Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Компьютерная графика. Спецэффекты

Содержание:

ВВЕДЕНИЕ

Важнейшая функция компьютера - обработка информации. Особо можно выделить обработку информации, связанную с изображениями. Она разделяется на три основные направления: компьютерная графика, обработка и распознавание изображений. Задача компьютерной - визуализация, то есть создание изображения. Визуализация выполняется, исходя из описания того, что нужно отображать. Существует много методов и алгоритмов визуализации, которые различаются между собою в зависимости от того что и как отображать.

Компьютерная графика – область информатики, занимающаяся методами создания и редактирования изображений с помощью компьютера. Сферы применения компьютерной графики чрезвычайно разнообразны. Каждый ее раздел имеет свои отличительные особенности и тонкости «технологического производства». Для каждого из них создано своё программное обеспечение, включающее разнообразные специальные программы

Актуальность работы состоит в том, что сейчас компьютерная графика и спецэффекты используются во всех областях компьютерного моделирования, начиная от фильмов заканчивая логотипами.

Глава 1. История и виды компьютерной графики

1.1 История компьютерной графики

Компьютерной графикой в последнее время занимаются многие, что обусловлено высокими темпами развития вычислительной техники. Компьютерная графика имеет огромный потенциал для облегчения процесса познания и творчества, она позволяет развивать у учащихся пространственное воображение, практическое понимание, художественный вкус.

Понятие «компьютерная графика» - это все, для чего используется визуальная, образная среда отображения на мониторе. Если сузить понятие до практического использования, под компьютерной графикой будет пониматься процесс создания, обработки и вывода изображений разного рода с помощью компьютера.

Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агентствам. Без компьютерной графики не обходится ни одна современная программа.

Необходимость широкого использования графических программных средств стала особенно ощутимой в связи с развитием Интернета и, в первую очередь, благодаря службе World Wide Web, связавшей в единую "паутину" миллионы "домашних страниц". У страницы, оформленной без компьютерной графики мало шансов привлечь к себе массовое внимание.

Можно считать, что первые системы машинной графики (кодирования графических объектов) появились вместе с первыми цифровыми компьютерами. Формирование машинной графики как самостоятельного направления относится к началу 60-х годов. Были сформулированы принципы рисования отрезками, удаления невидимых линий, методы отображения сложных поверхностей, определены методы формирования теней, учета освещенности сюжета. В середине 1960-х была разработана цифровая электронная чертежная машина (фирма Itek). В 1964 году General Motors представила свою DAC-1 - систему автоматизированного проектирования, разработанную совместно с IBM.

В 70-е годы значительное число теоретических и прикладных работ было направлено на развитие методов отображения пространственных форм и объектов. Это направление принято называть трехмерной машинной графикой.

У первых поколений ЭВМ вообще не было дисплея. Вся информация загружалась в огромные ламповые монстры на бумажных носителях (перфолентах и перфокартах), результат также выдавался на бумагу. Однако рост мощности компьютеров и сложности расчетов привели к необходимости разработки более удобного способа общения с машиной. В результате было найдено решение — дисплей.

Долгое время дисплеи были сугубо текстовыми — то есть ничего кроме цифр, а позднее букв, они выводить не могли. Но уже тогда было понятно, что для удобства работы необходима возможность вывода изображений на экран дисплея. В 80-е годы появились персональные компьютеры, позволяющие выводить графические объекты на экраны мониторов, что позволило использовать машинную графику в качестве инструмента специалистам различных областей, не связанных с программированием.

Увеличение памяти и скорости обработки информации в персональных ЭВМ, создание видеокомплексов с широким набором программ машинной графики, возможность управления ими в диалоговом режиме способствовали дальнейшему расширению применения машинной графики. Важную, практически определяющую роль в этом процессе сыграл выпуск компанией Apple компьютеров Macintosh (1984г.). Они были для своего времени настоящей революцией. Во-первых, Macintosh серийно поставлялся с цветным монитором. Во-вторых, его операционная система обладала наглядным, визуальным интерфейсом (своего рода аналог более поздней ОС Windows). И в-третьих, их мощности было достаточно для обработки графических изображений. Именно поэтому Macintosh сразу заслужил внимание множества профессиональных художников и дизайнеров, которые поменяли карандаш и кисть на мышь и клавиатуру. Рынок не заставил себя долго ждать — появилось несколько очень впечатляющих для своего времени графических редакторов.

Компьютерная или машинная графика - это вполне самостоятельная область человеческой деятельности, со своими проблемами и спецификой. Компьютерная графика - это и новые эффективные технические средства для проектировщиков, конструкторов и исследователей, и программные системы и машинные языки, и новые научные, учебные дисциплины, родившиеся на базе синтеза таких наук как аналитическая, прикладная и начертательная геометрии, программирование для ПК, методы вычислительной математики и т.п. Машина наглядно изображает такие сложные геометрические объекты, которые раньше математики даже не пытались изобразить.

Само понятие "компьютерная графика" уже достаточно известно - это создание рисунков и чертежей с помощью компьютера. А вот компьютерная анимация – это несколько более широкое явление, сочетающее компьютерный рисунок (или моделирование) с движением. Вообще же "анимацией" просвещенный мир называет тот вид искусства, который у нас в России зовется мультипликацией. "Animate" - по-английски и по-французски значит "оживлять", "воодушевлять". "Animation" - это оживление или воодушевление. Итак, компьютерная анимация - это анимация, созданная при помощи компьютера. Под графической информацией понимаются модели объектов и их изображения.

1.2. Виды компьютерной графики

Существует три вида компьютерной графики. Это векторная, растровая и фрактальная. Отличаются они принципами формирования изображения при отражении на экране монитора или при печати на бумаге. Рассмотрим их поближе.

Растровая графика.

Изображения в растровой графике состоят из отдельных точек различных цветов, образующих цельную картину. Применение растровой графики позволяет добиться изображения высочайшего фотореалистичного качества. Но такие файлы очень объёмны и трудно редактируемы. При изменении размеров качество изображения ухудшается. Так, при уменьшении исчезают мелкие детали, а при увеличении картинка превращается в набор пикселей. При печати растрового изображения или при просмотре его на устройствах, имеющих недостаточную разрешающую способность значительно ухудшается восприятие образа. Изображение (объект) может быть монохромным (штриховым), черно-белой фотографией (в градациях серого) и цветным. Любой рисунок можно представить набором мозаичных точек.

Суть принципа точечной графики: если надо закодировать какой-то объект, то на него "накладываем" сетку и создаем матрицу (таблицу) той же размерности, заполняя единицами ячейки, наложенные на объект, и нулями вне объекта. Если границы оригинал-объекта параллельны границам ячеек сетки, получается идеальная матрица (bitmap) из нулевых и единичных битов, которая представляет закодированное изображение обекта. Если эту матрицу вывести на экран или принтер или на диск для хранения, то получим оттиск обекта. Таким образом, с помощью отдельных блоков можно закодировать объект - известный древний способ рисования по клеточкам! Но идеальный случай, когда границы объекта совпадают с направляющими линиями матрицы, реализуется редко. Ясно, что, если имеем полностью пустые и полностью заполненные квадратики - это биты 0 и 1. А если не полностью заполненные и не полностью пустые? Очевидно, что в общем случае нужно установить порог: Ниже этого порога - нолики? а выше - единицы. Например, если порог меньше 1/2, то 0, если больше, то 1.

Достоинства растровой графики — это когда каждый пиксель независим друг от друга, техническая реализуемость автоматизации ввода(оцифровки) изобразительной информации, фотореалистичность. Форматы файлов, предназначенные для сохранения точечных изображений, являются стандартными, поэтому не имеет решающего значения, в каком графическом редакторе создано то или иное изображение.

Однако, есть и недостатки растровой графики и это объём файла точечной графики одназначно определяется произведением площади изображения на разрешение и на глубину. При попытке слегка повернуть на небольшой угол изображение, например, с чёткими тонкими вертикальными линиями, чёткие линии превращаются в чёткие "ступеньки». Невозможность увеличения изображений для рассмотрения деталей.

Векторная графика.

Векторна графика-- это вид кодирования графических изображений, основанный на геометрии, но не точек, а кривых. В качестве сплайнов выбраны кривые Безье. (Пьер Безье - французский математик, рассчитавал сплайны корпуса автомобилей).Сплайн- основное понятие векторной графики. Линейные картинки - это сплайны. На сплайнах построены современные шрифты True Type, Post Script и Open Type. Суть сплайна: любую элементарную кривую можно построить, зная четыре коэффициента P0, P1, P2 и P3, соответствующие четырем точкам на плоскости. Перемещая эти точки, меняем форму кривой.

В отличие от растра, векторное изображение состоит из отдельных линий-направляющих (векторов) которые образуют изображение. В файле хранится информация не о каждой точке, а об элементах, из которых состоит изображение, т.е. о направляющих из которых она создана. Векторные изображения занимают сравнительно небольшой объем и легки в редактировании. Любой элемент картинки может быть изменён отдельно от других. Изображение легко меняет размер, не теряя качества и сохраняя первоначальную композицию (расположение элементов) Вектор пластичен, что позволяет отображать его на устройствах с различной разрешающей способностью одинаково качественно. Но изображения векторной графики просты по визуальному восприятию и в основном выглядят "нарисованными".

Достоинства векторной графики- это малый объем памяти. При кодировании векторного изображения хранится не само изображение объекта, а координаты четырёх точек, поэтому объем памяти очень мал по сравнению с точечной графикой. Свобода трансформации. Векторное изображение можно вращать, масштабировать без потери качества изображения. Объекты векторной графики просто трансформируются и ими легко манипулировать, что не оказывает практически никакого влияния на качество изображения. Аппаратная независимость. Векторная графика "работает" с идеальными объектами, которые сами приноравливаются к изменениям: можно не знать, для каких устройств делается тот или иной документ. Векторная графика максимально использует возможности разрезрешающей способности любого выводного устройства: изображение всегда будет настолько качественным, на сколько способно данное устройство.

Однако, так же присутствуют недостатки векторной графики и это программная зависимость. Каждая программа строит кривые Безье по своим алгоритмам. Например, формат .cdr программы Corel Draw не описан и является нестандартным. Часто необходимо конвертирование. Каждая программа сохраняет данные в своем собственном формате, поэтому изображение, созданое в одном векторном редакторе, как правило, не конвертируется в формат другой программы без погрешностей. Сложность векторного принципа описания изображения не позволяет автоматизировать ввод графической информациии сконструировать устройство подобное сканеру для растровой графики. Ограничение в чисто живописных средствах и не предназначена для создания фотореалистических изображений.

Фрактальная графика.

Фрактальная графика основана на автоматической генерации изображений путём математических расчётов. Создание фрактальных изображений основано не в рисовании, а в программировании. Фрактальная графика редко используется в печатных или электронных документах.

Фрактал — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. Роль фракталов в компьютерной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения компьютерной графики, фрактальная геометрия незаменима при генерации облаков, гор, поверхности моря. Способность фрактальной графики моделировать образы живой природы вычислительным путем часто используют для автоматической генерации необычных иллюстраций.

Глава 2. Основные понятия компьютерной графики.

2.1 Цветовые модели

Каждый пиксель растрового изображения содержит информацию о цвете. Представление информации в компьютере основывается на двоичной системе счисления. Минимальный размер цветовой информации в пикселе – 1 бит, т.е. в простейшем случае пиксели на экране могут быть «включены» или «выключены», представляя собой белый и черный цвет. Количество оттенков, которые может воспроизводить отдельный пиксель определяется глубиной цвета (максимум - 32 бита), позволяющей показывать на экране монитора до 16,7 млн. цветовых оттенков.

К полноцветным (true color) относятся типы изображений с глубиной цвета не менее 24 бит, то есть каждый пиксель такого изображения кодируется как минимум 24 битами, что дает возможность отобразить не менее 16,7 миллиона оттенков. Поэтому иногда полноцветные типы изображения называют True Color (истинный цвет).

Если мы работаем с черно-белыми изображениями, то цвет кодируется нулем или единицей. Никаких проблем в этом случае не возникает. Для несложных рисунков, содержащих 256 цветов или столько же градаций серого цвета, нетрудно пронумеровать все используемые цвета. Но, для изображений в истинном цвете, содержащих миллионы разных оттенков, простая нумерация не подходит. Для них разработаны несколько моделей представления цвета, помогающих однозначно определить любой оттенок. Цветовые модели позволяют с помощью математического аппарата описать определённые цветовые области спектра.

Цветовая модель (режим) представляет собой правило обозначения цветов пикселей документа. Так как компьютер использует для обозначений цветов числа, необходимо ввести некоторое правило преобразования этих чисел в отображаемые устройствами вывода цвета и наоборот. Таких правил может быть несколько, поэтому каждое из них получает своё название.

Наиболее распространёнными цветовыми моделями являются:- битовый – 2 цвета – чёрный и белый;- серый – 256 градаций серого;- RGB – red, green, blue – красный, зелёный, синий;- CMYK – Cyan, Magenta, Yellow, blacK –голубой, пурпурный, желтый, черный. Разные режимы нужны для того, чтобы отобразить в файле особенности последую щеговывода изображения на какое-либо устройствоили сохранения в файле. Разные устройствавывода изображений могут работать поразличным принципам, используя физическиеявления, не имеющие друг с другом практическиничего общего. Например, на экране монитора сэлектронно-лучевой трубкой (а также аналогичного телевизора) изображение строится при помощи засветки люминофора пучком электронов. При таком воздействиилюминофор начинает излучать свет. В зависимости от состава люминофора, этот светимеет ту или иную окраску. Для формирования полноцветного изображения используетсялюминофор со свечением трех цветов — красным, зеленым и синим. Поэтому такойметод формирования цвета называют RGB (рис.1.4.) (Red, Green, Blue — Красный,Зеленый, Синий).

Сами по себе зерна люминофора разных цветов позволяют получить толькочистые цвета (чистый красный, чистый зеленый и чистый синий). Промежуточные оттенкиполучаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанныйоттенок. Регулируя яркость зерен, можно регулировать получающийся смешанный тон.

Например, при максимальной яркости всех трех типов зерен будут получен белый цвет,при отсутствии засветки - черный, а при промежуточных значениях - различные оттенкисерого. Если же зерна одного цвета засветить не так, как остальные, то смешанный цветне будет оттенком серого, а приобретет окраску. Такой способ формирования цветанапоминает освещение белого экрана в полной темноте разноцветными прожекторами.

Свет от разных источников складывается, давая различные оттенки. Поэтому такое представление цвета (цветовую модель) называют аддитивной (суммирующей). При выводе изображения на печать используются другие технологии. Это может быть, например, струйная печать или многокрасочная печать на типографской машине. В этом случае изображение на бумаге создается при помощи чернил разных цветов.

Накладываясь на бумагу и друг на друга, чернила поглощают часть света, проходящего сквозь них и отражающегося от бумаги. Если чернила густые, то они сами отражают свет, но не весь. Таким образом, отраженный от картинки цвет приобретает ту или иную окраску, в зависимости от того, какие красители и в каких количествах были использованы при печати. Обычно при таком способе цветопередачидля получения промежуточных оттенков используются чернила четырех цветов: голубой, пурпурный, желтый и черный. Такую цветовую модель называют CMYK (рис.1.5.) — Cyan, Magenta, Yellow, Blасk (Голубой, Пурпурный, Желтый, Черный). Теоретически для получения любого из оттенков достаточно только голубого, Рисунок 1.5 - Цветовая модель CMYK желтого и пурпурного цветов. Однако на практике крайне сложно получить их смешением чистый черный цвет или оттенки серого.

Так как в цветовой модели CMYK оттенки образуются путем вычитания определённых составляющих из белого, ее называют субтрактивной (вычитающей). Кроме различных печатающих устройств, эта цветовая модель используется в фотопленке и фотобумаге. Там также содержатся слои, чувствительные к голубому, желтому и пурпурному свету. В файлах изображений, сохранённых в режимах RGB и CMYK, для каждого пикселя записываются значения всех трех или четырех компонентов.

Для вывода изображения на черно-белые (монохромные) устройства, а также для некоторых других целей лучше всего подходит изображение в режиме градаций серого (grayscale). В этом режиме для каждого пиксела записывается только одно значение — его яркость.

При печати изображений на некоторых принтерах, а также для получения определённых изобразительных эффектов используется режим Bitmap (Битовый). В этом режиме любая точка изображения может быть либо белой, либо черной.

Существуют и другие цветовые режимы. Например, для записи изображений в форматах, ограничивающих допустимое число цветов (таких как GIF), эти изображения надо предварительно перевести в режим индексированных цветов. При этом составляется палитра, которая и используется при дальнейшей работе.

Палитра (palette) - набор цветов, используемых в изображении или при отображении видеоданных. Палитру можно воспринимать как таблицу кодов цветов (обычно в виде RGB-троек байтов в модели RGB). Палитра устанавливает взаимосвязь между кодом цвета и его компонентами в выбранной цветовой модели. Палитра может принадлежать изображению, части изображения, операционной системе или видеокарте. При попытке использовать не входящий в палитру цвет он заменяется ближайшим цветом, занесенным в неё

Глава 3. Спецэффекты и его применение

3.1 История создания спецэффектов

Спецэффект -- технологический приём в кинематографе, на Спецэффект — технологический приём в кинематографе, на телевидении, на шоу и в компьютерных играх, применяемый для визуализации сцен, которые не могут быть сняты обычным способом (например, для визуализации сцен сражения космических кораблей в далёком будущем).

Спецэффекты также часто применяются, когда естественная съёмка сцены слишком затратна по сравнению со спецэффектом (например, съёмка масштабного взрыва). Спецэффекты применяются и для улучшения или модификации уже предварительно отснятого видеоматериала (например, для наложения погодной карты как фон для телеведущего, рассказывающего о прогнозе погоды).

Спецэффекты родились почти сразу с зарождением кинематографа. Первые анимационные фильмы начала 1900-х были созданы на основе комических иллюстраций и персонажей из популярных комиксов того времени с использованием покадрового метода. Создателем классических спецэффектов был Жорж Мельес.

Первым фильмом, в котором спецэффекты играли существенную роль, считается двухминутная лента Мельеса «Замок Дьявола», в которой зрителю были продемонстрированы появления, исчезновения и трансформации людей и предметов в антураже готического замка. Первый полнометражный анимационный фильм Уолта Диснея «Белоснежка и семь гномов» был выпущен 21 декабря 1937 года. Некоторые примеры ранних спецэффектов получены с помощью колоризации — ручного раскрашивания кадров. Анимация «Динозавр Герти» была создана по эскизу художника Уинзора Мак-Кея. В своем эпохальном фильме 1927 года, режиссер Фриц Ланг создал мрачный мир Метрополиса в мельчайших подробностях используя миниатюрные модели.

Матовые картины были неотъемлемой частью многих фильмов. Без этих спецэффектов было бы ни статуи Свободы, торчащей из песка в последней сцене в Планете обезьян, ни Изумрудного города, ни величественного особняка Тара в «Унесенных ветром».

3.2 Оптические спецэффекты

Рирпроекция. Снятый заранее фон проецируется на экран, перед которым играют актеры. Наиболее частое применение -- в сценах, где герои ведут автомобиль. В этом случае автомобиль -- макет, построенный на съемочной площадке, а придорожный пейзаж спроецирован на экран.

Двойная экспозиция. Необходимые элементы доснимаются на пленку с уже отснятой последовательностью кадров. В наиболее сложных сценах используется многократная экспозиция, когда на одну и ту же пленку снимают три раза и более. Такая технология применялась в первых трёх фильмах из серии «Звёздные войны» для съёмки массовки (не хватало статистов).

Блуждающая маска. Метод совмещения основного объекта съемки с нужным фоном при помощи применения киносъемочного аппарата, позволяющего производить съемку одновременно на две кинопленки. Основной объект снимается в студии на специальном фоне, засвечиваемом мощным источником инфракрасного излучения и одновременно затемненном в видимой части спектра. В аппарат заряжается обычная кинопленка, нечувствительная к инфракрасному свету, и инфракрасная обращаемая пленка высокого контраста. После съемки инфракрасная пленка обрабатывается и снова заряжается в аппарат, совмещенная с непроявленной с точностью до кадра. После этого снимается необходимый для сцены фон. Проявленная пленка выполняет роль маски и закрывает участки светочувствительной кинопленки, на которых отснят главный объект. Таким образом, после проявления на одной пленке получается изображение, экспонированное совершенно разными сценами. Пример такой комбинированной съемки -- полет Вольки и Хоттабыча на ковре-самолете.

Хромакей (Chroma key). Телевизионный аналог «блуждающей маски». Выполняется при помощи электронного монтажа двух изображений, при котором основное (например, изображение комментатора) снимается на ярком однотонном (ключевом) фоне -- обычно сине-зеленом. При обработке изображения с двух источников совмещаются таким образом, что ключевой тон заменяется другим изображением.

Контроль движения. Такая технология применяется, когда необходимо снять несколько макетов, движущихся по одной траектории. Специальная система автоматических приводов позволяет оператору управлять камерой дистанционно и программировать ее движения. Потом в кадр помещается другой макет, и камера делает новый проход, в точности повторяющий предыдущий. Полученные изображения совмещаются.

Заключение

При написании реферата была проведена исследовательская работа по компьютерной графике и спецэффектов. С появлением компьютерной графики произошла революция в области технологий визуализации, был совершен самый настоящий прорыв в кинематографическом искусстве. С помощью этой технологии можно, например, заменить реального актера его компьютерным прототипом. Кроме того, с помощью графики можно воссоздать на экране несуществующие в реальности декорации и этим изрядно сэкономить бюджет картины. Точно так же графика может заменить собой реальных каскадеров, которые тоже обходятся довольно дорого.

Спецэффекты применяются и для улучшения или модификации уже предварительно отснятого видеоматериала (например, для наложения погодной карты как фон для телеведущего, рассказывающего о прогнозе погоды). Наиболее распространённым и популярным методом создания спецэффектов является хромакей, при обработке изображения с двух источников совмещаются таким образом, что ключевой тон заменяется другим изображением.

Заключение

Таким образом, спецэффекты дают большую возможность творить людям, использовать меньше денежных ресурсов, делать и рисовать существа о которых не существует в жизни.

СПИСОК ЛИТЕРАТУРЫ

Основная литература.

1. Ву М., Дэвис Т., Нейдер Дж., Шрайндер Д. OpenGL. Руководство по программированию. Библиотека программиста. Питер, 2006. ISBN 5-94723-827-6

2. Перемитина Т. О. Компьютерная графика : учебное пособие / Т. О. Перемитина. — Томск : Эль Контент, 2012. — 144 с.3. Ричард С. Райт мл., Бенджамин Липчак. OpenGL. Суперкнига = OpenGL SuperBible -- 3 изд. -- М.: Вильямс, 2006. -- С. 1040. -- ISBN 5-8459-0998-8.

4. Дональд Херн, М. Паулин Бейкер. Компьютерная графика и стандарт OpenGL = Computer Graphics with OpenGL -- 3-е изд. -- М.: Вильямс, 2005. -- 1168 с. -- ISBN 5-8459-0772-1

5. Эдвард Энджел. Интерактивная компьютерная графика. Вводный курс на базе OpenGL = Interactive Computer Graphics. A Top-Down Approach with Open GL -- 2-е изд. -- М.: Вильямс, 2001. -- 592 с. -- ISBN 5-8459-0209-6.