами системного программирования. Cи, в свою очередь, многим обязан своему предшественнику BCPL.

Название Си  - изобретение лета 1983-его. Более ранние версии языка использовались начиная с 1980-ого и были известны как "Cи с Классами". Первоначально язык был придуман потому, что автор хотел написать событийно управляемые модели для чего был бы идеален Simula67, если не принимать во внимание эффективность. "Cи с Классами" использовался для крупных проектов моделирования, в которых строго тестировались возможности написания программ, требующих (только) минимального пространства памяти и времени на выполнение. В "Cи с Классами" не хватало перегрузки операций, ссылок, виртуальных функций и многих деталей. Си  был впервые введен за пределами исследовательской группы автора в июле 1983-го. Однако тогда многие особенности Си  были еще не придуманы.

Название Си  выдумал Рик Масситти. Название указывает на эволюционную природу перехода к нему от Cи. " " - это операция приращения в Cи. Чуть более короткое имя Cи является синтаксической ошибкой, кроме того, оно уже было использовано как имя совсем другого языка. Знатоки семантики Cи находят, что Си хуже, чем Cи  . Названия D язык не получил, поскольку он является расширением Cи и в нем не делается попыток исцелиться от проблем путем выбрасывания различных особенностей.

Си  - это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей Си является надмножеством языка программирования Cи. Помимо возможностей, которые дает Cи, Си предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы.

Изначально Си  был разработан, чтобы автору и его друзьям не приходилось программировать на ассемблере, Cи или других современных языках высокого уровня. Основным его предназначением было сделать написание хороших программ более простым и приятным для отдельного программиста. Плана разработки Си  на бумаге никогда не было. Проект, документация и реализация двигались одновременно. Разумеется, внешний интерфейс Си  был написан на Си . Никогда не существовало "Проекта Си " и "Комитета по разработке Си ". Поэтому Си  развивался и продолжает развиваться во всех направлениях, чтобы справляться со сложностями, с которыми сталкиваются пользователи, а также в процессе дискуссий автора с его друзьями и коллегами.

В качестве базового языка для Си  был выбран Cи, потому что он:


  1. многоцелевой, лаконичный и относительно низкого уровня:

  2. отвечает большинству задач системного программирования:

  3. идет везде и на всем:

  4. пригоден в среде программирования UNIX.


В Cи есть свои сложности, но в наспех спроектированном языке тоже были бы свои, а сложности Cи нам известны. Самое главное, работа с Cи позволила "Cи с Классами" быть полезным (правда, неудобным) инструментом в ходе первых месяцев раздумий о добавлении к Cи  Simula-подобных классов.

 Си  стал использоваться шире, и по мере того, как возможности, предоставляемые им помимо возможностей Cи, становились все более существенными, вновь и вновь поднимался вопрос о том, сохранять ли совместимость с Cи. Ясно, что отказавшись от определенной части наследия Cи можно было бы избежать ряда проблем. Это не было сделано, потому что:


  1. есть миллионы строк на Cи, которые могли бы принести пользу в Си  при условии, что их не нужно было бы полностью переписывать с Cи на Си ;

  2. есть сотни тысяч строк библиотечных функций и сервисных программ, написанных на Cи которые можно было бы использовать из или на Си  при условии, что Си  полностью совместим с Cи по загрузке и синтаксически очень похож на Cи;

  3. есть десятки тысяч программистов, которые знают Cи, и которым, поэтому, нужно только научиться использовать новые особенности Си , а не заново изучать его основы;

  4. поскольку Си  и Cи будут использоваться на одних и тех же системах одними и теми же людьми, отличия должны быть либо очень большими, либо очень маленькими, чтобы свести к минимуму ошибки и недоразумения.


Позднее была проведена проверка определения Си , чтобы удостовериться в том, что любая конструкция, допустимая и в Cи, и вСи , действительно означает в обоих языках одно и то же.

Си  был развит из языка программирования Cи и за очень немногими исключениями сохраняет Cи как подмножество. Базовый язык, Cи подмножество Си , спроектирован так, что имеется очень близкое соответствие между его типами, операциями и операторами и компьютерными объектами, с которыми непосредственно приходится иметь дело: числами, символами и адресами. За исключением операций свободной памяти new и delete, отдельные выражения и операторы Си  обычно не нуждаются в скрытой поддержке во время выполнения или подпрограммах.

Одним из первоначальных предназначений Cи было применение его вместо программирования на ассемблере в самых насущных задачах системного программирования. Когда проектировался Си , были приняты меры, чтобы не ставить под угрозу успехи в этой области. Различие между Cи и Си  состоит в первую очередь в степени внимания, уделяемого типам и структурам. Cивыразителен и снисходителен. Си  еще более выразителен, но чтобы достичь этой выразительности, программист должен уделить больше внимания типам объектов. Когда известны типы объектов, компилятор может правильно обрабатывать выражения, тогда как в противном случае программисту пришлось бы задавать действия с мучительными подробностями. Знание типов объектов также позволяет компилятору обнаруживать ошибки, которые в противном случае остались бы до тестирования. Заметьте, что использование системы типов для того, чтобы получить проверку параметров функций, защитить данные от случайного искажения, задать новые операции и т.д., само по себе не увеличивает расходов по времени выполнения и памяти.

Особое внимание, уделенное при разработке Си  структуре, отразилось на возрастании масштаба программ, написанных со времени разработки Cи. Маленькую программу (меньше 1000 строк) вы можете заставить работать с помощью грубой силы, даже нарушая все правила хорошего стиля. Для программ больших размеров это не совсем так. Если программа в 10 000 строк имеет плохую структуру, то вы обнаружите, что новые ошибки появляются так же быстро, как удаляются старые. Си  был разработан так, чтобы дать возможность разумным образом структурировать большие программы таким образом, чтобы для одного человека не было непомерным справляться с программами в 25 000 строк. Существуют программы гораздо больших размеров, однако те, которые работают, в целом, как оказывается, состоят из большого числа почти независимых частей, размер каждой из которых намного ниже указанных пределов.

Естественно, сложность написания и поддержки программы зависит от сложности разработки, а не просто от числа строк текста программы, так что точные цифры, с помощью которых были выражены предыдущие соображения, не следует воспринимать слишком серьезно.


 Низкоуровневый язык программирования

Низкоуровневый язык программирования (язык программирования низкого уровня) — язык программирования, близкий к программированию непосредственно в машинных кодах используемого реального или виртуального (например, Java, Microsoft .NET) процессора. Для обозначения машинных команд обычно применяется мнемоническое обозначение. Это позволяет запоминать команды не в виде последовательности двоичных нулей и единиц, а в виде осмысленных сокращений слов человеческого языка (обычно английских).

Иногда одно мнемоническое обозначение соответствует целой группе машинных команд, выполняющих одинаковое действие над разными ячейками памяти процессора. Кроме машинных команд языки программирования низкого уровня могут предоставлять дополнительные возможности, такие как макроопределения (макросы). При помощи директив есть возможность управлять процессом трансляции машинных кодов, предоставляя возможность заносить константы и литеральные строки, резервировать память под переменные и размещать исполняемый код по определенным адресам. Часто эти языки позволяют работать вместо конкретных ячеек памяти с переменными.

Как правило, использует особенности конкретного семейства процессоров. Общеизвестный пример низкоуровнего языка — язык ассемблера, хотя правильнее говорить о группе языков ассемблера. Более того, для одного и того же процессора существует несколько видов языка ассемблера. Они совпадают в машинных командах, но различаются набором дополнительных функций (директив и макросов).

Низкий уровень подразумевает не качество программ, а уровень детализации инструкций. Так, команда, записанная на Ассемблере, например, MOV AL, OOh, означает, что в регистр процессора (указывается, в какой именно!) надо занести число 0.

Для большинства программ такой подробный и детализированный способ указаний не нужен. И, хотя, в конечном итоге, все исполняемые программы содержат именно такие подробные инструкции, да еще в числовом представлении, человеку удобнее записывать команды более общего плана, на языке, более похожем на человеческий.

Методы программирования для старых компьютеров были громоздкими, медленными и крайне ограниченными. Эти компьютеры программировались путем установки ряда переключателей (включено или выключено), каждый переключатель представлял одну двоичную единицу (или бит), принимая значение 0 или 1. Это сильно ограничивало возможности и занимало много времени.

Следующим этапом было создание хранимых программ. Принцип был таким же – использовался двоичный машинный код, но информация хранилась в памяти компьютера на магнитных сердечниках. После этого был сделан маленький шаг по введению кода в виде, лучше поддающемся управлению: в виде шестнадцатеричных чисел (основание 16), в котором каждый разряд представлялся четырьмя битами. Этот тип программирования был еще подвержен ошибкам, но дела улучшились с появлением ассемблера. Ассемблер позволял записывать программы с помощью мнемонических сокращений, которые представляли команды в виде, более удобном для запоминания: например, ADD представляет код команды сложения двух чисел. Ассемблер использует мнемонические обозначения и преобразует их более или менее один к одному в двоичный код. Преимущество программирования на языке Ассемблер в том, по крайней мере теоретически, что он создает наиболее быстрые и эффективные программы, так как в нем существует прямая связь между кодом программы и конечным машинным кодом. Программирование на языке Ассемблер до сих пор используется для тех приложений, когда важно уменьшить время выполнения программы, а современные варианты ассемблера даже позволяют использовать объектно-ориентированные конструкции.

К языкам низкого уровня относят:

•  машинные языки – языки кодов ЭВМ;

•  машино - ориентированные языки – ассемблеры, мнемокоды.

Также к языкам низкого уровня условно можно причислить MSIL, применяемый в платформе Microsoft .NET, Форт, Java байт-код.


Высокоуровневый язык программирования

Реальный скачок в программировании был сделан при появлении языков высокого уровня: Алгола, Фортрана и, позднее, КОБОЛА. Эти языки позволяют писать программы текстом, похожим на английский язык. Компилятор получает каждую команду и преобразует ее в машинный код. Он позволяет использовать имена (переменные) для представления элементов данных так, что одна и та же программа может быть использована с любыми входными данными. Программы, написанные на языках высокого уровня, более компактны, легче для понимания, а вероятность появления в них ошибок меньше.

Недостаток этих программ в том, что компиляция часто приводит к избыточному коду, содержащему лишние сложные подпрограммы, включенные в конечную исполняемую программу. Это также уменьшает скорость работы программы.

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül разработанный немецким инженером Конрадом Цузе ещё в период 1942-1946г. Однако транслятора для него не существовало до 2000 г. Первым в мире транслятором языка высокого уровня является ПП (Программирующая Программа), он же ПП-1, успешно испытанный в 1954 г. Транслятор ПП-2 (1955 г., 4-й в мире транслятор) уже был оптимизирующим и содержал собственный загрузчик и отладчик, библиотеку стандартных процедур, а транслятор ПП для ЭВМ Стрела-4 уже содержал и компоновщик (linker) из модулей. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка.

Ранние языки высокого уровня были довольно специализированными: Фортран (FORmula TRANslation) был предназначен для использования в научных целях, КОБОЛ (Common business Orientated Language) – для использования в мире бизнеса. Появление в 50-х гг. языка BASIC (Beginners All-purpose Symbolic Instruction Code) закрыло существовавший в языках высокого уровня пробел между языками для науки и для бизнеса. BASIC в равной степени годится для любых задач и в то же время достаточно прост для изучения.

Тем временем были изобретены новые методы программирования, которые привели к новой волне языков высокого уровня. Одним из этих языков, выдержавших проверку временем, является основанный на методах структурного программирования Pascal.

Высокоуровневый язык программирования – язык программирования, разработанный для быстроты и удобства использования программистом. Основная черта высокоуровневых языков — это абстракция, то есть введение смысловых конструкций, кратко описывающих такие структуры данных и операции над ними, описания которых на машинном коде (или другом низкоуровневом языке программирования) очень длинны и сложны для понимания.

Так, высокоуровневые языки стремятся не только облегчить решение сложных программных задач, но и упростить портирование программного обеспечения. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в идеале, неизменным.

Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы, написанные на языках высокого уровня, проще для понимания программистом, но менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в ряд современных профессиональных высокоуровневых языков программирования.

Примеры: C, C , Visual Basic, Java, Python, PHP, Ruby, Perl, Delphi (Pascal). Языкам высокого уровня свойственно умение работать с комплексными структурами данных. В большинство из них интегрирована поддержка строковых типов, объектов, операций файлового ввода-вывода и т. п.

К языкам высокого уровня относят:


  1. проблемно-ориентированные (имеют средства для организа ции структур данных, описания алгоритмов и ориентированы на решение задач определенного класса):  Фортран, Алгол, Кобол, Ада и др.;

  2. универсальные: Алгол 68,  PL/1,  Паскаль, QBasic, C, C , С# и дp.;

  3. языки  проектирования  программ  (системы программирова ния) – в настоящее время имеют самый высокий уровень аб стракции, они расширяются не как языки описания процесса обработки  данных,   а   как   средства описания  задач:   Visual Basic, Delphi, MS Visual C , Borland C   Builder и др.;

  4. языки гипертекстовой разметки, такие, как HTML – набор кодов, который вводится в документ для обозначения, напри мер, связей между его частями. Команды HTML обеспечива ют соединение сайтов и главных страниц WWW (Всемирной паутины сети Интернет) при помощи гиперссылок и указывают Web-браузеру (программе навигации) способ расположе ния массивов данных;

  5. языки описания сценариев – макросы, в которых объедине ны отдельные команды, управляющие средой в соответствии с их списком – программой: (например состоящие из имено ванных последовательностей совокупности указанных нажа тий клавиш при работе с пакетом Microsoft Office);

  6. языки   моделирования   систем:   например,   GPSS   (General Purpose Simulating System) позволяет автоматизировать при моделировании   процесс   программирования  моделей.   Язык построен в предположении, что моделью сложной дискретной системы является описание ее элементов и логических правил их взаимодействия. Для определенного класса моделируемых систем выделяют небольшой набор абстрактных элементов объектов. Набор логических правил ограничен и может быть описан небольшим числом стандартных операций. Комплекс программ, описывающих функционирование объектов и выполняющих логические операции, является основой для создания программной модели систем данного класса.



2. Понятие об алгоритме



        Алгоритм - это одно из самых широких понятий математики и информатики.

Более 1000 лет назад в Багдаде, крупном научном центре Востока, жил абд Джафар Мужамед ибн Муса Аль-Хорезми. Ему принадлежит книга по математике, которая в течение нескольких столетий пользовалась широкой популярностью. В ней Аль-Хорезми сформулировал правила выполнения четырёх арифметических действий над многозначными числами.

При переводе на латынь имя автора переделали в Algorithmi (Алгоритми). В книге Аль-Хорезми приводились методы решения разных задач. Ссылаясь на них, европейцы упоминали: "Так говорил Алгоритми..." Со временем методы решения задач стали называться алгоритмами. В дальнейшем алгоритмом стали называть описание любой последовательности действий, которую следует выполнить для решения задачи. 

Алгоритм – строго упорядоченная последовательность действий, направленная на выполнение поставленной задачи.

В широком смысле алгоритмизация включает в себя выбор метода решения задачи. Результатом выполнения этапа алгоритмизации является алгоритм решения задачи.

В повседневной жизни нам приходится часто пользоваться всевозможными алгоритмами. Например, алгоритм действий, необходимый для того, чтобы поговорить с кем-либо по телефону:


  1. узнать необходимый телефонный номер;

  2. поднять трубку;

  3. набрать номер;

  4. дождаться ответа абонента.


Мы пользуемся подобными алгоритмами достаточно часто, поэтому выполняет их автоматически (не задумываясь).

Алгоритмы, предназначены для выполнения компьютерами, обычно называются компьютерными программами, или просто программами. Программа содержит команды на языке, понятном компьютеру. Она сообщает компьютеру, как надо обрабатывать данные для получения желаемого результата. Все функции компьютера, любое его действие задается программой. 

Программа - это алгоритм, представленный на языке, понятном компьютеру.

Разветвляющийся алгоритм

Алгоритмы исполняют в естественном порядке: команда за командой (смотрите повторение). Однако жизнь весьма разнообразна. А цели все же хочется достичь.

Вот и ученик, собираясь в школу, продумывает следующие действия:


  1. Если чувствует себя хорошо, то собирается в школу

  2. Иначе - остается дома.


Заметим, что алгоритм требует либо одного действия, либо двух. А именно: вначале измерить температуру, а уж затем, в зависимости от результатов выполнять или не выполнять следующее действие. Такой алгоритм называется разветвляющимся, а именно: алгоритм, который выполняется в зависимости от условия, т.е. от вопроса на который можно ответить "да" или "нет", т.е. условие может быть истинным (да), или ложным (нет). Алгоритм ветвления, как и другие алгоритмы, должны обладать следующими свойствами:


  1. Дикретность, т.е. все решение разбивается на простейшие шаги.

  2. Понятность, алгоритм должен быть понятен исполнителю.

  3. Точность, не должно быть неясностей и двусмысленностей.

  4. Массовость, с помощью одного и того же алгоритма можно решить множество задач.

  5. Результативность (или конечность) состоит в том, что алгоритм должен приводить к решению задачи за конечное число шагов.


^ Полная форма.

Полная форма - это форма записи развлетвляющегося алгоритма, в которой предусмотрены команды в ветви "да" и в ветви "нет". 


если-то-иначе


Пример


http://www.studmed.ru/docs/static/f/1/c/f/7/f1cf753edef.png


http://www.studmed.ru/docs/static/f/5/f/5/7/f5f57e7b6a8.png


Происходит проверка условия.


  • Если а>b, то происходит присваивание к переменной "а" значение "а*2", а к переменной "b", значение "1".

  • Иначе, т.е. если а<=b, происходит присваивание переменной "b" значение "2*b".


Неполная форма

      Неполная форма - это форма записи разветвляющегося алгоритма, в которой предусмотрены команды только в одной ветви.


если-то


Пример


http://www.studmed.ru/docs/static/c/2/8/b/0/c28b04cfe7e.png


http://www.studmed.ru/docs/static/3/5/2/7/0/3527078f079.png

Происходит проверка условия.


  1. Если x>0, то переменной "y" присваивается значение "sin(x)"

  2. Иначе, т.е. если x<=0, то действия ветви "да" пропускаются.


Разветвляющийся алгоритм можно записать несколькими способами:


  1. Словесный.

  2. В виде блок-схем (графический).

  3. На языке программирования.



1. Словесный способ

Словесный способ записи разветвляющихся алгоритмов представляет собой описание последовательных этапов обработки данных. А алгоритм задается в произвольном изложении на естественном языке.

Например:


  1. Задать два числа.

  2. Если числа равны, то взять любое из них в качестве ответа и остановиться, иначе продолжить выполнение алгоритма.

  3. Определить большее из чисел.

  4. Заменить большее из чисел разностью большего и меньшего из чисел.

  5. Повторить алгоритм с числа два.


Словесный способ не имеет широкого распространения, т.к. такие описания:


  1. строго не формализуемы;

  2. страдают многословностью записей;

  3. допускают неоднозначность толкования отдельных предписаний.


Машина поймет инструкцию, записанную на языке программирования, а человек наиболее ясно увидит ход решения задачи, если последовательность действий представлена на схеме.


2. Графический способ

Графический способ представления разветвляющихся алгоритмов является более компактным и наглядным по сравнению со словесным.

При графическом представлении разветвляющийся алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. Блок-схемы и структурограммы Насси Шнейдермана-наиболее распространенные способы графического изображения алгоритмов.

 


Название символ


Обозначение и пример заполнения


Пояснение


Пуск — остановка


http://www.studmed.ru/docs/static/c/9/d/7/7/c9d779a91f6.png


Начало, конец алгоритма, вход и выход в подпрограмму


Ввод — вывод


http://www.studmed.ru/docs/static/4/b/0/9/d/4b09d44d0e7.png


Обозначает момент ввода данных в ячейки памяти с указанными именами или момент вывода содержимого указанных ячеек на экран монитора или на принтер.


Процесс (действие)


http://www.studmed.ru/docs/static/b/d/b/b/d/bdbbdad951e.png


Вычислительное действие или их последовательность


Решение (условие)


http://www.studmed.ru/docs/static/5/6/4/b/c/564bcd99951.png


Проверка условий


Блок "решение" используется для обозначения переходов управления по условию. В каждом блоке "решение" должны быть указаны вопрос, условие или сравнение, которые он определяет. 

 Линейный алгоритм

Линейным называется алгоритм, в котором все этапы решения задачи выполняются строго последовательно. 

Например, алгоритм решения математической задачи: найдите гипотенузу, если известны катеты.


Алгоритм (словесный способ записи):

http://www.studmed.ru/docs/static/a/0/0/2/2/a00220952dd.gif


  1. Возвести первый катет в квадрат;

  2. Возвести второй катет в квадрат;

  3. Сложить результаты действий 1 и 2;

  4. Вычислить квадратный корень из результата 3-го действия и принять его за значение гипотенузы.


http://www.studmed.ru/docs/static/e/6/4/f/5/e64f543c7b9.png


Программный способ записи:

http://www.studmed.ru/docs/static/a/0/0/2/2/a00220952dd.gif

frame1



Циклический алгоритм

Циклический алгоритм - это такой алгоритм, действия которого повторяются. Существует два типа циклических алгоритмов:


Цикл типа "Пока"


Цикл типа "Для"


http://www.studmed.ru/docs/static/d/6/c/a/0/d6ca0c9ca84.png


http://www.studmed.ru/docs/static/e/d/7/f/5/ed7f574a930.png


Пример: алгоритм продавца по обслуживанию покупателей


Пример: алгоритм учителя по проверке тетрадей учеников


1. Циклический алгоритм типа "Для"

Циклический алгоритм типа "Для" - это такой циклический алгоритм, в котором число повторений известно.

Для организации циклов с известным числом повторений (типа "Для") используют оператор FOR - NEXT.


10 FOR A = L TO R STEP N

20 P

30 NEXT A


A - счетчик цикла (управляющая переменная) 
L - начальное значение (число)
R - конечное значение (число)
N - шаг цикла (число)
P - тело цикла (последовательность действий)


Любые арифметические выражения, не содержащие управляющей переменной (счетчика цикла), называют параметрами цикла.

Например, запись:

FOR A = 0 TO 12 STEP 2

означает, что управляющая переменная A (счетчик цикла) примет сначала значение 0 и при каждом повторении цикла будет увеличиваться на 2. Последним значением K будет 12. Если шаг равен 1, то часть STEP 1 в операторе можно опустить. Оператор FOR используется только в паре с оператором NEXT, который имеет вид: NEXT A, где A - имя управляющей переменной (счетчика) цикла.

Операторы, которые требуется повторить многократно, записываются между FOR и NEXT и называются телом цикла.

     Чтобы организовать цикл с помощью оператора FOR, нужно:


  1. выделить тело цикла;

  2. выбрать управляющую переменную;

  3. определить границы ее изменения и шаг (параметры цикла);

  4. предусмотреть начальные присваивания (если это требуется).


Рассмотрим применение оператора FOR - NEXT на следующем примере, где L (начальное значение счетчика цикла) = 1, R (конечное значение счетчика цикла) = 10:


10 K = 6
20 FOR A = 6 TO 10
30 K = K 1
^ 40 PRINT K;
50 NEXT A
60 END

frame2


http://www.studmed.ru/docs/static/2/7/b/c/9/27bc9f287a6.png


Работа оператора FOR - NEXT

Счетчику присваивается первоначальное значение

Выполняется тело цикла - операторы, которые повторяются

Оператор NEXT выполняет 3 действия:


  1. Присваивает счетчику цикла новое значение

  2. Сравнивает полученное значение с конечным

  3. Если полученное значение меньше или равно конечному, то происходит возврат на начало тела цикла (на первый оператор после заголовка); если полученное значение больше конечного, то происходит выход из цикла


2. Циклический алгоритм типа "Пока"

Циклический алгоритм типа "Пока" - это такой циклический алгоритм, действия которого будут выполнятся до тех пор пока выполняется заданное условие.

Начав тренировки, спортсмен в первый день пробежал 10 км. Каждый следующий день он увеличивал дневную норму на 50% от нормы предыдущего дня. Через сколько дней спортсмен пробежит суммарный путь 60 км?


10 S = 10
20 N = 1
30 S = S 0, 5*S
40 N = N 1
50 IF S<60 THEN GOTO 30
^ 60 PRINT N
70 END

frame3


http://www.studmed.ru/docs/static/a/f/4/8/a/af48a371657.png



Заключение 


Изобретение языка программирования высшего уровня позволило нам общаться с машиной, понимать её (если конечно Вам знаком используемый язык), как понимает американец немного знакомый с русским языком древнюю азбуку Кириллицы. Проще говоря, мы в нашем развитии науки программирования пока что с ЭВМ на ВЫ. 

Поверьте мне это не сарказм вы только посмотрите как развилась наука программирования с того времени, как появились языки программирования, а ведь язык программирования высшего уровня, судя по всему ещё младенец. Но если мы обратим внимание на темпы роста и развития новейших технологий в области программирования, то можно предположить, что в ближайшем будущем, человеческие познания в этой сфере, помогут произвести на свет языки, умеющие принимать, обрабатывать и передавать информации в виде мысли, слова, звука или жеста. Так и хочется назвать это детище компьютеризированного будущего: «языки программирования"высочайшего" уровня». Возможно, концепция решения этого вопроса проста, а ближайшее будущее этого проекта уже не за горами, и в этот момент, где-нибудь в Запорожье, Амстердаме, Токио или Иерусалиме, перед стареньким 133MHz горбится молодой, никем не признанный специалист и разрабатывает новейшую систему искусственного интеллекта, которая наконец-то позволит человеку, с помощью своих машинных языков, вести диалог с машиной на ТЫ.

Размышляя над этим, хочется верить в прогресс науки и техники, в высоко - компьютеризированное будущее человечества, как единственного существа на планете, пусть и не использующего один, определенный разговорный язык, но способного так быстро прогрессировать и развивать свой интеллект, что и перехода от многоязыковой системы к всеобщему пониманию долго ждать не придется. 

Завершить свой труд хорошо бы на такой оптимистичной ноте, но нет, напоследок хочется процитировать человека, фрагменты работы которого, в виде информации о языке Си, вам уже попадались на страницах этого текста: 

^ Единственный способ изучать новый язык программирования – писать на нём программы.

 

Список литературы


  1. Роберт У. Себеста. Основные концепции языков программирования Concepts of Programming Languages / Пер. с англ. — 5-е изд. — М.: 2001.

  2. Вольфенгаген В. Э. Конструкции языков программирования. Приёмы описания. — М.: Центр ЮрИнфоР, 2001.

  3. Паронджанов В. Д. Как улучшить работу ума. Алгоритмы без программистов — это очень просто!. — М.: Дело, 2001.

  4. Давидов М. И., Антонов В. Г. LEX - генератор программ лексического анализа / М. – 1985;

  5. Justin J. Crom / "BASIC Face-off", PC Tech Journal, September 1987.