Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Поколения беспроводных сетей 2G, 3G, 4G и их сравнение

Содержание:

Актуальность

Изучаемая тема очень актуальная так как, обусловлена существенным расширением возможностей телекоммуникаций с появлением в 1980-е годы сотовой связи, а также быстрой и существенной трансформацией территориальной структуры всей сложившейся системы связи в мире. Наряду с другими обстоятельствами, развитие сотовой связи - одновременно и результат и важный фактор процесса глобализации, во многом отвечающий за усиление контактности и мобильности людей, проводимости среды и консолидацию мирового информационного пространства.

Что такое "поколение" сетей сотовой связи?

Поколение сотовой связи - это набор функциональных возможностей работы сети, а именно: регистрация абонента, установление вызова, передача информации между мобильным телефоном и базовой станцией по радиоканалу, процедура установления вызова между абонентами, шифрование, роуминг в других сетях, а также набор услуг, предоставляемых абоненту.

Что значит «G»?

G – это английская заглавная буква G, и означает она Generation, что переводится как «поколение». Следовательно, все мобильные сети делятся на разные поколения.

Сегодня мы предлагаем поближе познакомиться с историей развития мобильных сетей.

История сотовой связи

Эволюция систем сотовой связи включает в себя несколько поколений 1G, 2G, 3G и 4G. Ведутся работы в области создания сетей мобильной связи нового пятого поколения (5G). Стандарты различных поколений, в свою очередь, подразделяются на аналоговые (1G) и цифровые системы связи (остальные).

Связь всегда имела большое значение для человечества. Когда встречаются два человека, для общения им достаточно голоса, но при увеличении расстояния между ними возникает потребность в специальных инструментах. Когда в 1876 году Александр Грэхем Белл изобрел телефон, был сделан значительный шаг, позволивший общаться двум людям, однако для этого им необходимо было находиться рядом со стационарно установленным телефонным аппаратом! Более ста лет проводные линии были единственной возможностью организации телефонной связи для большинства людей. Системы радиосвязи, не зависящие от проводов для организации доступа к сети, были разработаны для специальных целей (например, армия, полиция, морской флот и замкнутые сети автомобильной радиосвязи), и, в конце концов, появились системы, позволившие людям общаться по телефону, используя радиосвязь. Эти системы предназначались главным образом для людей, ездивших на машинах, и стали известны как телефонные системы подвижной связи.

Первое поколение мобильной связи (1G)

Официальным днем рождения сотовой связи считается 3 апреля 1973 года, когда глава подразделения мобильной связи компании Motorola Мартин Купер позвонил начальнику исследовательского отдела AT&T Bell Labs Джоэлю Энгелю, находясь на оживленной Нью-йоркской улице. Именно эти две компании стояли у истоков мобильной телефонии. Коммерческую реализацию данная технология получила 11 лет спустя, в 1984 году, в виде мобильных сетей первого поколения (1G), которые были основаны на аналоговом способе передачи информации.

Основными стандартами аналоговой мобильной связи стали AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба) (США, Канада, Центральная и Южная Америка, Австралия), TACS (Total Access Communications System - тотальная система доступа к связи) (Англия, Италия, Испания, Австрия, Ирландия, Япония) и NMT (Nordic Mobile Telephone – северный мобильный телефон) (страны Скандинавии и ряд других стран). Были и другие стандарты аналоговой мобильной связи – С-450 в Германии и Португалии, RTMS (Radio Telephone Mobile System – радиотелефонная мобильная система) в Италии, Radiocom 2000 во Франции. В целом мобильная связь первого поколения представляла собой лоскутное одеяло несовместимых между собой стандартов.

Табл. 1 Характеристики аналоговых стандартов сотовой связи

Во времена 1G никто не думал об услугах передачи данных – это были аналоговые системы, задуманные и разработанные исключительно для осуществления голосовых вызовов и некоторых других скромных возможностей. Модемы существовали, однако из-за того, что беспроводная связь более подвержена шумам и искажениям, чем обычная проводная, скорость передачи данных была невероятно низкой. К тому же, стоимость минуты разговора в 80-х была такой высокой, что мобильный телефон мог считаться роскошью.

Во всех аналоговых стандартах применяется частотная (ЧМ) или фазовая (ФМ) модуляция для передачи речи и частотная манипуляция для передачи информации управления. Этот способ имеет ряд существенных недостатков: возможность прослушивания разговоров другими абонентами, отсутствие эффективных методов борьбы с замираниями сигналов под влиянием окружающего ландшафта и зданий или вследствие передвижения абонентов. Для передачи информации различных каналов используются различные участки спектра частот - применяется метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA). С этим непосредственно связан основной недостаток аналоговых систем - относительно низкая емкость, являющаяся следствием недостаточно рационального использования выделенной полосы частот при частотном разделении каналов.

В каждой стране была разработана собственная система, несовместимая с остальными с точки зрения оборудования и функционирования. Это привело к тому, что возникла необходимость в создании общей европейской системы подвижной связи с высокой пропускной способностью и зоной покрытия всей европейской территории. Последнее означало, что одни и те же мобильные телефоны могли использоваться во всех Европейских странах, и что входящие вызовы должны были автоматически направляться в мобильный телефон независимо от местонахождения пользователя (автоматический роуминг). Кроме того, ожидалось, что единый Европейский рынок с общими стандартами приведет к удешевлению пользовательского оборудования и сетевых элементов независимо от производителя.

Второе поколение мобильной связи (2G)

В 1982 году CEPT (франц. Conférence européenne des administrations des postes et télécommunications - Европейская конференция почтовых и телекоммуникационных ведомств) сформировала рабочую группу, названную специальной группой по подвижной связи GSM (франц. Groupe Spécial Mobile) для изучения и разработки пан-Европейской наземной системы подвижной связи общего применения - второе поколение систем сотовой телефонии (2G). Название рабочей группы GSM также стало использоваться в качестве названия системы подвижной связи. В 1989 году обязанности CEPT были переданы в Европейский институт стандартов в телекоммуникации ETSI (англ. European Telecommunications Standards Institute). Первоначально GSM предназначалась только для стран-членов ETSI. Однако многие другие страны также имеют реализованную систему GSM, например, Восточная Европа, Средний Восток, Азия, Африка, Тихоокеанский регион и Северная Америка (с производной от GSM, названной PCS1900). Название GSM стало означать "глобальная система для подвижной связи", что соответствует ее сущности.

Первые мобильные сети второго поколения (2G) появились в 1991 году. Их основным отличием от сетей первого поколения стал цифровой способ передачи информации, благодаря чему появилась, любимая многими, услуга обмена короткими текстовыми сообщениями SMS (англ. Short Messaging Service). При строительстве сетей второго поколения Европа пошла путем создания единого стандарта – GSM, в США большинство 2G-сетей было построена на базе стандарта D-AMPS (Digital AMPS – цифровой AMPS), являющегося модификацией аналогового AMPS. Кстати, именно это обстоятельство стало причиной появления американской версии стандарта GSM – GSM1900. С развитием и распространением Интернет, для мобильных устройств сетей 2G, был разработан WAP (англ. Wireless Application Protocol – беспроводной протокол передачи данных) – протокол беспроводного доступа к ресурсам глобальной сети Интернет непосредственно с мобильных телефонов.

Повторюсь, в начале девяностых появились первые цифровые сотовые сети, обладающие большим количеством очевидных преимуществ над аналоговыми сетями, на смену которым они пришли: лучшее качество звука, улучшенный уровень безопасности, а также более высокая пропускная способность, если говорить о наиболее значительных изменениях. GSM начал распространяться в Европе, а D-AMPS и ранняя версия CDMA от Qualcomm, известная как IS-95, становилась популярной в США. Никто не спорит, что, в общем, эти системы представляли второе поколение беспроводных сетей - они изначально являлись революционными и отличными от своих предшественников. Более того, прошло достаточно времени с того момента, как начали использоваться сети 1G. Эти вещи были действительно представителями нового поколения.

Однако эти возникшие 2G стандарты всё ещё плохо поддерживали встроенную в них передачу данных. Всё же многие из таких сетей могли передавать текстовые сообщения, так что начало было положено. Также они поддерживали что-то под названием CSD, данные, передаваемые по коммутируемым каналам. CSD позволяло заказывать коммутируемый информационный вызов в цифровом виде, так что сетевой коммутационный пункт принимал настоящие 1 и 0, а не визг аналогового модема. Проще говоря, это означало, что вы могли передавать данные быстрее - фактически, до 14.4 кб/с, что можно сравнить со скоростью аналогового модема начала-середины 90-х.

Хотя по большому счёту, CSD было просто уловкой - способом перенастроить голосо-ориентированные сети на передачу данных. Вам всё ещё нужно было заказывать "телефонный разговор" для соединения, так как сервис не всегда был доступен. Весь процесс был похож на использование dial-up модема дома: либо вы были онлайн, либо нет. Такие сервисы, как одновременная отправка электронной почты и сообщения, казались чем-то фантастическим. Более того, так как CSD соединение было звонком, тратились минуты на соединение - и эти технологии существовали во времена, когда количество минут в месяц в планах сотовых операторов измерялось не в сотнях и тысячах, а дюжинах. Использование CSD не как случайной новинки, а чего-то большего, было непрактичным, разве что оператор каждый месяц предоставлял счёт за услуги беспроводной сети.

Основными преимуществами сетей 2G по сравнению с предшественниками было то, что телефонные разговоры были зашифрованы с помощью цифрового шифрования; система 2G представила услуги передачи данных, начиная с текстовых сообщений СМС.

Растущая потребность пользователей мобильной связи в использовании Интернет с мобильных устройств основным толчком для появления сетей, поколения 2,5G, которые стали переходными между 2G и 3G. Сети 2,5G используют те же стандарты мобильной связи, что и сети 2G, но к имеющимся возможностям добавилась поддержка технологий пакетной передачи данных – GPRS (англ. General Packet Radio Service – пакетная радиосвязь общего пользования), EDGE (англ. Enhanced Data rates for GSM Evolution – повышенная скорость передачи для развития GSM) в сетях GSM. Использование пакетной передачи данных позволило увеличить скорость обмена информацией при работе с сетью Интернет с мобильного устройств до 384 кбит/с, вместо 9,6 кбит/с у 2G-сетей.Система HSCSD (англ. High Speed Circuit Switched Data – высокоскоростная передача данных) является простейшей модернизацией системы GSM, предназначенной для передачи данных. Суть этой технологии заключалась в выделении одному абоненту не одного, а нескольких (теоретически до восьми) временных интервалов. Таким образом, максимальная скорость увеличивалась до 115,2 кбит/с. HSCSD обеспечивала скорость, достаточную для выхода в Интернет, однако, при передаче данных информационные пакеты разделены неопределенными по времени промежутками, таким образом, использование этой технологии крайне расточительно. Дело в том, что сети HSCSD, как и классические сети GSM, основаны на технологии коммутации каналов, в которых за абонентом закрепляют дуплексный канал на все время сеанса связи. Из-за пауз в передаче канальный ресурс расходовался нерационально.

Дальнейшей эволюцией системы GSM стала технология GPRS. Ее внедрение способствовало более эффективному использованию канального ресурса и созданию комфортной среды при работе с сетью Интернет. Система GPRS разработана как система пакетной передачи данных с теоретической максимальной скоростью передачи порядка 170 кбит/с. GPRS сосуществует с сетью GSM, повторно используя базовую структуру сети доступа. Система GPRS является расширением сетей GSM с предоставлением услуг передачи данных на существующей инфраструктуре, в то время как базовая сеть расширяется за счет наложения новых компонентов и интерфейсов, предназначенных для пакетной передачи.

Прогресс не стоял на месте и, для увеличения скорости передачи данных, была изобретена новая система – EDGE. Она предусматривала введение новой схемы модуляции. В результате стала достижима скорость в 384 кбит/с. EDGE была введена в сетях GSM с 2003 фирмой Cingular (ныне AT&T) в США.

Технологии GPRS и EDGE в разных источниках называли по-разному. Они уже переросли второе поколение, но еще не дотягивали до третьего. Зачастую GPRS называли 2,5G, EDGE – 2,75G.

Основные цифровые стандарты систем сотовой связи второго поколения:

D-AMPS (Digital AMPS - цифровой AMPS; диапазоны 800 МГц и 1900 МГц);

GSM (Global System for Mobile communications – глобальная система мобильной связи, диапазоны 900, 1800 и 1900 МГц);

CDMA (диапазоны 800 и 1900 МГц);

JDC (Japanese Digital Cellular – японский стандарт цифровой сотовой связи).

Табл. 2. Сравнение систем сотовой связи второго поколения (2G)

Третье поколение мобильной связи (3G)

Дальнейшим развитием сетей мобильной связи стал переход к третьему поколению (3G). 3G – это стандарт мобильной цифровой связи, который под аббревиатурой IMT-2000 (англ. International Mobile Telecommunications – международная мобильная связь 2000) объединяет пять стандартов – W-CDMA, CDMA2000, TD-CDMA/TD-SCDMA, DECT (англ. Digital Enhanced Cordless Telecommunication – технология улучшенной цифровой беспроводной связи). Из перечисленных составных частей 3G только первые три представляют собой полноценные стандарты сотовой связи третьего поколения. DECT – это стандарт беспроводной телефонии домашнего или офисного назначения, который в рамках мобильных технологий третьего поколения, может использоваться только для организации точек горячего подключения (хот-спотов) к данным сетям.

Стандарт IMT-2000 дает четкое определения сетей 3G – под мобильной сетью третьего поколения понимается интегрированная мобильная сеть, которая обеспечивает: для неподвижных абонентов скорость обмена информацией не менее 2048 кбит/с, для абонентов, движущихся со скоростью не более 3 км/ч - 384 кбит/с, для абонентов, перемещающихся со скоростью не более 120 км/ч – 144 кбит/с. При глобальном спутниковом покрытии сети 3G должны обеспечивать скорость обмена не менее 64 кбит/с. Основой всех стандартов третьего поколения являются протоколы множественного доступ с кодовым разделением каналов. Подобная технология сетевого доступа не является чем-то принципиально новым. Первая работа, посвященная этой теме, была опубликована в СССР еще в 1935 году Д.В. Агеевым.

Технически сети с кодовым разделением каналов работают следующим образом – каждому пользователю присваивается определенный числовой код, который распространяется по всей полосе частот, выделенных для работы сети. При этом какое-либо временное разделение сигналов отсутствует, и абоненты используют всю ширину канала. При этом, естественно, сигналы абонентов накладываются друг на друга, но благодаря числовому коду могут быть легко дифференцированы. Как было упомянуто выше, данная технология известна достаточно давно, однако до середины 80-х годов прошлого века она была засекреченной и использовалась исключительно военными и спецслужбами. После снятия грифов секретности началось ее активное использование и в гражданских системах связи.

Преимущества и недостатки 3G по сравнению с 2G

Преимущества 3G над 2G:

  • Высокая эффективность использования канального ресурса. Рост пропускной способности сети.
  • Сокращение мощности абонентских и базовых станций, что уменьшает помехи другим электронным устройствам.
  • Простота частотного планирования, поскольку все базовые станции сети используют один и тот же канальный ресурс.
  • Упрощение изменения скоростей передачи вверх и вниз для различных абонентов. Поддержка асимметричных видов передачи информации, таких как Интернет.
  • Возможность реализации мягкого хэндовера. Сокращение числа обрывов связи из-за хэндовера. Повышение качества связи, особенно при передаче данных, видеосигналов и мультимедиа.
  • Применение Rake приемника позволяет выделять и обрабатывать наиболее мощные сигналы при многолучевом распространении.
  • Повышение качества передачи телефонии за счет устранения замираний при многолучевом распространении.
  • Обеспечение высокой надежности связи факсимиле, Интернет сообщений.
  • Простота передачи каналов управления.
  • Облегчение реализации новых услуг: прием мультимедиа, высокоскоростных потоков данных, аудио- и видеоклипов.

Недостатки 3G:

  • Необходимость синхронизации кодирующих последовательностей в приемниках. Требования к реализации когерентной обработки принятых сигналов.
  • Необходимость быстрой регулировки мощности передатчиков мобильной и базовой станций.
  • Зависимость дальности связи от скорости передачи и скорости передвижения абонента.

Поколение 3,5G

Дальнейшим развитием сетей стала технология HSPA (англ. High Speed Packet Access – высокоскоростной пакетный доступ), которую стали именовать 3,5G. Изначально она позволяла достичь скорости в 14,4 Мбит/с, однако сейчас теоретически достижима скорость 84 Мбит/с и более. Впервые HSPA была описана в пятой версии стандартов 3GPP. В ее основе лежит теория, согласно которой при сопоставимых размерах сот применение многокодовой передачи позволяет достигать пиковых скоростей.

Четвертое поколение мобильной связи (4G)

В марте 2008 года сектор радиосвязи Международного союза электросвязи (МСЭ-Р) определил ряд требований для стандарта международной подвижной беспроводной широкополосной связи 4G, получившего название спецификаций International Mobile Telecommunications Advanced (IMT-Advanced), в частности установив требования к скорости передачи данных для обслуживания абонентов: скорость 100 Мбит/с должна предоставляться высокоподвижным абонентам (например, поездам и автомобилям), а абонентам с небольшой подвижностью (например пешеходам и фиксированным абонентам)должна предоставляться скорость 1 Гбит/с.

Так как первые версии мобильного WiMAX (англ. Worldwide Interoperability for Microwave Access – всемирная совместимость для микроволнового доступа) и LTE (англ. Long Term Evolution – долгосрочное развитие) поддерживают скорости значительно меньше 1 Гбит/с, их нельзя назвать технологиями, соответствующими IMT-Advanced, хотя они часто упоминаются поставщиками услуг, как технологии 4G. 6 декабря 2010 года МСЭ-Р признал, что наиболее продвинутые технологии рассматривают как 4G.

Основной, базовой, технологией четвёртого поколения является технология ортогонального частотного уплотнения OFDM (англ. Orthogonal Frequency-Division Multiplexing – мультиплексирование с ортогональным частотным разделением каналов). Кроме того, для максимальной скорости передачи используется технология передачи данных с помощью N антенн и их приёма М антеннами – MIMO (англ. Multiple Input/Multiple Output – множество входов/множество выходов). При данной технологии передающие и приёмные антенны разнесены так, чтобы достичь слабой корреляции между соседними антеннами.

Подобно тому, как было со стандартом 3G, ITU взяла под свой контроль 4G, привязав его к спецификации, известной как IMT-Advanced. Документ призывает к скорости входящих данных в 1 ГБит/с для стационарных терминалов и 100 МБит/с для мобильных. Это в 500 и 250 раз быстрее по сравнению с IMT-2000. Это действительно огромные скорости, которые могут обогнать рядовой DSL-модем или даже прямое подключение к широкополосному каналу.

Беспроводные технологии играют ключевую роль в обеспечении широкополосного доступа в сельской местности. Это более рентабельно — построить одну станцию 4G, которая обеспечит связь на расстоянии десятков километров, чем покрывать сельхозугодья одеялом из оптоволоконных линий.

К сожалению, эти спецификации являются настолько агрессивными, что ни один коммерческий стандарт в мире не соответствует им. Исторически сложилось, что технологии WiMAX и Long-Term Evolution (LTE), которые призваны добиться такого же успеха как CDMA2000 и GSM, считаются технологиями четвертого поколения, но это верно лишь отчасти: они оба используют новые, чрезвычайно эффективные схемы мультиплексирования (OFDMA, в отличие от старых CDMA или TDMA которые мы использовали на протяжении последних двадцати лет) и в них обоих отсутствует канал для передачи голоса. 100 процентов их пропускной способности используется для услуг передачи данных. Это означает, что передача голоса будет рассматриваться как VoIP. Учитывая то, как сильно современное мобильное общество ориентировано на передачу данных, можно считать это хорошим решением.

Где WiMAX и LTE терпят неудачу, так это в скорости передачи данных, у них эти значения теоретически находятся на уровне 40 МБит/с и 100 МБит/с, а на практике реальные скорости коммерческих сетей не превышают 4 МБит/с и 30 МБит/с соответственно, что само по себе очень неплохо, однако не удовлетворяет высоким целям IMT-Advanced. Обновление этих стандартов — WiMAX 2 и LTE-Advanced обещают сделать эту работу, однако она до сих пор не завершена и реальных сетей, которые их используют, по-прежнему не существует.

Тем не менее, можно утверждать, что оригинальные стандарты WiMAX и LTE достаточно отличаются от классических стандартов 3G, чтобы можно было говорить о смене поколений.

И действительно, большинство операторов по всему миру, которые развернули подобные сети, называют их 4G.

Очевидно, это используется в качестве маркетинга, и организация ITU не имеет полномочий противодействовать. Обе технологии (LTE в частности) скоро будут развернуты у многих операторов связи по всему миру в течение нескольких следующих лет, и использование названия «4G» будет только расти.

И это еще не конец истории. Американский оператор T-Mobile, который не объявлял о своем намерении модернизировать свою HSPA сеть до LTE в ближайшее время, решил начать брендинг модернизации до HSPA+ как 4G. В принципе, этот шаг имеет смысл: 3G технология в конечном счете может достигнуть скоростей, больших, чем просто LTE, приближаясь к требованиям IMT-Advanced. Есть много рынков, где HSPA+ сеть T-Mobile быстрее, чем WiMAX от оператора Sprint. И ни Sprint, ни Verizon, ни MetroPCS — три американских оператора с живой WiMAX/LTE сетью — не предлагают услуги VoIP. Они продолжают использовать свои 3G частоты для голоса и будут делать это еще в течении некоторого времени. Кроме того, T-Mobile собирается обновиться до скорости 42 МБит/с в этом году, даже не касаясь LTE.

Возможно, именно этот шаг T-Mobile вызвал глобальное переосмысление того, что же на самом деле означает «4G» среди покупателей мобильных телефонов. AT&T, которая находится в процессе перехода на HSPA+ и начнет предлагать LTE на некоторых рынках в конце этого года, называет обе эти сети 4G. Таким образом, все четыре национальных оператора США украли название «4G» у ITU — они его взяли, убежали с ним и изменили.

Таким образом, эволюцию стандартов мобильной связи можно представить в следующем виде:

Сравнительные характеристики стандартов различных поколений мобильной связи можно свести в следующую таблицу:

Ниже представлена сравнительная характеристика 1g, 2g, 3g, 4g:

Заключение

Технологии в наше время не стоят на месте. А в плане развития сотовой связи инновации появляются практически ежегодно. Можно сказать точно, что связь со временем, скорее всего, полностью перейдёт из плоскости наземных телефонных линий в плоскость различных онлайн-сервисов. Доступ к ним будет обеспечен внедрением широкополосных беспроводных стандартов с улучшенным покрытием. По поводу сравнения 2G, 3G, 4G можно сказать, что самые глобальные их отличия заключаются в скорости передачи данных и набору доступных. Стоит также упомянуть про 5G. Ведутся активные работы по изучению новой технологии, что заложит фундамент для будущих проектов, ведь сети радиодоступа 5G в общем доступе уже имеются, хоть и в ограниченном виде. Считаю, что сети 5G рано или поздно станут нашей повседневностью