Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Системы управления базами данных и их классификация

Содержание:

Создание базы данных, ее хранение, обеспечение доступа пользователей к данным осуществляются с помощью специальных программных инструментов – систем управления базами данных.

Система управления базами данных (СУБД) – это комплекс языковых и программных средств, обеспечивающих создание, хранение и совместное использование баз данных.

Основными функциями СУБД являются:

  • Ведение словаря данных. Словарем данных называется информация, позволяющая описывать данные, хранящиеся в базах. В словарь данных входят названия, типы и размеры элементов данных, названия связей, ограничения целостности данных.
  • Поддержка многопользовательского режима. В случае, когда с базой данных работает несколько пользователей, СУБД должна гарантировать корректность обновления данных разными пользователями.
  • Восстановление баз данных после сбоев. СУБД ведет журнал, куда поступает информация обо всех изменениях в базах данных. Восстановление после сбоев происходит на основании данных, зафиксированных в журнале.
  • Управление доступом к данным. СУБД позволяет создавать пользователей и давать им различные права доступа к данным. На основании прав доступа производится контроль.
  • Поддержка целостности данных.

Компоненты среды СУБД

В СУБД можно выделить несколько основных компонентов: данные, пользователи, аппаратное обеспечение, программное обеспечение, процедуры.

Данные являются наиболее важным компонентом.

Для хранения данных и функционирования базы необходимо аппаратное обеспечение – набор физических устройств (ПК, сеть), на которых существует база и СУБД.

Для того, чтобы можно было работать с данными, кроме аппаратного обеспечения необходимо иметь операционную систему, сетевое программное обеспечение, программное обеспечение самой СУБД и прикладные программы-приложения. Прикладные программы пишутся программистами на одном из языков высокого уровня (Pascal, C, VB) для нужд конкретной организации. Такие программы используют средства СУБД для обращения к данным в базе и их обработки, создавая различные свойственные данной организации формы, отчеты.

Среди пользователей базой данной можно выделить 4 категории лиц: администраторы данных, администраторы баз данных, разработчики баз данных, непосредственно сами пользователи.

  • Администраторы данных работают с данными с самого начала процесса ее создания. Отвечают за сбор информационных потребностей данной организации, проектирование будущей базы.
  • Администратор БД отвечает за физическую реализацию базы, обеспечение безопасности, сопровождает базу в процессе ее эксплуатации, следит за достоверностью информации в базе и т.д.
  • Разработчики баз данных – категория лиц, которые работают с ней только в процессе ее разработки по проекту, созданному администратором данных.
  • Пользователи – это конечные пользователи, ради которых база проектировалась, создавалась и будет работать. Их часто называют клиентами.

СУБД является достаточно сложным видом программного обеспечения, поэтому в составе СУБД можно выделить ряд программных компонентов:

  1. Ядро СУБД, которое отвечает за управление данными во внешней памяти, управление буферами оперативной памяти, транзакциями, журнализацию. Это главная часть СУБД. Ядро обладает собственным интерфейсом, недоступным пользователю напрямую.
  2. Компилятор языка БД (обычно SQL), предназначенный для работы с данными.
  3. Набор утилит.

Основные функции СУБД

  1. Администрирование базы данных.

СУБД имеют развитые средства администрирования базы данных (определение доступа к базе, ее архивация). В связи с тем, что базы данных приникают сегодня во многие сферы деятельности человека, появилась новая профессия – администратор базы данных, человек, отвечающий за проектирование, создание, использование и сопровождение базы данных. В процессе эксплуатации БД администратор обычно следит за ее функционированием, обеспечивает защиту от несанкционированного доступа к хранимым данным, вносит изменения в структуру базы, контролирует достоверность информации в ней.

  1. Непосредственное управление данными во внешней памяти.

Эта функция предоставляет пользователю возможность выполнения основных операций с данными – хранение, извлечение и обновление информации. Она включает в себя обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для убыстрения доступа к данным. СУБД поддерживает собственную систему именования объектов БД.

  1. Управление буферами оперативной памяти.

СУБД обычно работают с БД значительного размера; по крайней мере этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти. Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. Однако этого недостаточно для целей СУБД. Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти.

  1. Управление транзакциями

Транзакция – это последовательность операций над БД, которые рассматриваются СУБД как единое целое и позволяют добавлять, удалять или обновлять сведения о некотором объекте в базе (по существу это некоторый программный код, написанный на одном из языков управления данными). Либо транзакция успешно выполняется, и СУБД фиксирует изменения БД, произведенные этой транзакцией, либо ни одно из этих изменений никак не отражается на состоянии БД. Например, если в результате транзакции произошел сбой компьютера, база данных попадает в противоречивое положение – некоторые изменения уже внесены, остальные нет. Транзакция позволяет вернуть базу в первоначальное непротиворечивое состояние (отменить все выполненные изменения).

  1. Журнализация

Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее состояние БД после любого аппаратного или программного сбоя (аварийное выключение питания, аварийное завершение работы СУБД или аварийное завершение пользовательской программы). Понятно, что в любом случае для восстановления БД нужно располагать некоторой дополнительной информацией. Наиболее распространенным методом поддержания надежности хранения является ведение журнала изменений БД.

Журнал – это особая часть БД, недоступная пользователям и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. Изменения БД журнализуются следующим образом: запись в журнале соответствует некоторой операции изменения БД (например, операции удаления строки из таблицы реляционной БД). С помощью журнала можно решить все проблемы восстановления БД после любого сбоя.

  1. Поддержка языков БД

СУБД включает язык определения данных, с помощью которого можно определить структуру базы, тип данных в ней, указать ограничения целостности (это язык, с помощью которого задаются различные имена, свойства объектов). Кроме того, СУБД позволяет вставлять, удалять, обновлять и извлекать информацию из базы данных посредством языка управления данными – языка запросов, который позволяет выполнять различные действия с данными, осуществлять их поиск и выборку. Он содержит набор различных операторов (заносить данные, удалять, модифицировать, выбирать и т.д.). Процесс извлечения данных и их обработка скрыты от пользователя.

Стандартным языком наиболее распространенных в настоящее время СУБД является язык SQL (Structured Query Language). Он имеет сразу два компонента: язык определения данных и язык управления данными. Кроме того, одним из языков управления данными является язык QBE – язык запросов по образцу. Подробно о реализаций функций СУБД с помощью языка SQL будет рассказано на отдельных лекциях, посвященных языку SQL.

Классификация СУБД.

Самым важным признаком, по которому классифицируются СУБД, является модель данных. Как и модели данных СУБД бывают следующих видов:

  1. Иерархические

Иерархическая модель данных - это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможна ситуация, когда объект-предок имеет несколько потомков, тогда как у объекта-потомка обязателен только один предок. Объекты, имеющие общего предка, называются близнецами (в программировании применительно к структуре данных дерево устоялось название братья).

Модель удобна для хранения структур, которые являются иерархическими по своей природе. Иерархической является, например, структура предприятия с подчиненными подразделениями. Однако, большинство предметных областей не соответствуют иерархической структуре. Потому иерерхические СУБД не популярны и используются в основном в устаревших ИС.

Примерами СУБД с иерархической моделью являются:

  • Типичным представителем (наиболее известным и распространенным) является Information Management System (IMS) фирмы IBM (1966-1968 г.).
  • Time-Shared Date Management System (TDMS) компании System Development Corporation;
  • Mark IV MultiAccess Retrieval System компании Control Data Corporation;
  • System 2000 разработки SAS Institute;
  • InterSystems Caché.
  1. Сетевые.

Известными представителями этого класса являются IDMS и CronosPRO. Данная модель является усовершенствованием иерархической. Высокая сложность и жесткость структуры базы данных также снижают популярность этого класса СУБД;

Сетевая модель данных — логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.

Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

Сетевая БД состоит из набора экземпляров определенного типа записи и набора экземпляров определенного типа связей между этими записями.

Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка P и типом записи потомка C должны выполняться следующие два условия:

  • каждый экземпляр типа записи P является предком только в одном экземпляре типа связи L;
  • каждый экземпляр типа записи C является потомком не более чем в одном экземпляре типа связи L.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности.

Недостатком сетевой модели данных являются высокая сложность и жесткость схемы БД, построенной на её основе. Поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

Сетевая СУБД — СУБД, построенная на основе сетевой модели данных.

К основным понятиям сетевой модели базы данных относятся: уровень, элемент (узел), связь.

Узел — это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. В сетевой структуре каждый элемент может быть связан с любым другим элементом.

Сетевые базы данных подобны иерархическим, за исключением того, что в них имеются указатели в обоих направлениях, которые соединяют родственную информацию.

Несмотря на то, что эта модель решает некоторые проблемы, связанные с иерархической моделью, выполнение простых запросов остается достаточно сложным процессом.

Также, поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

Список самых значимых сетевых СУБД на 1978 год:

  • IDS (Integrated Data Store) компании General Electric — самая первая сетевая СУБД, разработанная Чарльзом Бахманом в 1960 году
  • IDS/2 или IDS/II) компании Honeywell, купившей IDS у General Electric, позднее — компании Bull
  • Integrated Database Management System (IDMS) компании Cullinet, развитие IDS на основе её исходных кодов
  • DMS-1100 (для мейнфреймов UNIVAC 1100) и DMS-90 (для мини-компьютеров, первый релиз — ноябрь 1974) компании UNIVAC
  • DBMS-10 компании DEC для Decsystem-10 и Decsystem-20
  • CDC DMS-170
  • Burroughs Data Management System (DMS-2). Продукт представлен на рынке в октябре 1974 года.
  1. Реляционные.

На сегодняшний день реляционные базы данных и СУБД являются стандартом де-факто. Чаще всего, когда речь идет о базе данных, то подразумевается именно реляционная. На рынке ПО существует много представителей этого класса СУБД: MS SQL SERVER, IBM DB2, MySQL, PostgreSQL и т.д.;

Реляционная система управления базами данных (РСУБД), реже — система управления реляционными базами данных (СУРБД) — СУБД, управляющая реляционными базами данных.

Практически все разработчики современных приложений, предусматривающих связь с системами баз данных, ориентируются на реляционные СУБД. По данным аналитиков на 2010 год, реляционные СУБД используются в абсолютном большинстве крупных проектов по разработке информационных систем. По результатам исследований компании IDC 2009 года всего около 7% составляют проекты, в которых используются СУБД нереляционного типа.

По оценке Gartner в 2013 году рынок реляционных СУБД составлял 26 млрд долларов с годовым приростом около 9 процентов, а к 2018 году рынок реляционных СУБД достигнет 40 млрд долларов. В настоящее время абсолютными лидерами рынка СУБД являются компании Oracle, IBM и Microsoft, с общей совокупной долей рынка около 90%, поставляя такие системы как Oracle Database, IBM DB2 и Microsoft SQL Server.

Единственной коммерчески успешной СУБД российского производства является реляционная СУБД Линтер для операционных систем Windows, UNIX, QNX.

В 1974 году компания IBM начала исследовательский проект по разработке РСУБД, получивший название System R. Её первым коммерческий продуктом был IBM SQL/DS, выпущенный в 1982 году.

Однако первой коммерчески успешной РСУБД стала Oracle, выпущенная в 1979 году компанией Relational Software, которая впоследствии была переименована в Oracle Corporation.

В 1970-е годы, когда уже были получены почти все основные теоретические результаты и даже существовали первые прототипы реляционных СУБД, многие авторитетные специалисты отрицали возможность добиться эффективной реализации таких систем. Однако преимущества реляционного подхода и развитие методов и алгоритмов организации и управления реляционными базами данных привели к тому, что к концу 1980-х годов реляционные системы заняли на мировом рынке СУБД доминирующее положение.

В связи с резким ростом популярности РСУБД в 1980-х годах многие компании стали позиционировать свои СУБД как «реляционные» в рекламных целях, иногда не имея для этого достаточных оснований, вследствие чего автор реляционной модели данных Эдгар Кодд в 1985 году опубликовал свои знаменитые «12 правил Кодда», которым должна удовлетворять каждая РСУБД.

  1. Постреляционные(Объектно-реляционные).

Постреляционная модель основана на тех же принципах, что и реляционная, но без учета требования неделимости данных. Их достоинством является более высокая скорость работы, а недостатком – сложности в обеспечении целостности данных. Типичным представителем являются СУБД uniVerse и UniData;

Постреляционная модель данных представляет собой расширенную реляционную модель, в которой отменено требование атомарности атрибутов. Поэтому постреляционную модель называют "не первой нормальной формой" (NF2) или "многомерной базой данных". Она использует трехмерные структуры, позволяя хранить в полях таблицы другие таблицы. Тем самым расширяются возможности по описанию сложных объектов реального мира. В качестве языка запросов используется несколько расширенный SQL, позволяющий извлекать сложные объекты из одной таблицы без операций соединения.

Существует несколько коммерческих постреляционных СУБД, более подробные сведения о них можно получить на веб-серверах фирм-производителей. Пожалуй, самыми известными из них являются системы Adabas, Pick и Universe.

  1. No sql (нереляционные).

Модель no sql отличается простотой и гибкостью. Она позволяет добавлять элементы данных в таблицы без предварительного объявления об изменении структуры. Наиболее известные представители MongoDB и CouchDB. Объектные. Этот класс СУБД хранит данные в виде объектов. Такой подход очень удобен для предметных областей со сложной структурой. Недостатком является необходимость использовать процедурные языки для доступа к данным. К современным объектным СУБД относятся POET, Jasmine, Versant, O2, ODB-Jupiter. Объектно-реляционные.

Некоторые производители СУБД совмещают в своих продуктах реляционную и объектную модели. К таким «гибридам» относятся Informix Universal Server и Oracle8 Universal Data Server Многомерные. Если реляционная модель хранит данные в двумерных таблицах, то многомерная позволяет добавлять дополнительные измерения. В результате данных хранятся не в таблицах, а в гиперкубах. Многомерные СУБД используются в задачах анализа данных. На многомерной технологии основаны СУБД jBASE, EssBase.

NoSQL (от англ. not only SQL — не только SQL) — термин, обозначающий ряд подходов, направленных на реализацию систем управления базами данных, имеющих существенные отличия от моделей, используемых в традиционных реляционных СУБД с доступом к данным средствами языка SQL. Применяется к базам данных, в которых делается попытка решить проблемы масштабируемости и доступности за счёт атомарности (англ. atomicity) и согласованности данных (англ. consistency).

Сама по себе идея нереляционных баз данных не нова, а использование нереляционных хранилищ началось ещё во времена первых компьютеров. Нереляционные базы данных процветали во времена мэйнфреймов, а позднее, во времена доминирования реляционных СУБД, нашли применение в специализированных хранилищах, например, иерархических службах каталогов. Появление же нереляционных СУБД нового поколения произошло из-за необходимости создания параллельных распределённых систем для высокомасштабируемых интернет-приложений, таких как поисковые системы.

В начале 2000-х годов Google построил свою высокомасштабируемую поисковую систему и приложения: GMail, Google Maps, Google Earth и т. п., решая проблемы масштабируемости и параллельной обработки больших объёмов данных. В результате была создана распределённая файловая система и распределённая система координации, хранилище семейств колонок (англ. column family store), среда выполнения, основанная на алгоритме MapReduce. Публикация компанией Google описаний этих технологий привела к всплеску интереса среди разработчиков открытого программного обеспечения, в результате чего был создан Hadoop и запущены связанные с ним проекты, призванные создать подобные Google технологии. Через год, в 2007 году, примеру Google последовал Amazon.com, опубликовав статьи о высокодоступной базе данных Amazon DynamoDB.

Поддержка гигантов индустрии менее чем за пять лет привела к широкому распространению технологий NoSQL (и подобных) для управления «большими данными», а к делу присоединились другие большие и маленькие компании, такие как: IBM, Facebook, Netflix, eBay, Hulu, Yahoo!, со своими проприетарными и открытыми решениями.

Традиционные СУБД ориентируются на требования ACID к транзакционной системе: атомарность, согласованность, изолированность, надёжность, тогда как в NoSQL вместо ACID может рассматриваться набор свойств BASE:

  • базовая доступность — каждый запрос гарантированно завершается (успешно или безуспешно).
  • гибкое состояние— состояние системы может изменяться со временем, даже без ввода новых данных, для достижения согласования данных.
  • согласованность в конечном счёте — данные могут быть некоторое время рассогласованы, но приходят к согласованию через некоторое время.

Решения NoSQL отличаются не только проектированием с учётом масштабирования. Другими характерными чертами NoSQL-решений являются:

  • Применение различных типов хранилищ.
  • Возможность разработки базы данных без задания схемы.
  • Линейная масштабируемость (добавление процессоров увеличивает производительность).
  • Инновационность: «не только SQL» открывает много возможностей для хранения и обработки данных.

Типы систем

Описание схемы данных в случае использования NoSQL-решений может осуществляться через использование различных структур данных: хеш-таблиц, деревьев и других.

В зависимости от модели данных и подходов к распределённости и репликации в NoSQL-движении выделяются четыре основных типа систем: «ключ — значение» (англ. key-value store), документоориентированные, «семейство столбцов», графовые.

  1. Ключ — значение

Модель «ключ — значение» является простейшим вариантом, использующим ключ для доступа к значению. Такие системы используются для хранения изображений, создания специализированных файловых систем, в качестве кэшей для объектов, а также в системах, спроектированных с прицелом на масштабируемость. Примеры таких хранилищ — Berkeley DB, MemcacheDB, Redis, Riak, Amazon DynamoDB.

  1. Семейство столбцов

Запрос «Семейство столбцов» перенаправляется сюда. На эту тему нужно создать отдельную статью.

Другой тип систем — «семейство столбцов», прародитель этого типа — система Google BigTable. В таких системах данные хранятся в виде разреженной матрицы, строки и столбцы которой используются как ключи. Типичным применением этого типа СУБД является веб-индексирование, а также задачи, связанные с большими данными, с пониженными требованиями к согласованности. Примерами СУБД данного типа являются: Apache HBase, Apache Cassandra, ScyllaDB, Apache Accumulo, Hypertable.

Системы типа «семейство столбцов» и документно-ориентированные системы имеют близкие сценарии использования: системы управления содержимым, блоги, регистрация событий. Использование временных меток позволяет использовать этот вид систем для организации счётчиков, а также регистрации и обработки различных данных, связанных со временем.

В отличие от столбцового хранения, применяемого в некоторых реляционных СУБД, хранящих данные по столбцам в сжатом виде для эффективности в OLAP-сценариях, модель «семейство столбцов» хранит данные построчно, и обеспечивает высокую производительность, прежде всего, в оперативных сценариях, тогда как для запросов, требующих обхода большого объёма данных с агрегацией результатов, как правило, неэффективна.

  1. Документоориентированная СУБД

Документоориентированные СУБД служат для хранения иерархических структур данных. Находят своё применение в системах управления содержимым, издательском деле, документальном поиске. Примеры СУБД данного типа — CouchDB, Couchbase, MongoDB, eXist, Berkeley DB XML.

  1. Графовая СУБД

Графовые СУБД применяются для задач, в которых данные имеют большое количество связей, например, социальные сети, выявление мошенничества. Примеры: Neo4j, OrientDB, AllegroGraph, Blazegraph, InfiniteGraph, FlockDB, Titan.

Так как рёбра графа материализованы, то есть, являются хранимыми, обход графа не требует дополнительных вычислений (как соединение в SQL), но для нахождения начальной вершины обхода требуется наличие индексов. Графовые СУБД как правило поддерживают ACID, а также поддерживают специализированные языки запросов, такие как Gremlin, Cypher, SPARQL, GraphQL.

Список использованных источников

  • https://works.doklad.ru/view/4aUsIAPwaFE.html#:~:text=%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D1%83%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B1%D0%B0%D0%B7%D0%B0%D0%BC%D0%B8%20%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85%20(%D0%A1%D0%A3%D0%91%D0%94,%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D1%87%D0%B0%D1%8E%D1%82%20%D0%BF%D0%BE%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D0%B5%D0%BC%D0%BE%D0%B9%20%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8%20%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
  • https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%83%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F_%D0%B1%D0%B0%D0%B7%D0%B0%D0%BC%D0%B8_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
  • http://www.bseu.by/it/tohod/lekcii5_3.htm
  • https://works.doklad.ru/view/ypE_dGE0e-k.html
  • https://works.doklad.ru/view/NXW7YhSUk1k.html
  • https://xreferat.com/33/2525-1-sistema-upravleniya-bazami-dannyh.html