Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Архитектура современных компьютеров (История возникновения и структура ПК)

Содержание:

Введение

В наше время компьютеры есть почти в любой семье. Мы их используем в разных целях для развлечения, для получения образования, для просмотра клипов и фильмов, при этом для выполнения данных целей можно использовать всего один компьютер. ПК являются неотъемлемыми помощниками для людей разных профессий, таких как врач, дизайнер, инженер. А также есть профессии, которые полностью связанны с компьютерами. Благодаря ПК стало возможным создавать практически полностью автоматизированные производства, реализовать многие проекты, сделать и ускорить более продуктивным процесс обучения и другое.

Увеличение объема и развитие производства информации привели к об ходимости создания ПК как инструмента для хранения и обработки информации.

Актуальностью темы исследования является то, что ПК с момента появления прошли долгий путь до электронного устройства от механического, перетерпев при этом большое количество новшеств и глобальных изменений. Сегодняшний день является невозможным представить себе эффективную организацию рабочего и учебного процесса. ПК используется почти во всех сферах деятельности современного человека. В нынешнее время круг задач, требующих для своего решения применения мощных электронно-вычислительных машин, весьма расширился.

Объектом исследования работы является: современный ПК.

Предметом исследования работы является: устройство современного ПК.

Целью исследования работы является: изучение особенности устройства современного ПК.

Задачи исследования:

  1. Изучить и проанализировать учебную литературу по теме «Устройство современного ПК»
  2. Структурировать знания по данной теме и выделить основные составляющие ПК
  3. Выделить основные моменты в истории, которые привели к появлению и созданию персонального компьютера
  4. Изучить понятия «структура компьютера» и «архитектура компьютера»
  5. Обобщить полученные в ходе работы знания

Глава 1. История возникновения и структура ПК

1.1 История возникновения компьютеров

Опираясь на ГОСТ 15971-90, ПК, или персональная ЭВМ – настольная микро-электронно-вычислительная машина, имеющая эксплуатационные стандартные функциональные возможности и характеристики бытового прибора.

Так как компьютер используется людьми в разных целях, его можно смело назвать универсальным устройством. Л. Л. Босова в учебнике «Информатика» пишет, что ПК — это «универсальная машина для работы с информацией». И. Г. Семакин добавляет к этому определению слово «техническая».

Термин «персональный компьютер» был введен в 1964 году и относился только к устройству Programma 101 (Olivetti). Но затем был перенесен и на другие ПК. В СССР все вычислительные машины, предназначенные для персонального использования, носили название персональные ЭВМ. На сегодняшний день ПК называют любую электронно-вычислительную машину, имеющую IBM-совместимую архитектуру .

А. Я. Фридланд в толковом словаре «Информатика и компьютерные технологии» дает другое определение. Персональный компьютер – это электронная машина, предназначенная для индивидуального использования. Основные критерии отнесения компьютера к классу персональных компьютеров: низкая цена, малые размеры, простота модернизации, функциональная универсальность.

В повседневных рутинных работах ПК без всяких проблем может заменить человека, но без человека, как пользователя Персонального Компьютера, компьютер работать самостоятельно полностью не сможет. В каких-либо действиях, вычислениях и так далее, работу компьютера надо полностью контролировать. Для лучшего и удобного общения между компьютером и пользователем служит пользовательский интерфейс.

Принцип работы ПК заключается в обработке данных. Персональный компьютер может принимать и обрабатывать тысячи логических решений и решать серии проблем, тратя на это считанные секунды.

К положительным качествам ПК относится: многозадачность, относительную компактность, универсальность использования, быстродействие.

С развитием и ростом цивилизованного мира у людей появилась потребность в автоматизации и счете этого процесса. Люди проводили землемерные работы, осуществляли торговые сделки, используя при этом сложные вычисления и огромные числа. Изобретенные давным-давно счетные палочки, абаки в ходе развития науки и техники эволюционировали в первые калькуляторы, а затем в ПК.

Самой первой попыткой механизированной устройством стала изобретенная в 1642 году Блезом Паскалем арифметическая суммирующая машина. Она представляла собой ящик с многочисленными связанными одна с другой шестерёнками. При помощи шестеренок в машину вводили числа, которые нужно сложить.

В период с 1882 по 1838 гг. математик Чарлз Бэббидж пытался создать первое программированное вычислительное устройство. С помощью специальных рукояток механизм аналитической разностной машины приводился в действие. Она производила вычисления больших чисел и сложных уравнений с большой скоростью и точностью.

В 1890 году было создано первое автоматическое вычислительное устройство, именуемое как Табулятор Холлерита.

Первым вычислительным устройством, использующим двоичную систему счисления, стала вычислительная машина Z1, разработанная в 1937 году Конрадом Цузе.

Меньше чем через 10 лет фирма IBM выпустила первый программируемый компьютер Mark I.

Самые первые электронно-вычислительные машины:

ЭНИАК (1946) - первый электронный цифровой вычислитель общего назначения, который можно было перепрограммировать для решения широкого спектра задач.

Манчестерская малая экспериментальная машина (1948) - первый электронный компьютер, построенный по принципу совместного хранения данных и программ в памяти.

EDSAC (1949) - первый в мире действующий и практически используемый компьютер с хранимой в памяти программой.

1.2 Структура компьютера

Среди всех стандартных функций ПК выделяют две основные:

● обмен с внешними объектами информацией.

● работа с информацией (хранение и обработка информации);

Так же есть дополнительные функции, которые значительно повышают эффективность выполнения классических основных функций ПК:

● высокую надежность,

● диалог с пользователем,

● обеспечивают эффективные режимы работы и т.д.

Данные функции ПК реализуются с помощью программного и аппаратного обеспечения компьютера.

Аппаратное обеспечение (АО), или hardware – это физическая часть или сказав проще «тело». Это системный блок с жестким диском, материнской платой и процессором, периферийным устройством и т.д.

Software или программное обеспечение – это программы и информации для управления процессами и обработки информации, «интеллект» компьютера.

При рассмотрении ПК как устройства необходимо уметь различать понятия его структуры и архитектуры.

Под архитектурой компьютера понимают концептуальную структуру ЭВМ, определяющая проведение обработки информации и включающую методы преобразования информации в принципы и данные взаимодействия ПО и технических средств. Другими словами, это описание ПК на некотором общем уровне, которое включает в себя описание компонентов, входящих в него, принципы их взаимодействия, включая характеристики и функции, а также описание пользовательских возможностей.

Структура ПК — это совокупность его функциональных элементов и связь между этими функциями. Элементами могут являться самые разные устройства — от основных логических узлов компьютера до простейших схем. Структура ПК графически представляется нам в виде структурных схем, с помощью которых можно дать полное описание ПК на любом уровне детализации. То есть это некая модель, устанавливающая состав, принципы и порядок взаимодействия входящих в нее компонентов.

Концепция, разработанная фон Нейманом предполагает, соблюдение некоторых принципов, которые описаны далее:

● Принцип однородности памяти.

● Принцип адресности.

● Принцип программного управления.

● Принцип двоичного кодирования.

В современном мире компьютеры проектируются по принципу открытой архитектуры. Данная архитектура, допускающая сборку, ремонт и усовершенствование ПК по его составным элементам — модулям. Принцип открытой архитектуры используется в конструкции персонального компьютера, при производстве IBM-совместимых (или Intel-совместимых) персонального компьютера.

Открытые спецификации архитектуры периферийного устройства или ПК позволяют сторонним производителям разрабатывать дополнительные устройства к системам с открытой архитектурой.

Далее давайте рассмотрим основные компоненты современных ПК.

Процессор является основной микросхемой в современном ПК, так как именно он координирует работу остальных частей системы и осуществляет обработку данных. Главный центральный процессор состоит из набора регистров и устройства управления, а также из арифметико-логического устройства (АЛУ). АЛУ обеспечивает выполнение вычислительных действий. Устройство управления обеспечивает порядок выполнения прерывания и операций. Также роль памяти играют регистры.[1] 

Персональный компьютер содержит в своем составе довольно много различных процессоров. Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслуживается своим собственным процессором или процессорами. Однако архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную намять, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point. Unit — CPU). На основе архитектуры центральных процессоров строится архитектура материнских плат и проектируется архитектура и конструкция компьютера.

Компьютеры с процессорами, поддерживающими систему команд Intel х86 (фирм Intel, AMD, Cyrix, Transmeta), на которых может исполнять операционная система Microsoft Windows, называются Wintel-компьютерами (от Windows и Intel).

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

Каждый микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство (АЛУ) и устройство управления.

Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. В АЛУ производится арифметическая н логическая обработка данных.

Устройство управления вырабатывает необходимые управляющие сигналы для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

Первые процессоры были созданы с использованием электромеханических реле, ферритовых сердечников и вакуумных ламп. В середине 1950-х годов были внедрены транзисторы. Затем, спустя несколько десятилетий, появились микросхемы, которые сначала содержали простые резисторные и транзисторные сборки, далее появились микросхемы, содержащие функциональные блоки процессора — регистры, микропрограммное устройство, арифметико-логического устройства, устройства работы с шинами команд и данных.[2]

На сегодняшний день процессор представлен в виде электронного блока. Также процессор часто называют микропроцессором.

Процессор, как и другие устройства, имеет несколько основных характеристик, которые определяют качество работы. Ими являются:

  • Производительность.
  • Тактовая частота.
  • Энергопотребление.
  • Архитектура процессора.

Принцип открытой архитектуры персонального компьютера позволяет нам устанавливать на ПК более мощные и производительные центральные процессоры.[3]

Оперативная память – является одной из основных частей ПК. Она предназначена для текущего хранения фрагментов пользовательских программ, операционной системы, их результатов работы и переменных и т.д. Частенько ОП называют оперативным запоминающим устройством ОЗУ. Количество задач, которое компьютер может выполнить одновременно, зависит от объема ОП.[4]

ОЗУ – энергозависимая часть системы памяти компьютера, то есть данные сохраняются и доступны тогда, когда на модули ОП подается напряжение. При выключении питания теряется информация.

Обмен данными между оперативной памятью и процессором производится:

  • через регистры в АЛУ;
  • непосредственно.

Первые образцы ОП появились в 1834 году, когда математик Чарлз Бэббидж изобретал первую аналитическую машину. Одну из важнейших частей этой машины он называл «складом», эта часть была предназначена для хранения промежуточных результатов вычислений. Информация в «складе» запоминалась в чисто механическом устройстве в виде шестерней и поворотов валов.

Раньше в качестве оперативной памяти были использованы запоминающие устройства, основанные на разных физических принципах (акустические линии задержки, ЭЛ-трубки, электромагнитные реле, и т.д.). Потом использовались также магнитные сердечники, электромагнитные барабаны.

Random Access Memory — память с произвольным (прямым) доступом. Означает это то, что при необходимости, память может напрямую обратиться к одному, необходимому блоку, не затрагивая при этом остальные. Скорость произвольного доступа не меняется от места нахождения нужной информации, что является огромным плюсом.

Оперативная память, выгодно отличается от энергозависимой памяти, практически нулевым влиянием количества операций чтениязаписи на срок службы и долговечность. При соблюдении всех тонкостей при производстве, оперативная память очень редко выходит из строя. В большинстве случаев, повреждённая память, начинает допускать ошибки, которые приводят к краху системы или нестабильной работе многих устройств компьютера.

Использование оперативной памяти, позволяет приложениям работать и запускаться быстрее. Данные беспрепятственно могут обрабатываться и ждать своей очереди благодаря адресуемости (все машинные слова имеют свои собственные адреса).

Операционная система Windows 7 к примеру, может хранить в памяти часто используемые файлы, программы и другие данные. Это позволяет при запуске программ не ждать пока они загрузятся с более медленного диска, а сразу начнут выполнение. Потому не стоит пугаться, если диспетчер задач показывает что ваша ОЗУ загружена более чем на 50%. При запуске приложения, требующего больших ресурсов памяти, более старые данные будут вытеснены из неё, в пользу более необходимых.

В большинстве устройств, используется динамическая память с произвольным доступом DRAM (Dynamic Random Access Memory), которая имеет низкую цену, но медленнее статической SRAM (Static Ramdom Access Memory). Более дорогая статическая память, нашла своё применение в быстрой кэш памяти процессоров, видеочипов и контроллёров. Из-за того, что статическая память занимает на кристалле гораздо больше места, чем динамическая, во времена быстрого развития компьютерной периферии и операционных систем, производители пошли по пути большего объёма, а не по пути более высокой скорости, что было более оправдано.

Наиболее популярной и производительной памятью в персональных компьютерах, начиная с 2000-х по праву стала DDR SDRAM.

Оперативная память может быть как отдельным модулем, который можно менять и добавлять дополнительные (компьютер например), как и отдельным блоком устройства или чипа (как в микроконтроллёрах или простейших SoC).

В современном мире применяют два вида ОЗУ:

  • Статическое ОЗУ
  • Динамическое ОЗУ

Оперативная память почти всех современных ПК представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом.

Жесткий диск – это устройство для хранения информации произвольного доступа, основанное на принципе магнитной записи. Это главнейший накопитель памяти в современном ПК. На жестком диске хранятся все данные и файлы.[5]

Информация в накопитель на жёстких магнитных дисках записывается на стеклянные или алюминиевые жёсткие пластины, покрытые слоем ферримагнитного материала, чаще всего двуокиси хрома — магнитные диски. В накопитель на жёстких магнитных дисках используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении.

Самый первый жесткий диск был создан в 1956 году и весел почти тонну. Он представлял из себя большой ящик с вращающимися тонкими дисками, покрытыми чистым железом.

Схема устройства жесткого диска представлена.

Основные характеристики жесткого диска:

  • Ёмкость.
  • Размер.
  • Объем буфера.
  • Резким скачкам давления и сопротивляемость ударам.
  • Скорость передачи данных.
  • Потребление энергии.

Видеокарта – это устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.

ПК первых поколений не выделяли видеокарты в отдельный модуль. Данное аппаратное решение – один из критериев отнесения ПК к современным поколениям. за обработку компьютерной графики отвечает видеокарта — одного из сложных типов данных, требующих высочайшей производительности микросхем.[6]

Первые видеокарты появился в 1981 году, но кроме текста больше не чего передать не мог. Этот адаптер поддерживал 5 атрибутов текста: с повышенной яркостью, обычный, с подчеркиванием, мигающий, инверсия. Цвет текста определялся возможностями монитора. В основном это были буквы белого цвета на черном фоне.

Спустя определенное время появилась 1 цветная видеокарта. Она поддерживала в текстовых режимах 256 атрибутов текста и 16 цветов фона и символов. В графическом режиме было доступно 4 палитры в которых было по 4 цвета. Далее появилась усовершенствованная версия этой карты с расширенной до 64 цветов палитрой.

Видеокарта обычно представлена в виде платы расширения, которая вставляется в разъем материнской платы (универсальный или специальный). Также существуют МП со встроенными видеокартами.

Новейшие видеоадаптеры состоят из следующих основных элементов:

  • Видеоконтроллер формирует изображения в видеопамяти.
  • Графический контроллер.
  • Видео-ПЗУ.
  • Видео-ОЗУ.
  • Система охлаждения
  • Цифро-аналоговый преобразователь.
  • Коннектор. Разъемы HDMI или DVI.

Важные характеристики видеоадаптера:

  • Ширина шины памяти.
  • Объем видеопамяти .

Сетевая карта – это дополнительное устройство, позволяющее персональному компьютеру содействовать с другими компьютерами в сети. В нынешнее время в основном встречаются сетевые адаптеры, интегрированные в МП. Также нам встречаются внешние сетевые платы, которые соединяются к компьютеру через USB-порты иди LPT-, и строенные, которые вставляются в слоты МП (ISA, PCI).[7]

На классических сетевых платах могут быть использованы разъемы для витой пары, тонкого коаксиального кабеля, для толстого коаксиального кабеля, а также оптический разъем, причем пока работает один из разъемов, другие работать не могут.

Также на плате может присутствовать световой индикатор, сообщающий о наличии подключения к сети и передачи информации.

Самые первейшие сетевые адаптеры имели низшую производительность, так как передача информации между ПК и сетью происходила последовательно из-за наличия буферной памяти только на один кадр. Далее для возрастания производительности стали применять метод многокадровой буферизации. Выпускаемые на сегодняшний день сетевые адаптеры имеют скорость обмена до 1 Гбит/сек и высокое количество высокоуровневых функций.

Звуковая карта — дополнительное оборудование ПК, которое позволяет обрабатывать звук. На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В нынешних МП представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC’97 или Intel HD Audio).

Речь о звуковой карте идет с момента, когда чипы и схемы, которые заботятся о звуке, начали размещать на отдельной печатной плате, так называемая карта, которая убирается в МП ПК. Один из первейших создателей звуковых карт для IBM PC был AdLib, который производит звуковые карты, основанные на звуковом Yamaha YM3812, или OPL2. Это был в основном стандарт, до тех пор, когда Creative Labs выпустила звуковую карту Sound Blaster, которая была чип YM3812 и звуковой процессор (вероятно, Intel микроконтроллеры), Creative называет их ""DSP"", это был самый первый процессор цифрового сигнала.

Несколько лет прошло, прежде чем Creative создал карту, которая умела в то же время записывать, а также воспроизводить звук. Благодаря Sound Blasteru, первый дешевые CD-ROM привод и развитии видео-технологий началась новая эра компьютерных мультимедиа. Пользователь может запустить музыкальный компакт-диск, записывать диалоги в компьютерные игры или воспроизводить фильмы. Старые звуковые карты не умели записывать и воспроизводить одновременно.

Основные характеристики звуковых карт

  • Количество каналов. 
  • Форм-фактор.
  • Максимальная частота дискретизации при записи и воспроизведении звука. 
  • Разрядность преобразователей. 
  • Соотношение сигнал/шум. 
  • Коэффициент нелинейных искажений. 

Твердотельный накопитель — это энергонезависимое, перезаписывающие компьютерное запоминающее устройство в котором нет движущихся частей. Можно различать твердотельный накопители, основанные на использовании энергонезависимой (NAND или Flash SSD и энергозависимой (RAM SSD) памяти.

Твердотельный накопители, основанные на использовании энергонезависимой памяти, считаются очень перспективной разработкой. Многие аналитики считают, что в ближайшее врем NAND твердотельные накопители получат наибольшую долю рынка накопителей, отвоевав её у накопителей на жёстких магнитных дисках. На сегодняшний день, твердотельные накопители применяются в основном в специальных вычислительных системах и в нескольких моделях ноутбуков (например, ASUS Eee PC).

Архитектура и функционирование

а )RAM SSD

Эти накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие диски, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.

Своеобразной разновидностью таких дисков является RIndMA диск — подключенный быстрым сетевым соединением вторичный ПК с программным RAM-диском. Такой диск стоит в 2-4 раза меньше специализированных, но не рекомендуется для использования в критичных к потере данных приложениях.

б)NAND SSD

Накопители, построенные на использовании энергонезависимой памяти (NAND SSD) появились относительно недавно, но в связи с гораздо более низкой стоимостью (3-10 долларов США за Гигабайт) начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью RAM-дисков). Сейчас уже выпускаются твердотельные Flash диски со скоростью чтения и записи сопоставимой с традиционными и разработаны модели существенно их превосходящие (ожидаются к выпуску в начале 2009 года). Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.

Преимущества по сравнению с жесткими дисками

1. быстрый поиск информации;

2. большая скорость запуска, отсутствие движущихся частей;

3. более низкая потребляемая мощность;

4. большая механическая стойкость;

5. маленькое время считывания информации;

6. наибыстрейшее время записи (только для RAM);

7. большой диапазон рабочих температур;

8. нету шума от движущихся частей и охлаждающих вентиляторов;

9. практически устойчивое время считывания файлов вне зависимости от их фрагментации или расположения;

10. маленький вес и размер.

Недостатки твердотельных накопителей

• маленькая емкость;

• большая цена за 1 Гб;

• маленькая скорость записи;

• малая плотность записи;

• большая чувствительность к некоторым эффектам,

• маленькое число циклов перезаписи;

• большое употребление энергии в режиме ожидания.

Глава 2. Особенности архитектура ПК

2.1 Классическая архитектура фон Неймана

Основной принцип построения ЭВМ носит название архитектуры фон Неймана - американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

  1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).
  2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.
  3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

2.2 Архитектура современных компьютеров

На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» лидерами компьютерного рынка, такими как IBM, Hewlett–Packard, NEC, Lenovo и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями.

Компания Cray Inc. по-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники3. Существует две основные архитектуры современных суперкомпьютеров – системы с общей памятью и кластеры. Каждый подход не исключает другого и имеет свои достоинства и недостатки. Достоинство систем с общей памятью – универсальность модели параллельного ПО, не требующей какого-либо дополнительного кода, или значительных изменений кода. Плюс кластерных систем – отказоустойчивость и лучшая масштабируемость. Системы с общей памятью SMP (общая память для всех процессоров) и NUMA (у каждого процессора, кроме доступа к общей памяти, есть локальная память) плохо масштабируются при росте числа процессоров. Кластеры масштабируются плохо из-за возрастающей сложности сети при добавлении узлов, но это происходит, когда число процессоров измеряется сотнями и даже тысячами.

С давних времен сложилось так что Intel продвигает SMP системы на рынке, а AMD – NUMA5. В случае Intel-a связь между процессорами осуществляется на основе QPI (QuickPath Interconnect), соответственно для AMD – это HyperTransport. Конец 1980-х и начало 1990-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки данных к большому и сверхбольшому числу параллельно соединенных скалярных процессоров. Массивно-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причем ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC (Reduced Instruction Set Computer), наподобие Power PC или PA-RISC (процессоры с внекристальной реализацией кэша).

В настоящее время развивается технология построения больших и суперкомпьютеров на базе кластерных решений. По мнению многих специалистов, на смену отдельным независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Удобство построения кластерных систем заключается в том, что можно гибко регулировать необходимую производительность, подключая к кластеру с помощью аппаратных и программных интерфейсов обычные серийные серверы до тех пор, пока не будет получен суперкомпьютер требуемой мощности. Кластеризация позволяет манипулировать группой серверов как одной системой, упрощая управление и повышая надежность. Со списком ведущих производителей серверов и кластерных систем можно познакомиться на сайте6. Одной из ведущих компаний мира, имеющей, пожалуй, самую мощную в отрасли исследовательскую команду, способную решать многогранные внедренческие задачи практически любого уровня сложности, на протяжении более столетней деятельности является IBM. Вполне очевидно, что реальной физической базой кластерных систем высокой готовности от IBM может выступать практически любой сервер компании. Это как простые и недорогие стандартные машины из серии eServer xSeries на базе 32-разрядной архитектуры х86 (в том числе с использованием 64-разрядных расширений EM64T и AMD64) и 64-разрядной архитектуры Itanium, так и производительные серверы eServer iSeries и eServer pSeries на базе архитектуры POWER5 и мощные мэйнфреймы eServer zSeries.

Стоит отметить, что, держа в своих руках все нити жизненного цикла аппаратных платформ, IBM неуклонно проводит политику переноса инновационных технических и технологических решений с систем высшего уровня zSeries (где они в первую очередь появляются) на системы среднего - iSeries и pSeries, а затем и низшего уровня – xSeries, обеспечивая заказчикам единую архитектуру законченных решений и вместе с тем избавляя их от избыточных вложений в поддержание и развитие ИТ-инфраструктуры. Рассматривая возможности построения суперкомпьютеров и кластеров на процессорах и серверах производства IBM в первую очередь следует остановиться на новейших процессорах IBM – Power9 и Z14. Разработчики IBM выпустили RISC-процессор Power9, претендующий на роль ведущего обработчика больших данных.

Следует заметить, что SPARC64 и архитектура Power – единственные сегодня действующие представители RISC-архитектуры высокой производительности. Power9 производят по 14-нанометровой технологии Fin-FET (транзисторы с трехмерными затворами), а процессор содержит 8 млрд транзисторов на площади 695 кв. мм), что чуть больше, чем в Power8. Структура конвейеров разделяется на фронтальный компонент (внешний, до начала выполнения команд отвечающий, например, за диспетчирование) и компонент блоков выполнения (EU). Усовершенствованы были оба компонента. Процессорное ядро Power9 типа SMT4 обеспечивает аппаратную поддержку четырех программных нитей (Simultaneous MultiThreading 4). Но Power9 может базироваться и на ядрах других типов – SMT8. Общее число процессорных ядер SMT4 в микросхеме Power9 равно 24, а в варианте с SMT8 – 12. SMT-ядра поддерживают внеочередное выполнение команд; SMT4обеспечивает возможность завершения до 128 команд на каждом такте, а SMT8 – до 256 команд. Процессор Power9 c 24 SMT4-ядрами предназначен для универсального применения в качестве платформы для ОС Linux, 12-ядерный Power9 с SMT8 ориентируется на работу систем c виртуализацией через PowerVM для Linux и ОС IBM i и AIX. В версии ядра Linux 4.12 уже имеется расширенная поддержка Power9. Процессор Power9 вместе с Nvidia V100 (Volta) будет применяться в вычислительных узлах суперкомпьютеров Summit и Sierra в знаменитых Окриджской и Ливерморской национальных лабораториях США, что уже говорит само за себя.

Данные по производительности в тестах систем на Power9 пока не опубликованы, однако, например, схожая по архитектуре конфигурация на базе гетерогенных вычислительных узлов с Power8 и с 4 GPU Nvidia P100 на 64 узлах демонстрирует ускорение 95% от линейного910. Summit из американской Окриджской национальной лаборатории согласно спецификациям обеспечивает производительность в 200 PFLOPS двойной точности (FP64) и 3,3 EFLOPS смешанной точности, включая INT811. Объявленный в июле прошлого года последним мэйнфреймом IBM является z14, который был запущен в 2015 году1213. Для z14 IBM продолжала ориентироваться на три основных вектора: увеличение производительности на потоке, пропускная способность системы и повышение эффективности.  Одним из основных факторов достижения этих целей является технология процесса производства микропроцессоров. Как и в случае с POWER9, IBM использует уникальный уникальный 14-нм SOI FinFET (14HP) GlobalFoundries со встроенной DRAM для извлечения большей плотности и снижения мощности.

Система построена на 10-ядерных процессорах при частоте 5,2 ГГц, ядра поддерживают Simultaneous Multithreading (SMT), но в отличие от настольных CPU каждое ядро может работать не с двумя, а с четырьмя потоками одновременно. Десятиядерный процессор может обрабатывать 40 потоков. z14 поддерживает повышенную эффективность виртуализации ядер Linux и более высокую пропускную способность встроенных процессоров z Integrated Information Processor (zIIP). Последний представляет собой специализированный процессор, работающий асинхронно с основным процессором мейнфрейма, который предназначен для повышения эффективности использования вычислительных ресурсов. Благодаря многопоточности производительность z14 стала до 25 % выше при использовании IFL (Integrated Facility for Linux) или zIIP1. Теперь многопоточная обработка поддерживает специализированные процессоры ввода-вывода под названием System Assist Processor (SAP). Поскольку кластерная архитектура суперкомпьютеров в настоящее время является преобладающей, а основными ее компонентами (вычислительными узлами), судя по публикациям, во многих случаях являются серверы и мэйнфреймы IBM на процессорах Power9 и z14, вопросы оптимизация вычислительного процесса при выполнении информационно-связанных задач в суперкомпьютерах будем рассматривать применительно к операционным системам, которые используются на этих компьютерах.

2.3 Многопроцессорная архитектура ПК

Суперкомпьютер TaihuLight с массово-параллельной архитектурой, занимающий первое место в списке TOP-500 самых мощных суперкомпьютеров мира (ноябрь 2016), имеет 40 960 процессорных узлов, каждый из которых включает в себя 260 процессорных ядер. Общая оперативная память системы составляет 1.3 Петабайт, пиковая производительность превышает 120 петафлопс. Анализ динамики роста производительности суперкомпьютеров показывает, что через 8–9 лет самый мощный суперкомпьютер становится рядовой системой, и что через 5–6 лет мы можем ожидать появление суперкомпьютера с экзафлопным уровнем производительности. Появление столь мощных многопроцессорных вычислительных систем выдвигает на первый план вопросы, связанные с разработкой фреймворков (шаблонов), позволяющих создавать высокомасштабируемые параллельные программы, ориентированные на системы с распределенной памятью.

SPMD (Single Program Multiple Data) — популярная парадигма параллельного программирования, в соответствии с которой все процессорные узлы выполняют одну и ту же программу, но обрабатывают различные данные. Какие именно данные необходимо обрабатывать тому или иному процессорному узлу, определяется его уникальным номером, который является параметром программы. Данный подход наиболее часто используется в сочетании с технологией MPI (Message Passing Interface), которая де-факто является стандартом для параллельного программирования на распределенной памяти.

Модель параллельных вычислений в общем случае должна включать в себя следующие четыре компонента, некоторые из которых в определенных случаях могут быть тривиальны.

1. Архитектурный компонент, описываемый как помеченный граф, узлы которого соответствуют модулям с различной функциональностью, а дуги — межмодульным соединениям для передачи данных.

2. Спецификационный компонент, определяющий, что есть корректная программа.

3. Компонент выполнения, определяющий, как взаимодействуют между собой архитектурные модули при выполнении корректной программы.

4. Стоимостный компонент, определяющий одну или более стоимостных метрик для оценки времени выполнения корректной программы.

В качестве наиболее важных свойств модели параллельных вычислений обычно выделяют следующие:

− Юзабилити, определяющая легкость описания алгоритма и анализа его стоимости средствами модели (модель должна быть легкой в использовании).

− Адекватность, выражающаяся в соответствии реального времени выполнения программ и временной стоимости, полученной аналитически с помощью стоимостных метрик модели (программа, имеющая меньшую временную стоимость, должна выполняться быстрее).

− Портируемость, характеризующая широту класса целевых платформ, для которых модель оказывается применимой.

2.4 Многомашинная вычислительная система

Идея концепции построения реконфигурируемых вычислительных систем заключается в аппаратной реализации всех операций, предписанных вершинами информационного графа задачи, всех каналов передачи данных между вершинами, соответствующими дугам графа, и всех информационных каналов, соответствующих входным и выходным вершинам. Задача, определенная информационным графом, будет выполнена максимально быстро, поскольку обеспечивается максимально возможное распараллеливание вычислений. Информационный граф большой задачи сегментируется на фрагменты – непересекающиеся базовые подграфы, физически реализуемые в аппаратуре реконфигурируемых вычислительных систем. Основными вычислительными блоками в реконфигурируемой вычислительной системе являются макропроцессоры, которые позволяют реализовывать операции, предписанные вершинами информационного графа. Макропроцессор представляет собой некоторый набор элементарных процессоров, объединяемых в единый программно-неделимый вычислительный ресурс с помощью локального пространственного коммутатора. Для реализации информационного графа решаемой задачи макропроцессоры должны иметь возможность соединения в вычислительные параллельно-конвейерные структуры с помощью системного коммутатора, который обеспечивает различные варианты соединения макропроцессоров друг с другом. В состав системы входит распределенная память, обеспечивающая возможности параллельной выдачи массивов входных данных на входы макропроцессоров и записи результатов вычислений с их выходов.

2.5 Архитектура с параллельными процессорами

С самого начала компьютерной эры существовала необходимость во все более и более производительных системах. В основном это достигалось в результате эволюции технологий производства компьютеров. Наряду с этим имели место попытки использовать несколько процессоров в одной вычислительной системе в расчете на то, что будет достигнуто соответствующее увеличение производительности. Первой такой попыткой, осуществленной в начале 70-х годов, является ILLIAC IV. Сейчас имеется масса параллельных компьютеров и проектов их реализации.

Архитектуры параллельных компьютеров могут значительно отличаться друг от друга. Рассмотрим некоторые существенные понятия и компоненты параллельных компьютеров. Параллельные компьютеры состоят из трех основных компонент: процессоры, модули памяти, и коммутирующая сеть. Можно рассмотреть и более изощренное разбиение параллельного компьютер на компоненты, однако, данные три компоненты лучше всего отличают один паралКоммутирующая сеть соединяет процессоры друг с другом и иногда также с модулями памяти. Процессоры, используемые в параллельных компьютерах, обычно точно такие же, что и процессоры однопроцессорных систем, хотя современная технология, позволяет разместить на микросхеме не только один процессор. На микросхеме вместе с процессором могут быть расположены те компоненты или их составляющие, которые дают наибольший эффект при параллельных вычислениях. Например, микросхема транспьютера наряду с 32-разрядным микропроцессором и 64-разрядным сопроцессором плавающей арифметики содержит внутри кристальное ОЗУ емкостью 4Кбайт, 32-разрядную шину памяти, позволяющую адресовать до 4Гбайт внешней по отношению к кристаллу памяти, четыре последовательных двунаправленных линии связи, обеспечивающих взаимодействие транспьютера с внешним миром и работающих параллельно с ЦПУ, интерфейс внешних событий.лельный компьютер от другого.

Заключение

В нынешнем мире компьютер занял высокую значимость в жизни человека. Кто-то использует компьютер, для работы, кто для учебы, кто для игр или просмотра фильмов, а некоторые для общения в сети. Но все они имеют классическую стандартную архитектуру и принцип функционирования, а также и историю создания и развития. Эволюционный процесс продолжает быть динамичным и чрезвычайно быстрым и именно он приводит в современным ПК.

С тех пор как был создан первый в мире ПК произошло высокое число открытий, которые привели к немалым изменениям в строении и развитии персонального компьютера. ПК прошел большой пусть от механической машины, выполнявшей одно действие до высокотехнологичного мульти задачного и универсального устройства с большим количеством возможностей.

Современный мир невозможно представить без ПК. ПК – это универсальный прибор, который служит для хранения и обработки любой информации, хотя это всего лишь ящик и микросхемами.

В данной курсовой рассмотрено устройство современного классического ПК. Были выделены основные этапы создания и развития ПК. Рассмотрены классические основные модули и компоненты ПК и периферийные устройства.

Список использованной литературы

  1. Беляев М.А., Лысенко В.В., Малинена Л.А. Основы информатики – Учебное пособие для высшего образования, 2014. – 327 с.
  2. Борисова, М.В. Основы вычислительной техники и информатики. – Ростов-на-Дону: Феникс, 2015. – 544 с.
  3. Босова, Л. Информатика. Учебник / Л. Босова. – М.: БИНОМ, 2014. – 208 c.
  4. Горнец, Н.Н., Рощин, А.Г. ЭВМ и периферийные устройства. Компьютеры и вычислительные системы. – М.: Академия, 2014. – 240 с.
  5. ГОСТ 15971-90 Системы обработки информации. Термины и определения
  6. Максимов, Н.В., Попов, И.И., Партыка, Т.Л. Архитектура электронно-вычислительных машин и вычислительных систем. – М.: Форум, 2013. – 512 с.
  7. Максимов, Н.В., Попов, И.И., Партыка, Т.Л. Современные информационные технологии. – М.: Форум, 2015. – 512 с.
  8. Могилев, А.В., Пак, Н.И., Хеннер, Е.К. Информатика. – М.: Академия, 2013. – 848 с.
  9. Партыка, Т.Л., Попов, И.И. Периферийные устройства вычислительной техники. – М.: Форум, 2015. – 432 с.
  10. Семакин, И. Г. Информатика и информационно-коммуникационные технологии / И. Г. Семакин. – М.: БИНОМ, 2013. – 176 c.
  11. Сырецкий, Г.А. Информатика. Фундаментальный курс. Том 1. Основы информационной и вычислительной техники. – СПб. БХВ-Петербург, 2014. – 832 с.
  12. Фридланд, А. Я. Информатика и компьютерные технологии. Основные термины / А. Я. Фридланд. – М.: Астрель, 2014. – 272 c.
  1. Сырецкий, Г.А. Информатика. Фундаментальный курс. Том 1. Основы информационной и вычислительной техники. – СПб. БХВ-Петербург, 2014. – 832 с.

  2. Семакин, И. Г. Информатика и информационно-коммуникационные технологии / И. Г. Семакин. – М.: БИНОМ, 2013. – 176 c.

  3. Максимов, Н.В., Попов, И.И., Партыка, Т.Л. Современные информационные технологии. – М.: Форум, 2015. – 512 с.

  4. Сырецкий, Г.А. Информатика. Фундаментальный курс. Том 1. Основы информационной и вычислительной техники. – СПб. БХВ-Петербург, 2014. – 832 с.

  5. Сырецкий, Г.А. Информатика. Фундаментальный курс. Том 1. Основы информационной и вычислительной техники. – СПб. БХВ-Петербург, 2014. – 832 с.

  6. ГОСТ 15971-90 Системы обработки информации. Термины и определения

  7. Фридланд, А. Я. Информатика и компьютерные технологии. Основные термины / А. Я. Фридланд. – М.: Астрель, 2014. – 272 c.