Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Суперкомпьютеры

Введение

В то время, когда появились первые компьютеры, у разработчиков появилась проблема - производительность вычислительной системы. За время развития компьютерной индустрии производительность процессора стремительно возрастала. Но так как появляются все более новые и усложнённые программные обеспечения, повышается рост числа пользователей и расширяются сферы приложения вычислительных систем, то соответственно к мощности используемой техники предъявляют новые требования, что и привело к появлению суперкомпьютеров. Что же представляют собой суперкомпьютеры и какова их роль в жизни человека.

Эссе

Суперкомпьютер - это мощная ЭВМ с производительностью свыше 10 MFLOPS(миллионов операций с плавающей запятой в секунду). То есть супер-ЭВМ - это вычислительная система, которая позволяет производить сложные расчеты за более короткие промежутки времени. Каждая компьютерная система состоит из 3-х основных частей: центрального процессора, то есть счетного устройства, блока памяти и вторичной системы хранения информации (к примеру, в виде дисков или лент). Но главную роль играют не только технические параметры каждого из этих элементов, но и пропускная способность каналов, связывающих их друг с другом и с терминалами потребителей. Одна из заповедей «Крей Рисерч» гласит: «Быстродействие всей системы не превышает скорости самой медленнодействующей ее части». Важным показателем производительности компьютера является степень его быстродействия. Она измеряется, так называемыми, флопсами. Флопс - это внесистемная единица, которая используется для измерения производительности компьютеров. Она показывает, сколько операций с плавающей запятой в секунду выполняет данная вычислительная система. То есть за основу берется подсчет: сколько наиболее сложных расчетов машина может выполнить за один миг.

Cray-1 принято считать одним из первых суперЭВМ. Он появился в 1974 году. В процессорах компьютера был огромный набор регистров, которые разделялись на группы. Каждая группа имела свое собственное функциональное назначение. Блок адресных регистров, который отвечал за адресацию в памяти ЭВМ, Блок векторных регистров, блок скалярных регистров. Производительность суперЭВМ составляла 180 миллионов операций в секунду над числами с плавающей точкой. Использовались 32 разрядные команды - это учитывая то, что современники данного компьютера только начинали переходить от 8 разрядных команд к 16 разрядным.

Сборка компьютера Cray-1

Так же после появился компьютер Cray-2.

Компьютеры Крея применялись в правительственных организациях ,промышленных и научно - исследовательских центрах. Так же было много конкурирующих компаний. Но многие из них так и не достигли успеха. В 90-х годах эти фирмы начали банкротиться. Компания Крея Cray Inc до сих пор является одним из ведущих производителей суперкомпьютеров.

Суперкомпьютеры компании nCube.

Одним из пионеров MPP-систем стала основанная в 1983 году компания nCube. В 1985 году появился первый ее MPP-компьютер nCube 1. В ее системе, как и в системе всех последующих поколений компьютеров nCube , лежит гиперкубическая топология межпроцессорных соединений и высокий уровень интеграции на базе технологий VLSI, показала рекордные результаты по абсолютной производительности и в соотношении цена/производительность для научных вычислений.

В 1989 году компания nCube выпустила семейство суперкомпьютеров nCube 2. Большие вычислительные возможности, гибкая архитектура и мощное специализированное программное обеспечение позволяет применять системы nCube 2 в широком диапазоне областей - от сложнейших научных задач до управления информацией в бизнесе.

Система nCube 2 представляет собой масштабируемую серию систем. Каждый супер компьютер этой серии содержит набор процессоров соединенных в гиперкубическую сеть. Наибольшую систему составляют 8192 процессора , и ее мощность более чем в 1000 раз превышает мощность наименьшей - с 8 процессорами. Возможности памяти и системы ввода/вывода возрастают вместе с ростом процессорной мощности.

2. Сферы применения суперкомпьютеров

Традиционной сферой применения суперкомпьютеров всегда были научные исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии - различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и химия твердого тела, конструирование лекарств. Естественно, что ряд областей применения находится на стыках соответствующих наук, например, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, изучение атмосферных явлений и, в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики. Среди технических проблем , для решения которых используются суперкомпьютеры, укажем на задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, предсказания и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих суперЭВМ.

Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет, можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый знаменитый пример - это американская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного оружия, что позволит вообще отменить ядерные испытания в этой стране.

Есть еще одна проблема применения суперЭВМ, о которой необходимо сказать - это визуализация данных, полученных в результате выполнения расчетов. Часто, например, при решении дифференциальных уравнений методом сеток, приходится сталкиваться с гигантскими объемами результатов, которые в числовой форме человек просто не в состоянии обработать. Здесь во многих случаях необходимо обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в последнее время уделяется все большее внимание. В частности, знаменитый Национальный центр суперкомпьютерных приложений США (NCSA) совместно с компанией Silicon Graphics ведет работы по программе "суперкомпьютерного окружения будущего". В этом проекте предполагается интегрировать возможности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.

3. Суперкомпьютеры в России

СуперЭВМ являются национальным достоянием, и их разработка и производство, несомненно, должны быть одним из приоритетов государственной технической политики стран, являющихся мировыми лидерами в области науки и техники. Блестящим примером глубокого понимания всего комплекса соответствующих проблем является статья известного нобелевского лауреата в области физики К. Вильсона. Опубликованная свыше десять лет назад, она и сейчас представляет интерес для российского читателя.

Практически единственными странами, разрабатывающими и производящими суперЭВМ в больших масштабах, являются США и Япония. Свои суперкомпьютеры были созданы в Индии и Китае. Большинство развитых стран, в том числе и ряд государств Восточной Европы, предпочитают использовать суперкомпьютеры, произведенные в США и Японии.

Положение с разработками суперкомпьютеров в России, очевидно, оставляет сегодня желать лучшего. Работы над отечественными суперЭВМ в последние годы велись сразу в нескольких организациях. Под управлением академика В.А.Мельникова была разработана векторная суперЭВМ "Электроника CC-100" с архитектурой, напоминающей Сгау-1. В ИТМиВТ РАН проводятся работы по созданию суперкомпьютеров "Эльбрус-3". Этот компьютер может иметь до 16 процессоров с тактовой частотой 10 нс. Другая разработка, выполненная в этом институте, - Модульный Конвейерный Процессор (МКП), в котором используется оригинальная векторная архитектура, однако по быстродействию он, вероятно, должен уступать "Эльбрус-3".

Между тем отсутствие возможностей применения суперЭВМ сдерживает развитие отечественной науки и делает принципиально невозможным успешное развитие целых направлений научных исследований. Приобретение одного или двух даже очень мощных, суперкомпьютеров не поможет решить данную проблему. И дело не только в стоимости их приобретения и затрат на поддержание работоспособности (включая электропитание и охлаждение). Существует еще целый ряд причин (например, доставка информации по компьютерной сети), препятствующих эффективному использованию суперЭВМ.

Что касается отечественных суперЭВМ, то без необходимой государственной поддержки проектов по их разработке не приходиться рассчитывать на создание промышленных образцов в ближайшие несколько лет , и вряд ли такие компьютеры смогут составить основу парка суперЭВМ в создающихся сегодня отечественных суперкомпьютерных центрах.

Пока еще не все компании в России понимают, насколько вычисления могут дать им преимущества в конкурентной борьбе и позволить сэкономить деньги. А тем временем, например, в США суперкомпьютеры строятся уже не на деньги государства, а на деньги регионов, то есть их важность понимают и на региональном уровне. И это достаточно мощные машины, ведь по ту сторону океана бизнес и правительство понимают, что для развития надо не просто производить вычисления - надо в них побеждать, побеждать по качеству вычислений и скорости.

4. Перспективы суперкомпьютерных технологий в России

Для таких задач, как моделирование живой клетки, поведения самолета в различных ситуациях, Большого взрыва Вселенной, создания синтетического топлива и получения точных долгосрочных прогнозов погоды, необходимо преодолеть новый рубеж производительности суперкомпьютеров - 1 ЭКСАФЛОП. Учитывая, что сегодня мы подошли к 2 ПЕТАФЛОПС, это перспектива ближайших десяти лет.

Конечно, далеко не каждое предприятие может позволить себе купить, содержать и использовать суперкомпьютер. Вероятнее всего, должна быть создана сеть высокопроизводительных вычислений, содержащая топовые модели с максимальной производительностью в основных регионах нашей страны. Это позволит снизить нагрузку на каналы связи и сократить расходы на построение ЦОД и электроэнергию.

Системы второго уровня, более слабые, должны быть равномерно распределены по регионам с развитой наукой, образованием и промышленностью. Как считает Леонид Борисович Соколинский, профессор, зав. кафедрой Южно-Уральского государственного университета, высокопроизводительные вычисления должны иметь «облачную» структуру, которая позволит любому университету, конструкторскому бюро или предприятию пользоваться их мощностями удалённо, возможно с оплатой за процессорочасы.

Естественно, такой путь развития невозможен без поддержки на уровне правительства РФ - выделения бюджетов на построение HPC, развитие каналов связи, предоставления дополнительных льгот институтам. Ведь когда потребность в вычислениях. Это должна быть долгосрочная программа, которая обеспечит переход на инновационную экономику.

5. Архитектура современных суперЭВМ

Рассмотрим архитектуры ЭВМ , которые распространены сегодня , я приведу классическую систематику :

В соответствии с ней, все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных. К первому классу (последовательные компьютеры фон Неймана) принадлежат обычные скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.

Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1 [6]. В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.

К третьему классу - MIMD - относятся системы, имеющие множественный поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.

Четвертый класс в систематике Флинна, MISD, не представляет практического интереса ,по крайней мере, для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа - множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т.е. MIMD) - системам и означает, что несколько копий одной программы параллельно выполняются в разных процессорных узлах с разными данными.

А так же имеется иное направление в развитие компьютерных архитектур - это машины потоков данных.

Вывод

Еще 10-15 лет назад суперкомпьютеры были чем-то вроде элитарного штучного инструмента, доступного в основном ученым из засекреченных ядерных центров и криптоаналитикам спецслужб. Однако развитие аппаратных и программных средств, сверхвысокой производительности, позволило освоить промышленный выпуск этих машин, а число их пользователей в настоящее время достигает десятков тысяч. На самом деле, в наши дни весь мир переживает подлинный бум суперкомпьютерных проектов, результатами которых активно пользуются не только такие традиционные потребители высоких технологий, как аэрокосмическая, автомобильная, судостроительная и радиоэлектронная отрасли промышленности, но и важнейшие области современных научных знаний.