Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Классификация языков программирования( Критерии выбора среды и языка разработки программ)

Содержание:

1. Введение

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования. Смысл появления такого языка – оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм.

Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько «близок к машине», что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько «близок к решаемой задаче», чтобы концепции ее решения можно было выражать прямо и коротко.

Связь между языком, на котором мы думаем/программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. По этой причине ограничивать свойства языка только целями исключения ошибок программиста в лучшем случае опасно. Как и в случае с естественными языками, есть огромная польза быть, по крайней мере, двуязычным. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Например, серьезные ограничения концепции указателя заставляют программиста применять вектора и целую арифметику, чтобы реализовать структуры, указатели и т.п. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств.

Может показаться удивительным, но конкретный компьютер способен работать с программами, написанными на его родном машинном языке. Существует почти столько же разных машинных языков, сколько и компьютеров, но все они суть разновидности одной идей простые операции производятся со скоростью молнии на двоичных числах.

Персональные компьютеры IBM используют машинный язык микропроцессоров семейства 8086, т.к. их аппаратная часть основывается именно на данных микропроцессорах.

Можно писать программы непосредственно на машинном языке, хотя это и сложно. На заре компьютеризации(в начале 1950-х г.г.), машинный язык был единственным языком, большего человек к тому времени не придумал. Для спасения программистов от сурового машинного языка программирования, были созданы языки высокого уровня (т.е. немашинные языки), которые стали своеобразным связующим мостом между человеком и машинным языком компьютера. Языки высокого уровня работают через трансляционные программы, которые вводят «исходный код» (гибрид английских слов и математических выражений, который считывает машина), и в конечном итоге заставляет компьютер выполнять соответствующие команды, которые даются на машинном языке. Существует два основных вида трансляторов: интерпретаторы, которые сканируют и проверяют исходный код в один шаг, и компиляторы, которые сканируют исходный код для производства текста программы на машинном языке, которая затем выполняется отдельно.

На современном этапе развития компьютерных технологий невозможно представить какого–либо высококвалифицированного специалиста, не владеющего информационными технологиями. Поскольку деятельность любого субъекта в значительной степени зависит от степени владения информации, а также способности эффективно ее использовать. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию, прежде всего, с помощью компьютеров, а также телекоммуникаций и других новейших средств связи, в том числе и уметь, обращаться с языками программирования.

Актуальность данной темы обусловлена тем, что прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования.

Объектом исследования послужили языки программирования

Целью курсовой работы является изучение классификации языков программирования и критериев выбора среды и языка программирования.

Цели исследования:

1.  Просмотреть общее сведения и уровни языков программирования.

2.  Сделать обзор современных языков программирования.

3.  Ознакомиться с критериями выбора среды и языка разработки программ

Задачи исследования:

1.  Ознакомления с языками программирования.

2.  Обзор современных языков программирования.

3.  Определить критерии выбора среды и языка программирования.

В первой главе рассматриваются общие сведения о языках программирования.

Во второй главе рассматривается обзор современных языков программирования.

В третьей главе рассматриваются языки и среда создания программ.

В данной курсовой работе использовался научно-исследовательские методы.

Применяемые технические средства: ПЭВМ: Core 2 Duo E6600 2.4 ГГц 2 x 4 Мб L2; 2 x 1024 Мб DDR3-1333МГц; NVIDIA GeForce 8600 GT 512 Мб; HDD Hitachi Deskstar 7K1000 1 Тб; Принтер: Canon LBP3010.

Программные средства ОС Windows XP Professional SP3. Данная курсовая работа выполнена в программе Microsoft Word 2003, а также были использованы другие программы: Microsoft PowerPoint, Nero StartSmart.

2. КЛАССИФИКАЦИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ

Язык программирования - это система обозначений, служащая для точного описания программ или алгоритмов для ЭВМ. Языки программирования являются искусственными языками. От естественных языков они отличаются ограниченным числом “слов” и очень строгими правилами записи команд (операторов). Поэтому при применении их по назначению они не допускают свободного толкования выражений, характерного для естественного языка.

Можно сформулировать ряд требований к языкам программирования и классифицировать языки по их особенностям.

Основные требования, предъявляемые к языкам программирования:

наглядность - использование в языке по возможности уже существующих символов, хорошо известных и понятных как программистам, так и пользователям ЭВМ;

единство - использование одних и тех же символов для обозначения одних и тех же или родственных понятий в разных частях алгоритма. Количество этих символов должно быть по возможности минимальным;

гибкость - возможность относительно удобного, несложного описания распространенных приемов математических вычислений с помощью имеющегося в языке ограниченного набора изобразительных средств;

модульность - возможность описания сложных алгоритмов в виде совокупности простых модулей, которые могут быть составлены отдельно и использованы в различных сложных алгоритмах;

однозначность - недвусмысленность записи любого алгоритма. Отсутствие ее могло бы привести к неправильным ответам при решении задач [2].

В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

2.1. Машинно – ориентированные языки

Машинно – ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.). Машинно –ориентированные языки позволяют использовать все возможности и особенности Машинно – зависимых языков:

— высокое качество создаваемых программ (компактность и скорость выполнения);

— возможность использования конкретных аппаратных ресурсов;

— предсказуемость объектного кода и заказов памяти;

— для составления эффективных программ необходимо знать систему команд и особенности функционирования данной ЭВМ;

— трудоемкость процесса составления программ ( особенно на машинных языках и ЯСК), плохо защищенного от появления ошибок;

— низкая скорость программирования;

— невозможность непосредственного использования программ, составленных на этих языках, на ЭВМ других типов.

Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы.

2.1.1. Машинный язык

Как я уже упоминал, в введении, отдельный компьютер имеет свой определенный Машинный язык (далее МЯ ), ему предписывают выполнение указываемых операций над определяемыми ими операндами, поэтому МЯявляется командным. Однако, некоторые семейства ЭВМ (например, ЕС ЭВМ, IBM/370/ и др.) имеют единый МЯ для ЭВМ разной мощности. В команде любого из них сообщается информация о местонахождении операндов и типе выполняемой операции.

В новых моднлях ЭВМ намечается тенденция к повышению внутренних языков машинно – аппаратным путем реализовывать более сложные команды, приближающиеся по своим функциональным действиям к операторам алгоритмических языков программирования.

2.1.2. Языки Символического Кодирования

Продолжим рассказ о командных языках, Языки Символического Кодирования (далее ЯСК ), так же, как и МЯ, являются командными. Однако коды операций и адреса в машинных командах, представляющие собой последовательность двоичных (во внутреннем коде) или восьмеричных (часто используемых при написании программ) цифр, в ЯСК заменены на символы (идентификаторы), форма написания которых помогает программисту легче запоминать смысловое содержание операции. Это обеспечивает существенное уменьшение числа ошибок при составлении программ.

Использование символических адресов – первый шаг к созданию ЯСК. Команды ЭВМ вместо истинных (физических) адресов содержат символические адреса. По результатам составленной программы определяется требуемое количество ячеек для хранения исходных промежуточных и результирующих значений. Назначение адресов, выполняемое отдельно от составления программы в символических адресах, может проводиться менее квалифицированным программистом или специальной программой, что в значительной степени облегчает труд программиста.

2.1.3. Автокоды

Есть также языки, включающие в себя все возможности ЯСК, посредством расширенного введения макрокоманд— они называются Автокоды .

В различных программах встречаются некоторые достаточно часто использующиеся командные последовательности, которые соответствуют определенным процедурам преобразования информации. Эффективная реализация таких процедур обеспечивается оформлением их в виде специальных макрокоманд и включением последних в язык программирования, доступный программисту. Макрокоманды переводятся в машинные команды двумя путями –расстановкой и генерированием. В постановочной системе содержатся «остовы» — серии команд, реализующих требуемую функцию, обозначенную макрокомандой. Макрокоманды обеспечивают передачу фактических параметров, которые в процессе трансляции вставляются в «остов» программы, превращая её в реальную машинную программу.

В системе с генерацией имеются специальные программы, анализирующие макрокоманду, которые определяют, какую функцию необходимо выполнить и формируют необходимую последовательность команд, реализующих данную функцию.

Обе указанных системы используют трансляторы с ЯСКи набор макрокоманд, которые также являются операторами автокода.

Развитые автокоды получили название Ассемблер ы. Сервисные программы и пр., как правило, составлены на языках типа Ассемблер. Более полная информация об языке Ассемблер а см. ниже.

2.1.4. Макрос

Язык, являющийся средством для замены последовательности символов описывающих выполнение требуемых действий ЭВМ на более сжатую форму — называется Макрос (средство замены).

В основном, Макрос предназначен для того, чтобы сократить запись исходной программы. Компонент программного обеспечения, обеспечивающий функционирование макросов, называется макропроцессором. На макропроцессор поступает макроопределяющий и исходный текст. Реакция макропроцессора на вызов-выдача выходного текста.

Макрос одинаково может работать, как с программами, так и с данными.

2.2. Машинно – независимые языки

Машинно – независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС.

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на МЯ .

Т.о., командные последовательности (процедуры, подпрограммы), часто используемые в машинных программах, представлены в высокоуровневых языках отдельными операторами. Программист получил возможность не расписывать в деталях вычислительный процесс на уровне машинных команд, а сосредоточиться на основных особенностях алгоритма.

2.2.1. Проблемно – ориентированные языки

С расширением областей применения вычислительной техники возникла необходимость формализовать представление постановки и решение новых классов задач. Необходимо было создать такие языки программирования, которые, используя в данной области обозначения и терминологию, позволили бы описывать требуемые алгоритмы решения для поставленных задач, ими стали проблемно – ориентированные языки. Эти языки, языки ориентированные на решение определенных проблем, должны обеспечить программиста средствами, позволяющими коротко и четко формулировать задачу и получать результаты в требуемой форме.

Проблемных языков очень много, например:

Фортран, Алгол – языки, созданные для решения математических задач;

Simula , Слэнг — для моделирования;

Лисп, Снобол – для работы со списочными структурами.

Об этих языках я расскажу дальше.

2.2.2. Универсальные языки

Универсальные языки были созданы для широкого круга задач: коммерческих, научных, моделирования и т.д. Первый универсальный язык был разработан фирмой IBM, ставший в последовательности языков Пл/1. Второй по мощности универсальный язык называется Алгол-68. Он позволяет работать с символами, разрядами, числами с фиксированной и плавающей запятой. Пл/1 имеет развитую систему операторов для управления форматами, для работы с полями переменной длины, с данными организованными в сложные структуры, и для эффективного использования каналов связи. Язык учитывает включенные во многие машины возможности прерывания и имеет соответствующие операторы. Предусмотрена возможность параллельного выполнение участков программ.

Программы в Пл/1 компилируются с помощью автоматических процедур. Язык использует многие свойства Фортрана, Алгола, Кобола. Однако он допускает не только динамическое, но и управляемое и статистическое распределения памяти.

2.2.3. Диалоговые языки

Появление новых технических возможностей поставило задачу перед системными программистами – создать программные средства, обеспечивающие оперативное взаимодействие человека с ЭВМ их назвали диалоговыми языками .

Эти работы велись в двух направлениях. Создавались специальные управляющие языки для обеспечения оперативного воздействия на прохождение задач, которые составлялись на любых раннее неразработанных (не диалоговых) языках. Разрабатывались также языки, которые кроме целей управления обеспечивали бы описание алгоритмов решения задач.

Необходимость обеспечения оперативного взаимодействия с пользователем потребовала сохранения в памяти ЭВМ копии исходной программы даже после получения объектной программы в машинных кодах. При внесении изменений в программу с использованием диалогового языка система программирования с помощью специальных таблиц устанавливает взаимосвязь структур исходной и объектной программ. Это позволяет осуществить требуемые редакционные изменения в объектной программе.

Одним из примеров диалоговых языков является Бэйсик.

Бэйсик использует обозначения подобные обычным математическим выражениям. Многие операторы являются упрощенными вариантами операторов языка Фортран. Поэтому этот язык позволяет решать достаточно широкий круг задач.

2.2.4. Непроцедурные языки

Непроцедурные языки составляют группу языков, описывающих организацию данных, обрабатываемых по фиксированным алгоритмам (табличные языки и генераторы отчетов), и языков связи с операционными системами.

Позволяя четко описывать как задачу, так и необходимые для её решения действия, таблицы решений дают возможность в наглядной форме определить, какие условия должны быть выполнены прежде чем переходить к какому-либо действию. Одна таблица решений, описывающая некоторую ситуацию, содержит все возможные блок-схемы реализаций алгоритмов решения.

Табличные методы легко осваиваются специалистами любых профессий.

Программы, составленные на табличном языке, удобно описывают сложные ситуации, возникающие при системном анализе.

3. Современные языки программирования

3.1 Ассемблер

Язык Ассемблер а – это символическое представление машинного языка. Он облегчает процесс программирования по сравнению с программированием в машинных кодах.

Программисту не обязательно употреблять настоящие адреса ячеек памяти с размещенными в них данными, участвующими в операции, и вычисляемые результаты, а также адреса тех команд, к которым программа не обращается.

Некоторые задачи, например, обмен с нестандартными устройствами обработки данных сложных структур невозможно решить с помощью языков программирования высокого уровня. Это под силу ассемблеру.

В принципе, язык Ассемблер является машинным языком. И программист реализующий какую-либо задачу на языках высокого уровня, с помощью Ассемблера может определить осмыслено ли решение данной задачи, с точки зрения использования ЭВМ.

  1. Умея разобраться в распечатке языка ассемблера, дает возможность облегчить поиск ошибок в программах, т.к. некоторые языки являются компиляторами (см. п. 1.2.).

3.2. Лисп

Один из самых старых языков программирования Фортран был создан в 50-х гг. нашего века. Фортран и подобные ему языки программирования (Алгол, ПЛ/1)предназначались для решения вычислительных задач, возникающих в математике, физике, инженерных расчетах, экономике и т.п. Эти языки в основном работают с числами.

Второй старейший язык программирования Лисп (L istInformationS ymbolP rocessing), Дж. Маккарти в 1962 г. скорее для работы со строками символов, нежели для работы с числами. Это особое предназначение Лисп а открыло для программистов новую область деятельности, известную ныне, как «искусственный интеллект». В настоящее время Лисп успешно применяется в экспертных системах, системах аналитических вычислений и т.п.

Обширность области возможных приложений Лисп а вызвала появление множества различных диалектов Лисп а. Это легко объяснимо: применение Лисп а для понимания естественного языка требует определенного набора базисных функций, отличных, например, от используемого в задачах медицинской диагностики.

Существование множества различных диалектов Лисп а привело к созданию в начале 80-х гг. CommonLISPКомитета, который должен был выбрать наиболее подходящий диалект Лисп а и предложить его в качестве основного. Этот диалект, выбранный Комитетом в 1985г., получил название CommonLISP. В дальнейшем он был принят в университетах США, а также многими разработчиками систем искусственного интеллекта, в качестве основного диалекта языка Лисп .

Язык программирования Лисп существенно отличается от других языков программирования, таких, как ПаскальСи и т.п. Работа с символами и работа с числами как с основными элементами требует разных способов мышления.

Первоначально Лисп был задуман как теоретическое средство для рекурсивных построений, а сегодня он превратился в мощное средство, обеспечивающее программиста разнообразной поддержкой, позволяющей ему быстро строить прототипы весьма и весьма серьезных систем.

Профессор Массачусетского технологического института Дж. Самман заметил, что математическая ясность и предельная четкость Лисп а – это еще не все. Главное – Лисп позволяет сформулировать и запомнить «идиомы», столь характерные для проектов по искусственному интеллекту.

3.3. Фортран

Одним из первых и наиболее удачных компиляторов стал язык Фортран, разработанный фирмой IBM. Профессор Дж. Букс и группа американских специалистов в области программирования в 1954 году опубликовало первое сообщение о языке. Дословно, название языка FOR mulaeTRAN slation –преобразование формул.

Среди причин долголетия Фортрана (а он один из самых распространенных языков в мире), можно отметить простую структуру, как самого Фортрана, так и предназначенных для него трансляторов. Программа на Фортране записывается в последовательности предложений или операторов (описание некоего преобразования информации), и оформляется по определенным стандартам. Эти стандарты накладывают ограничения, в частности, на форму записи и расположения частей оператора в строке бланка для записи операторов. Программа, записанная на Фортране, представляет собой один или несколько сегментов (подпрограмм) из операторов. Сегмент, управляющий работой всей программы в целом, называется основной программой.

Фортран был задуман для использования в сфере научных и инженерно-технических вычислений. Однако на этом языке легко описываются задачи с разветвленной логикой (моделирование производственных процессов, решение игровых ситуаций и т.д.), некоторые экономические задачи и особенно задачи редактирования (составление таблиц, сводок, ведомостей и т.д.).

Модификация языка Фортран, появившиеся в 1958 году, получила название Фортран II и содержала понятие подпрограммы и общих переменных для обеспечения связи между сегментами.

К 1962 году относится появление языка, известного под именем Фортран IV и ставшего наиболее употребительным в настоящее время. К этому же времени относится и начало деятельности комиссии при Американской Ассоциации Стандартов ( ASA ), которая выработала к 1966 году два стандарта – языки Фортран и базисный (основной) Фортран ( Basic FORTRAN ). Эти языки приблизительно соответствуют модификациям IVи II, однако базисный Фортран является подмножеством Фортрана, в то время, как Фортран II таковым для Фортрана IV не является. Язык Фортран до сих пор продолжает развиваться и совершенствоваться, оказывая влияние на создание и развитие других языков. Например, Фортран заложен в основу Basic – диалогового языка, очень популярного для решения небольших задач, превосходного языка для обучения навыкам использования алгоритмических языков в практике программирования. Разработан этот язык – Beginner’sAll –purposeSymbolicInstructionCode – группой сотрудников Вычислительного центра Дармутского колледжа, штат Нью-Хемпшир созданный в 19….. Но это уже следующий язык.

3.4. Бейсик

Как знаменитые гамбургеры, бейсбол и баскетбол, Бейсик — это продукт Новой Англии. Как я говорил, созданный в 1964г., как язык обучения программированию. Бейсик является общепринятым акронимом от"B eginner's A ll-purpose S ymbolic Insruction C ode" (BASIC) — М ногоцелевой Символический О бучающий К од для Н ачинающих".

Вскоре как обучаемые, так и авторы программ обнаружили, что Бейсик может делать практически все то, что делает скучный неуклюжий Фортран. А так как Бейсик у было легко обучиться и легко с ним работать, программы на нем писались обычно быстрее, чем на Фортран е. Бейсик был также доступен на персональных компьютерах, обычно он встроен в ПЗУ. Так Бейсикзавоевал популярность. Интересно, что спустя 20 лет после изобретения Бейсик а, он и сегодня самый простой для освоения из десятков языков общецелевого программирования, имеющихся в распоряжении любителей программирования. Более того, он прекрасно справляется с работой.

Несмотря на высказывания снобов — сторонников языков Си и ПаскаляБейсик считается деловым языком, снабженным мощными средствами решения специфических задач, которые обычно большинство пользователей решают при помощи небольших компьютеров, а именно: работая с файлами и выводя текстовое и графическое изображение на экране дисплея.

Несмотря на отдельные недостатки Бейсик а, никто не будет отрицать, что Кемени и Куртс достигли основной цели: сделать программирование доступнее для большего числа людей.

Исторически Бейсик обычно реализовался как интерпретатор (знакомым изомером является сам интерпретаторный Бейсик ). Причинами перехода от любительского уровня к профессиональному являются многочисленные расширения классической версии языка: возможность отключения нумерации строк, многостроковые структурированные программные конструкции, структуры типа «запись», поименованные подпрограммы с параметрами и локальные переменные.

Более того, с появлением транслятора QuickBasic фирмы Microsoft разработчики получили возможность строить на Бейсике приложения из раздельно откомпилированных модулей, некоторые из которых могут быть написаны на других языках. Теперь, как и в случае других ведущих языков программирования, разработчик имеет выбор из нескольких промышленных библиотек подпрограмм, которые содержат готовые решения для распространенных задач программирования.

3.5. Рефал

Несомненно надо рассказать и о некоторых языках программирования созданных у нас на родине. Один из таких языков является Рефал, разработанный у нас в России (СССР), в 1966г. ИПМ АН СССР. Этот язык прост и удобен для описания манипуляций над произвольными текстовыми объектами.

Рефал широко применяется при разработке трансляторов с алгоритмических языков как универсальных и проблемно – ориентированных, так и автокодов. Кроме использования в задачах трансляции, Рефал имеет такие важные сферы применения, как машинное выполнение громоздких аналитических выкладок в теоретической физике и прикладной математике; проектирование «умных» информационных систем, осуществляющих нетривиальную логическую обработку информации; машинное доказательство теорем; моделирование целенаправленного поведения; разработка диалоговых обучающих систем; исследования в области искусственного интеллекта и т.п.

Программирование на Рефал е имеет специфику, связанную, прежде всего, с тем, что Рефал является языком функционального типа в отличие от обычных операторных языков типа АлголФортран и т.д… Если программа на операторных языках – ни что иное, как совокупность приказов-операторов, то программа на Рефал е представляет собой по существу описание связей и отношений между определенными понятиями.

Вследствие того, что в Рефале программист сам определяет структуру обрабатываемой информации, эффективность программы существенно зависит от удачного или неудачного выбора этой структуры. Для задания структур в Рефал е используются скобки, а специфика всех реализаций языка такова, что использование скобок резко повышает эффективность выполнения программы. Это достигается с помощью адресного соединения скобок.

Определенной спецификой обладают и переменные типа «выражения» – имеется в виду их способность удлиняться при отождествлении. Правильное использование переменных этого типа также позволяет значительно повысить эффективность Рефал – программы.

3.6. Пролог и Пролог ++

Пролог — это язык, предназначенный для поиска решений. Это декларативный язык, то есть формальная постановка задачи может быть использована для ее решения. Пролог определяет логические отношения в задаче, как отличные от пошагового решения этой задачи.

Центральной частью Пролога являются средства логического вывода, которые решают запросы, используя заданное множество фактов и правил, к которым обращаются как к утверждениям. Пролог также не имеет деления переменных на типы и может динамически добавлять правила и факты к средствам вывода. Таким образом, это гибкий язык, и он более пригоден для объектно-ориентированного расширения, чем язык со строго заданными типами, например, ПаскальПролог ++ представляет собой дополнение к стандартному Пролог у.

Все свойства языка по-прежнему доступны программистам. Следовательно, Пролог ++ можно отнести к группе гибридных языков, представителями которой считаются Object Pascal и C++. Расширение Пролог ++ поддерживает все свойства, присущие обычно объектно-ориентированным языкам: концепции объектов и классов, единичное и многократное наследование, разбиение на подклассы и передачу сообщений. Поддерживаются также некоторые усовершенствованные свойства, существующие в таких языках, как C++ и Smalltalk, включая общие и частные методы.

Интересным свойством является поддержка в языке программирования с управлением данными. Эта техника, которая может быть еще названа программированием, «управляемым событиями», используется в большинстве языков объектно-ориентированного программирования, особенно в тех, которые разработаны для машин с интерфейсом, управляемым «мышью».

Объектно-ориентированная программа реагирует на события, которые определяют поток управления. В Пролог е ++ программирование с управлением данными достигается при помощи концепции демонов. Демон представляет собой объект, методы которого вызываются в случае определенных событий и могут быть таким образом использованы для поддержки программирования с управлением данными.

Сам язык основан на концепции передачи сообщений. Программа на Пролог е ++ строится вокруг множества объектов Пролог а ++, которые обмениваются сообщениями. В этом смысле Пролог ++ ближе к чистому объектно-ориентированному языку, такому, как Smalltalk, чем C++ или Object Pascal. Определения объектов строятся исходя из вызовов

Open_Object [имя_объекта] и Close_Object [имя_объекта], а методы определяются практически так же, как в других объектно-ориентированных языках. Для задания наследования можно явным образом указать, какой метод какого объекта должен наследоваться, что является необходимым для многократного наследования.

3.7. Лекс

Лекс – генератор программ лексического анализа. Лексический анализ – это распознавание лексем во входном потоке символов. Предположим, что задано некоторое конечное множество слов (лексем) в некотором языке и некоторое входное слово. Необходимо установить, какой элемент множества (если он существует) совпадает с данным входным словом. Обычно лексический анализ выполняется так называемым лексическим анализатором. Лексический анализатор – это программа. Лексический анализ применяется во многих случаях, например, для построения пакетного редактора или в качестве распознавателя директив в диалоговой программе и т.д. Однако, наиболее важное применение лексического анализатора – это использование его в компиляторе. Здесь лексический анализатор выполняет функцию программы ввода данных.

Лексический анализатор выполняет первую стадию компиляции – читает строки компилируемой программы, выделяет лексемы и передает их на дальнейшие стадии компиляции (грамматический разбор, кодогенерацию и т.д.).

Лексический анализатор распознает тип каждой лексемы и соответствующим образом помечает ее. Например, при компиляции Си-программы могут быть выделены следующие типы лексем: число, идентификатор, оператор, ограничитель и т.д.

Лексический анализатор должен не только выделить лексему, но и выполнить некоторые преобразования. Например, если лексема – число, то его необходимо перевести во внутреннюю (двоичную) форму записи как число с плавающей или фиксированной запятой. А если лексема – идентификатор, то его необходимо разместить в таблице, чтобы в дальнейшем обращаться к нему не по имени, а по адресу в таблице.

Хотя лексический анализ по своей идее прост, тем не менее, эта фаза работы компилятора часто занимает больше времени, чем любая другая. Частично это происходит из-за необходимости просматривать и анализировать исходный текст символ за символом. Иногда даже бывает необходимо вернуть прочитанный символ во входной поток с тем, чтобы повторить просмотр и анализ.

3.8. C и

Си – это язык программирования общего назначения, хорошо известный своей эффективностью, экономичностью, и переносимостью. Указанные преимущества Си обеспечивают хорошее качество разработки почти любого вида программного продукта. Использование Си в качестве инструментального языка позволяет получать быстрые и компактные программы. Во многих случаях программы, написанные на Си, сравнимы по скорости с программами, написанными на языке ассемблера. При этом они имеют лучшую наглядность и их более просто сопровождать. Сисочетает эффективность и мощность в относительно малом по размеру языке.

Си – это замечательный язык, и хотя некоторым он не нравится, но все же большинство программистов его любят. На Си вы можете создавать программы, которые делают все, что вы пожелаете. Нет другого такого языка, который бы так же стимулировал к программированию. Создается впечатление, что остальные языки программирования воздвигают искусственные препятствия для творчества, а Си – нет. Использование этого языка позволяет сократить затраты времени на создание работающих программ. Си позволяет программировать быстро, эффективно и предсказуемо. Еще одно преимущество Си заключается в том, что он позволяет использовать все возможности вашей ЭВМ. Этот язык создан программистом для использования другими программистами, чего о других языках программирования сказать нельзя.

3.8.1. Особенности языка Си

Язык Си имеет свои существенные особенности, давайте перечислим некоторые из них:

Си обеспечивает полный набор операторов структурного программирования. Си предлагает необычно большой набор операций. Многие операции Си соответствуют машинным командам, и поэтому допускают прямую трансляцию в машинный код. Разнообразие операций позволяет выбирать их различные наборы для минимизации результирующего кода.

Си поддерживает указатели на переменные и функции. Указатель на объект программы соответствует машинному адресу этого объекта. Посредством разумного использования указателей можно создавать эффективно-выполняемые программы, так как указатели позволяют ссылаться на объекты тем же самым путем, как это делает машина. Си поддерживает арифметику указателей, и тем самым позволяет осуществлять непосредственный доступ и манипуляции с адресами памяти.

В своем составе Си содержит препроцессор, который обрабатывает текстовые файлы перед компиляцией. Среди его наиболее полезных приложений при написании программ на Си являются: определение программных констант, замена вызовов функций аналогичными, но более быстрыми макросами, условная компиляция. Препроцессор не ограничен процессированием только исходных текстовых файлов Си, он может быть использован для любого текстового файла.

Си -гибкий язык, позволяющий принимать в конкретных ситуациях самые разные решения. Тем не менее, Си налагает незначительные ограничения в таких, например, действиях, как преобразование типов. Во многих случаях это является достоинством, однако программисты должны хорошо знать язык, чтобы понимать, как будут выполняться их программы.

3.8.2. Недостатки языка Си :

Также, как и особенностей, в языке Си присутствует куча недостатков. Ведь от них не защищен не один проект, в том числе проект разработки и выполнения программ, на языкеСи:

Язык Си предъявляет достаточно высокие требования к квалификации использующего его программиста. При изученииСи желательно иметь представление о структуре и работе компьютера. Большую помощь и более глубокое понимание идей Си, как языка системного программирования, обеспечат хотя бы минимальное знание языка ассемблер. Уровень старшинства некоторых операторов не является общепринятым, некоторые синтаксические конструкции могли бы быть лучше. Тем не менее, как оказалось Си – чрезвычайно эффективный и выразительный язык, пригодный для широкого класса задач.

3.9. Си++

Безусловно, Си++ восходит, главным образом, к сохранен как подмножество, поэтому сделанного в акцента на средствах низкого уровня достаточно, чтобы справляться с самыми насущными задачами системного программирования. , в свою очередь, многим обязан своему предшественнику BCPL.

Название Си++ — изобретение лета 1983-его. Более ранние версии языка использовались начиная с 1980-ого и были известны как "Cи с Классами ". Первоначально язык был придуман потому, что автор хотел написать событийно управляемые модели для чего был бы идеален Simula67, если не принимать во внимание эффективность. "Cи с Классами " использовался для крупных проектов моделирования, в которых строго тестировались возможности написания программ, требующих (только) минимального пространства памяти и времени на выполнение. В "Cи с Классами " не хватало перегрузки операций, ссылок, виртуальных функций и многих деталей. Си++ был впервые введен за пределами исследовательской группы автора в июле 1983-го. Однако тогда многие особенности Си++ были еще не придуманы.

Название Си++ выдумал Рик Масситти. Название указывает на эволюционную природу перехода к нему от . "++ " — это операция приращения в . Чуть более короткое имя  + является синтаксической ошибкой, кроме того, оно уже было использовано как имя совсем другого языка. Знатоки семантики  находят, что Си++хуже, чем Cи ++. Названия D язык не получил, поскольку он является расширением Cи и в нем не делается попыток исцелиться от проблем путем выбрасывания различных особенностей.

Си++ — это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей Си++ является надмножеством языка программирования . Помимо возможностей, которые дает Си++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы.

Изначально Си++ был разработан, чтобы автору и его друзьям не приходилось программировать на ассемблере,  или других современных языках высокого уровня. Основным его предназначением было сделать написание хороших программ более простым и приятным для отдельного программиста. Плана разработки Си++ на бумаге никогда не было. Проект, документация и реализация двигались одновременно. Разумеется, внешний интерфейс Си++ был написан на Си ++. Никогда не существовало «Проекта Си ++» и «Комитета по разработке Си ++». Поэтому Си++развивался и продолжает развиваться во всех направлениях, чтобы справляться со сложностями, с которыми сталкиваются пользователи, а также в процессе дискуссий автора с его друзьями и коллегами.

В качестве базового языка для Си++ был выбран , потому что он:

· многоцелевой, лаконичный и относительно низкого уровня:

· отвечает большинству задач системного программирования:

· идет везде и на всем:

· пригоден в среде программирования UNIX.

В  есть свои сложности, но в наспех спроектированном языке тоже были бы свои, а сложности  нам известны. Самое главное, работа с позволила "Cи с Классами " быть полезным (правда, неудобным) инструментом в ходе первых месяцев раздумий о добавлении к  Simula -подобных классов.

Си++ стал использоваться шире, и по мере того, как возможности, предоставляемые им помимо возможностей , становились все более существенными, вновь и вновь поднимался вопрос о том, сохранять ли совместимость с . Ясно, что отказавшись от определенной части наследия  можно было бы избежать ряда проблем. Это не было сделано, потому что:

· есть миллионы строк на , которые могли бы принести пользу в Си++ при условии, что их не нужно было бы полностью переписывать с  на Си ++;

· есть сотни тысяч строк библиотечных функций и сервисных программ, написанных на  которые можно было бы использовать из или на Си++ при условии, что Си++ полностью совместим с  по загрузке и синтаксически очень похож на  ;

· есть десятки тысяч программистов, которые знают , и которым, поэтому, нужно только научиться использовать новые особенности Си ++, а не заново изучать его основы;

· поскольку Си++ и  будут использоваться на одних и тех же системах одними и теми же людьми, отличия должны быть либо очень большими, либо очень маленькими, чтобы свести к минимуму ошибки и недоразумения.

Позднее была проведена проверка определения Си ++, чтобы удостовериться в том, что любая конструкция, допустимая и в Cи, и в Си++, действительно означает в обоих языках одно и то же.

Си++ был развит из языка программирования  и за очень немногими исключениями сохраняет  как подмножество. Базовый язык,  подмножество Си++,спроектирован так, что имеется очень близкое соответствие между его типами, операциями и операторами и компьютерными объектами, с которыми непосредственно приходится иметь дело: числами, символами и адресами. За исключением операций свободной памяти new и delete, отдельные выражения и операторы Си++ обычно не нуждаются в скрытой поддержке во время выполнения или подпрограммах.

Одним из первоначальных предназначений  было применение его вместо программирования на ассемблере в самых насущных задачах системного программирования. Когда проектировался Си++, были приняты меры, чтобы не ставить под угрозу успехи в этой области. Различие между  и Си++ состоит в первую очередь в степени внимания, уделяемого типам и структурам.  выразителен и снисходителен. Си++ еще более выразителен, но чтобы достичь этой выразительности, программист должен уделить больше внимания типам объектов. Когда известны типы объектов, компилятор может правильно обрабатывать выражения, тогда как в противном случае программисту пришлось бы задавать действия с мучительными подробностями. Знание типов объектов также позволяет компилятору обнаруживать ошибки, которые в противном случае остались бы до тестирования. Заметьте, что использование системы типов для того, чтобы получить проверку параметров функций, защитить данные от случайного искажения, задать новые операции и т.д., само по себе не увеличивает расходов по времени выполнения и памяти.

Особое внимание, уделенное при разработке Си++структуре, отразилось на возрастании масштаба программ, написанных со времени разработки . Маленькую программу (меньше 1000 строк) вы можете заставить работать с помощью грубой силы, даже нарушая все правила хорошего стиля. Для программ больших размеров это не совсем так. Если программа в 10 000 строк имеет плохую структуру, то вы обнаружите, что новые ошибки появляются так же быстро, как удаляются старые. Си++ был разработан так, чтобы дать возможность разумным образом структурировать большие программы таким образом, чтобы для одного человека не было непомерным справляться с программами в 25 000 строк. Существуют программы гораздо больших размеров, однако те, которые работают, в целом, как оказывается, состоят из большого числа почти независимых частей, размер каждой из которых намного ниже указанных пределов.

Естественно, сложность написания и поддержки программы зависит от сложности разработки, а не просто от числа строк текста программы, так что точные цифры, с помощью которых были выражены предыдущие соображения, не следует воспринимать слишком серьезно.

3.9.1. Замечание по проекту языка Си++

Существенным критерием при разработке языка была простота. Там, где возникал выбор между упрощением руководства по языку и другой документации и упрощением компилятора, выбиралось первое. Огромное значение также предавалось совместимости с , это помешало удалить синтаксис  .

В Си++ нет типов данных высокого уровня и нет первичных операций высокого уровня. В нем нет, например, матричного типа с операцией обращения или типа строка с операцией конкатенации. Если пользователю понадобятся подобные типы, их можно определить в самом языке. По сути дела, основное, чем занимается программирование на Си++ — это определение универсальных и специально-прикладных типов. Хорошо разработанный тип, определяемый пользователем, отличается от встроенного типа только способом определения, но не способом использования.

Исключались те черты, которые могли бы повлечь дополнительные расходы памяти или времени выполнения. Например, мысли о том, чтобы сделать необходимым хранение в каждом объекте ”хозяйственной” информации, были отвергнуты. Если пользователь описывает структуру, состоящую из двух 16-битовых величин, то структура поместится в 32-битовый регистр.

Си++ проектировался для использования в довольно традиционной среде компиляции и выполнения, среде программирования на  в системе UNIX. Средства обработки особых ситуаций и параллельного программирования, требующие нетривиальной загрузки и поддержки в процессе выполнения, не были включены в Си ++. Вследствие этого реализация Си++ очень легко переносима. Однако есть полные основания использовать Си++ в среде, где имеется гораздо более существенная поддержка. Такие средства, как динамическая загрузка, пошаговая трансляция и база данных определений типов могут с пользой применяться без воздействия на язык.

4. Критерии выбора среды и языка разработки программ

Понадобятся сотни часов практики, прежде чем удастся стать сколько-нибудь компетентным в своем первом языке программирования, так что бездумно учить что попало не стоит. Выбор языка программирования зависит от среды разработки, в которой хочется работать, личных предпочтений, перспектив и много другого.

Среды разработки ПО (Программного обеспечения) являются объединением программных средств, которые предназначены для написания (создания) программных продуктов. —Среда разработки включает в свое содержание: компилятор, интерпретатор, отладчик, средства автоматизации сборки, а также редактор текста.

Компилятор — это такая программа, которая считывает исходные коды, написанные программистом и преобразует эти коды в программу.

Интерпретатор — это программа которая считывает команды, находящиеся в исходных кодах, сразу выполняя их.

Когда в среде разработки ПО присутствуют все вышеназванные компоненты, тогда такую среду называют интегрированной. Такие среды разработки увеличивают темп, а также удобность разработки за счёт: автоматизации, возможности производить весь цикл создания и разработки ПО.

Обычно среда разработки ПО предназначена для разработки только на одном языке программирования. А такая среда разработки как интегрированная, предоставляет право выбрать создателю программы язык программирования для разработки, удобный разработчику (из языков поддерживаемых данной средой). Примером тому служат: Visual Studio, Komodo, Geany, Kylix, NetBeans, Eclipse.

Рассмотрим каждую среду разработки по отдельности

MicrosoftVisualStudio — одна из интегрированных сред разработки, разработана на С++ и С#, поддерживается Windows OS. Данная среда разработки переведена на десять языков (также и на русский язык). В Visual Studio создатель может вести разработку вебсайтов, веб-служб, писать консольные приложения, а также приложения с графическим интерфейсом. Также VS поддерживает разного рода дополнений. Самые знаменитые дополнения — это Re Sharper (выполняет поиск ошибок в коде во время написания кода программы разработчиком, до компиляции); Visual Assist (в отличии от Re Sharper поддерживает также и С++); AnkhSVN (использует в Visual Studio систему контроля версий, которая носит название Subversion).

Логотип:

Пример разработки программы в Visual Studio:

Достоинства: Понятный интерфейс среды разработки, удобность, автоматическое обнаружение ошибок в коде.

Недостатки: Сложно для начинающих программистов.

Среда особенно распространена в англоговорящих странах, России, Китае, Германии, Франции, Португалии, Италии, Японии, Испании и Корее.

Geany также интегрированная среда разработки ПО. Поддерживается на ОС Linux, а также на Mac Os и на Windows. Работает с тридцатью двумя языками (также и с русским языком). В составе Geany отсутствует компилятор. Компилятор можно установить как дополнение. Поддерживает достаточно много языков программирования, среди которых присутствуют классический С. С++ и С#.

Пример работы в среде Geany, на Linux OS:

Достоинства: Простота и удобность, подсветка исходного кода, возможность подключать дополнения.

Недостатки: Не включает в свой состав компилятор.

Среда распространена во многих странах (Более чем в тридцати).

Komodo или ActiveStateKomodo — была написана на JavaScript, XUL, Python. Интерфейс данной среды только на aнглийском языке. Рaботает нa теx жe опeрационных систeмах как Geany: на Os Linux, Windоws и Mac Os.

Поддерживает десять языков программирования, среди которые присутствуют: PHP, Ruby, HTML5.

Логотип Komodo:

Пример разработки в среде Komodo:

Достоинства: Дополнение Code Explorer позволяет просматривать объектное дерево скрипта или библиотеки, среда является кроссплатформенной, удобный отладчик с возможностью удаленной отладки, возможность настроить интерфейс среды «под себя».

Недостатки: Высокая стоимость, поддерживает мало языков программирования, сильно загружает компьютер (а именно оперативную память), является сложным для понимания.

Распространена в основном в англоговорящих странах.

Kylix — интегрированная среда. Функционирует на OS Linux. Работает с С, С++ и ObjectPascal.

В данной среде есть возможность писать приложения веб-служб.

Kylix выпускался в трёх пакетах. Эти пакеты: Enterprise Edition — включал в себя сто девяносто компонентов (являлся самым большим и самим дорогим пакетом программы); Professional Edition (более дешевый вариант, который включал в себя около 165 компонентов); Open Edition — бесплатный пакет программы, содержащий в себе 75 компонентов, в нём отсутствует средства для работы с базами данных.

Обновленная версия Kylix 2, в отличии от Kylix работала гораздо быстрее. Например, Kylix 1 осуществлял сортировку пузырьком массива из 115 элементов полторы минуты, Kylix 2 — одну секунду.

В 2002 году данную среду разработки прекратил поддерживать разработчик.

Пример разработки в среде Kylix:

Достоинства: Удобен в переносе написанного с одной операционной системы на другую.

Недостатки: Данная среда больше не поддерживается разработчиком.

Распространена в основном в Европейских странах и США, из-за того что разработчик (Borland) перестал поддерживать Kylix — становится всё менее популярной и не востребованной.

Netbeans — интегрированная среда разработки ПО. Была реализована на программном языке Java. Эта среда разработки высокого качества. Умеет работать на нескольких операционных системах, то есть является кроссплатформенной. Работает более чем с пятью программными языками.

Пример разработки в среде NetBeans:

Достоинства: Является бесплатной, присутствует система контроля версий, подсветка синтаксиса, возможно переименовывать переменную/класс одним кликом, в том случае если вручную переименовывать слишком долго (автоматизированное переименование), имеется возможность форматирования кода по CodeStyle, разработчиком среда постоянно совершенствуется, улучшается.

Недостатки: Временами в среде разработки возникают проблемы с кодировкой, долгий запуск программы.

Распространена во многих странах, в силу того что является удобной и бесплатной.

Eclipse — ещё одна интегрированная среда разработки ПО. Написана на языке Java в две тысячи третьем году. Также является кроссплатформенной. За счёт присоединяемых к этой среде дополнений — имеется возможность создавать программные продукты более чем на пяти языках программного кода.

Пример разработки программы в IDE Eclipse:

Достоинства: Постоянное обновление версий среды разработки, поддержка многих языков (в том числе и русского), является бесплатной, поддержка многих языков программирования, среда имеет промышленный уровень, является гибкой — то есть легко настраивается как под любую платформу, так и под любого пользователя.

Недостатки: Сильно загружает оперативную память компьютера, долго запускается, однако, если компьютер достаточно мощный — данная проблема легко решаема.

Распространена во многих странах, пользуется популярностью.

Среда разработки/критерий

Поддержка разработчиком

Является Кроссплатформенной

Поддерживает более пяти языков программирования

Шкала популярности от 1 до 5

Поддерживает русский язык

Включает в свой состав компилятор

Visual studio

5

NetBeans

4,4

Geany

5

Komodo

4

Kylix

2

Eclipse

5

Таким образом можно заметить, что данные среды разработки программного обеспечения (или подобные) можно осуществлять весь цикл разработки программного обеспечения. Но есть также интегрированные среды, которые предназначены для одного программного языка. К примеру такая среда как Visual Basic.

Для больших (или командных) проектов в среду разработки должны быть включены файловый менеджер, интегрированная среда разработки программного обеспечения, PlSql (используется и для работы с Системой Управления БД и как инструмент отчётов), Cristal Reports (создание отчётов), StarTeam (ведение журнала версий разрабатываемого продукта).

Интегрированные среды разработки ПО позволяют программистам сократить время на написание приложений, снизить затратность на написание (разработку), повысить удобность разработки — что и является одной из основных целей программной инженерии.

Интегрированные среды разработки удобны для командных проектов, постольку поскольку в таких средах можно производить весь цикл создания программного обеспечения.

Среди средств разработки информационных приложений можно выделить следующие основные группы:

- традиционные системы программирования;

- инструменты для создания файл-серверных приложений;

- средства разработки приложений клиент-сервер;

Рассмотрим кратко отличительные черты и область применения каждой группы инструментальных средств создания информационных приложений. 


Традиционные системы программирования

Традиционные системы программирования представлены средствами создания приложений на языках третьего поколения 3GL: C, Pascal, Basic и др. Среди них по способам подготовки и выполнения программных модулей различают системы компилирующего и интерпретирующего типа. Инструментальные средства программирования могут быть представлены набором отдельных утилит (редактор текстов, компилятор, компоновщик и отладчик) или интегрированной средой программирования.

Процедурные языки программирования являются традиционными, они лишь претерпели изменения от неструктурных до структурных языков программирования. Объектно-ориентированное программирование - сравнительно новое направление, однако оно в концептуальном плане более привлекательно, позволяет рассматривать и реализовывать информационные и функциональные свойства объектов в неразрывной связи.

Свойствами объектно-ориентированных языков, обуславливающими их преимущества, являются сокрытие деталей реализации объекта (инкапсуляция), наследование процедурных и информационных частей от объектов-родителей, полиморфизм как возможность настройки на различные типы данных и др. Примерами объектно-ориентированных систем программирования являются C++ и Object Pascal.

Системы программирования 3GL нужны для организации специальных модулей в информационных приложениях, для создания эффективных по быстродействию программ обработки данных. Для создания с помощью систем программирования полноценных информационных приложений необходимо расширить их за счет использования библиотек диалога и доступа к базам данных, а также макросредств встроенного языка структурированных запросов Embeded SQL.

Систему программирования Visual Basic можно использовать для создания простых автономных приложений и компонентов VBX и OCX, для расширения и интеграции функциональных пакетов (Word, Excel, Access), а также как средство программирования для расширения систем документооборота и для создания утилит администрирования.

С момента выхода продано существенно больше копий Delphi, чем Visual Basic. Применение продукта возможно для создания расчетно-аналитических программ, для разработки DLL, для сопровождения и развития разработок, выполненных на Turbo и Borland Pascal, а также для быстрого прототипирования будущих приложений. В ряде случаев решающим для выбора будут умеренные требования Delphi-приложения к системно-техническому обеспечению.

С++ применяется для расширения системного программного обеспечения, для разработки крупных проектов, специальных приложений, создания библиотек и классов для предметной области, разработки динамических библиотек DLL, создания программного обеспечения для серверов приложений, разработки ОСХ, использования совместно с CASE-системами, обеспечения многоплатформенности и переносимости (по стандарту ANSI).

Инструменты для создания файл-серверных приложений

Основой разработки файл-серверных приложений для локальных сетей ПК является инструментальное окружение различных "персональных" СУБД: FoxPro, Clipper, Paradox, Clarion, Paradox, dBase и т.п. Такие средства, как правило, реализованы в виде диалоговой интегрированной среды, предоставляющих три уровня доступа:

- программирование и создание приложений на языке, сочетающем возможности языка 3GL с некоторыми возможностями языков четвертого поколения 4GL;

- создание и ведение структуры БД и индексов, а также интерактивная генерация макетного приложения и его компонентов (меню, форм или окон, отчетов, запросов и программных модулей);

- использование диалоговой среды и генераторов конечными пользователями для создания, ведения и просмотра БД, а также формирования несложных запросов и отчетов.

Диалоговые среды поддерживают как текстовой для DOS, так и графический интерфейс пользователя для Windows. Внедрение графического интерфейса привело к развитию объектных свойств инструментов, средств визуальной генерации программ и событийного механизма приложений.

База данных для этих СУБД представляет собой совокупность файлов БД и индексов, а не единое информационное пространство, что усложняет ее сопровождение. Ни одна из традиционных СУБД для ПК не имеет средств ограничения целостности. Среди инструментальных средств СУБД для ПК преобладают интерпретирующие системы, хотя многие предоставляют и альтернативную возможность создания загрузочных модулей приложений.

СУБД для ПК MS Access может использоваться для создания масштабируемых одиночных и групповых информационных приложений и для разработки клиентской части приложений клиент-сервер, а также как средство автоматизации делопроизводства в составе MS-Office.

Традиционные инструментальные средства класса xBase (такие как FoxPro, Clipper, dBase и др.) теряют рынок (число их продаж значительно сокращается) из-за несоответствия современным требованиям. По мере того, как предприятия все шире используют СУБД MS Access и новые средства разработки, такие как Visual Basic и Delphi, популярность среды Xbase уменьшается. Более того, Microsoft может прекратить поддержку FoxPro, так как эта СУБД с устаревшим языком и сокращающейся рыночной долей не вписывается в долговременную стратегию развития средств разработки, которую Microsoft строит вокруг Visual Basic и Access. Новые "визуальные" инструменты этого класса (Visual FoxPro, CA-Visual Objects, Visual dBase) пытаются сохранить и расширить прежний ареал. Они могут быть рекомендованы для сопровождения и развития прежних xBase-разработок, для создания масштабируемых одиночных и групповых файл-серверных приложений и для переноса и адаптации приложений в архитектуру клиент-сервер с использованием интерфейса ODBC. Но нужно четко осознавать, что при применении нового инструментария для создания диалога и с переходом на SQL-операторы от прежних xBase-приложений остается ничтожно мало, а, кроме того, существенно меняется подход к разработке, и прежние навыки вряд ли будут востребованы.

Инструментальное средство MS Access хорошо зарекомендовало себя в разработке файл-серверных приложений с возможностью масштабирования, так как оно имеет удобные средства визуального конструирования, отладки и возможности использования как Access Basic, так и SQL. Интерфейс ODBC открывает широкие возможности интероперабельности с различными СУБД. В 1995 г. на долю MS Access пришлось 57% рынка настольных баз данных, а FoxPro и dBase - 9% и 2%, соответственно.

Средства разработки приложений клиент-сервер

Группу инструментальных средств для создания информационных приложений с архитектурой клиент-сервер можно разделить на следующие подгруппы:

- среды разработки приложений для серверов баз данных, независимые от СУБД инструментыдля создания приложений клиент-сервер;

- средства поддержки распределенных информационных приложений.

Среды разработки приложений для серверов баз данных

Среды разработки приложений для серверов БД представляют собой системы программирования четвертого поколения 4GL или инструментальные средства быстрой разработки приложений RAD (Rapid Application Development). Особенностями этой подгруппы средств являются: реализация удаленного доступа к СУБД по двухзвенной схеме клиент-сервер; связь клиентских приложений с серверами БД с помощью непроцедурного языка структурированных запросов SQL (кроме серверов Btrieve); обеспечение целостности БД, включая целостность транзакций; поддержка хранимых процедур на серверах БД; реализация клиентских и серверных триггеров-процедур; генерация элементов диалогового интерфейса и отчетов.

В качестве примера можно назвать инструменты Informix/4GL, Oracle*Forms и др. Сейчас новые среды разработки SQL-серверов БД (Informix NewEra и Oracle Power Objects) развиваются в сторону независимых от СУБД инструментов.

Независимые инструментальные средства, ориентированные на многие платформы СУБД, представлены в виде средств быстрой разработки приложений RAD. Для таких средств создания приложений клиент-сервер характерны: возможность распределения приложения на клиентах и/или серверах; создание приложений для разных серверов БД; поддержка спецификации ODBC для доступа к различным серверам БД, включая СУБД для ПК; связь с мониторами транзакций для организации трехзвенной архитектуры приложений клиент-сервер; объектно-ориентированное программирование приложений; визуальный характер генерации приложения; ведение репозитария объектов и их свойств, что облегчает интеграцию со средствами автоматизации проектирования программ CASE; управление проектами и версиями приложений; интеграция приложения с электронной почтой и средствами офисной автоматизации.

Известными примерами независимых инструментальных средств разработки являются: ErWin, SQLWindows, PowerBuilder, JAM и Uniface.

Средства поддержки распределенных информационных приложений

Средства поддержки распределенных приложений относятся к категории промежуточного программного обеспечения middleware для организации серверов приложений. Сюда входят разнообразные библиотеки и наборы инструментальных средств: интерфейсы доступа к базам данных ODBC и IDAPI; шлюзы для систем управления базами данных; протоколы и команды мониторов обработки транзакций; почтовые интерфейсы MAPI, VIM, MHS, X.400 и EDI; средства обмена сообщениями MOM; протоколы связывания и включения объектов OLE и динамического обмена данными DDE; протоколы удаленного вызова процедур RPC и именованных конвейеров Named Pipes, средства коммуникационного ввода-вывода BSD Sockets и WinSock.

Инструментальные наборы для разработки приложений клиент-сервер необходимо выбирать, исходя из следующих критериев : наличие объектно-ориентированной инфраструктуры, возможности распределения приложений между клиентом и сервером, обеспечена ли поддержка мониторов транзакций, доступность CASE-репозитария, возможность переноса приложений и контроль версий. При этом следует выяснить, насколько опыт разработчиков предприятия соответствует требованиям продукта, важна ли переносимость приложений на другие аппаратные платформы и базы данных, какая степень интеграции приложений устроит заказчика и нужно ли будет в дальнейшем подключать к приложению дополнительных пользователей, функции и данные.

   

Кроме того, развитие современных программных средств приводит к расширению их функциональных возможностей, в результате чего программные обеспечения разных типов конкурируют друг с другом. Так, продукт Borland C++ Builder превращающий компилятор Borland Visual C++ в полноценную среду разработки приложений в архитектуре клиент-сервер. Предлагаемый продукт дополняет C++ визуальными "дизайнерами", интуитивными "мастерами" и средствами доступа к объектно-ориентированным данным, сохраняя знакомое окружение Visual C++.

Мощное средство Oracle Forms из набора Developer/2000 предназначено для создания приложений баз данных в среде клиент/сервер, которые могут быть перенесены на платформы с различными графическими и символьными пользовательскими интерфейсами. Oracle Forms является частью Developer/2000, который поддерживает разработку приложений во время всего жизненного цикла. Приложения, созданные с помощью Developer/2000, полностью масштабируемы и применимы на любом уровне: от систем поддержки принятия решений для небольших рабочих групп до проектов с большим объемом транзакций, которые поддерживают сотни пользователей. Приложения, созданные с помощью Developer/2000, оптимизированы с целью использования всех преимуществ сервера Oracle7, поэтому они должны быть основными средствами при разработке приложений в среде Oracle7.

Инструментальная среда NewEra для СУБД Informix обладает всеми свойствами для эффективной разработки приложений в этой среде. Дополнительные преимущества - возможность интеграции с программами на С и многоплатформенность - делают ее пригодной не только при разработке приложений для СУБД Informix, но и для других систем. Следует заметить, что вопрос интероперабельности Informix-Oracle решен неудовлетворительно.

Uniface поддерживает интерфейс практически со всеми известными программно-аппаратными платформами, протоколами, СУБД и мониторами транзакций. Это средство необходимо использовать при разработке и сопровождении типовых комплексов приложений с высокой тиражируемостью. Платой за универсализм является высокая стоимость продукта.

Анализ и апробация возможностей MS Access показал, что это инструментальное средство хорошо зарекомендовало себя как в разработке файл-серверных приложений, так и для разработки клиентской части приложений в архитектуре клиент/сервер, наличие поддержки языка SQL и интерфейса ODBC открывает доступ к SQL-серверам БД. Имеется средство для миграции приложений MS Access в среду MS SQL Server. К достоинствам Access следует отнести и пониженные требования к ресурсам. К сожалению, последние версии пакета ориентированы лишь на офисную автоматизацию и не содержат runtime-компонент для создания законченного информационного приложения.

Средство JAM имеет недостаточную разрядность и может быть использовано только в приложениях, не требующих высокой точности, например для создания аналитических систем. Но его отличает многоплатформенность и поддержка мониторов транзакций.

Пакет Oracle Power Object предназначен для разработчиков, впервые приступающих к разработке приложений клиент-сервер и переходящих от таких систем, как FoxPro или Clipper, и наиболее пригоден для создания прототипов больших систем.

Система Delphi чрезвычайно удобна для разработки приложений локальных баз данных, которые при необходимости могут быть конвертированы в приложения типа клиент-сервер. Delphi следует использовать для создания масштабируемых приложений для рабочих групп, для разработки средств доступа к различным БД, для создания аналитических систем, для создания одиночных и групповых приложений, критичных по времени выполнения.

Все три средства - JAM, Oracle Power Object и Delphi - пригодны для создания быстрых прототипов, и их использование в таком качестве может иметь определенные достоинства

Далее происходит загрузка программы в оперативную память компьютера и ее выполнение. С момента начала выполнения компьютер под управлением своего ЦПУ (центральное процессорное устройство) начинает последовательно выполнять в каждый момент времени по одной команде программы. Эти моменты времени носят название такт, каждый процессор имеет свою тактовую частоту, которую задает его внутренний тактовый генератор. Чем более высокая частота работы вашего процессора, тем, соответственно, лучше и тем быстрее выполняются ваши программы[5].

Бурное развитие вычислительной техники, потребность в эффективных средствах разработки программного обеспечения привели к появлению сред программирования, ориентированных на так называемую "быструю разработку". В основе систем быстрой разработки или RAD-систем (Rapid Application Development — среда быстрой разработки приложений) лежит технология визуального проектирования и событийного программирования. Суть RAD-систем заключается в том, что среда разработки берет на себя большую часть рутины, позволяя программисту уделить больше времени и внимания на разработку логики приложения и на создание функций обработки событий, а не на создание и «рисование» интерфейса и кнопок. Производительность программиста при использовании RAD-систем очень велика. Одной из широко используемых RAD-систем является Borland C++Builder. Builder позволяет создавать различные программы: от простейших однооконных приложений до программ управления распределенными базами данных. В качестве языка программирования в среде Borland C++Builder используется C++. Borland C++Builder использует богатую библиотеку готовых компонентов VCL (Visual Component Library), которая постоянно расширяется с выходом каждой новой версии продукта. Библиотека визуальных компонентов VCL инкапсулирует сложные, трудоемкие интерфейсы Windows API в удобные, расширяемые компоненты многократного применения. Она полностью интегрирована в среду разработки и это облегчает управление свойствами и методами компонентов через программный код.

Другой известной RAD-системой является Microsoft Visual Studio. Microsoft разработали свои модели компонентов – windows forms, с# которые являются конкурентом модели VLC.

Однако каждая из этих сред имеет свои достоинства и недостатки. И для каждого программиста они индивидуальны. Кому-то важна VCL с богатым выбором функционала, а для кого-то – быстродействующая и мощная windows forms или c#.

Для разработки пакета прикладных программ РПДП было решено в качестве среды разработки выбрать среду Borland C++Builder, так как эта среда позволяет разрабатывать приложения в наикратчайшие сроки и обладает богатым функционалом.

Сперва нужно определиться с целями. Например, на какой платформе (в какой среде) хочется работать: веб, мобильные устройства, игры и 3Д-графика или крупные корпорации. В веб-разработке нужно выбирать из нескольких сфер ответственности: front-end, back-end, full-stack. Front-end разработчики отвечают за скорость загрузки сайта и правильную работу кода, back-end - написание серверного кода, а full-stack специалисты могут в одиночку выполнить все требования заказчика. Full-stack разработчики сегодня являются самыми востребованными на рынке труда. Три кита Front-end разработчика – это JavaScript, HTML и CSS. Кроме того, нужно ориентироваться в последних интернет-тенденциях и уметь их применять в повседневной работе. РНР – это базовые знания для back-end специалистов. Это не единственный инструмент, но основа всей back-end разработки. В качестве второго языка нужно учить Ruby или Python. Еще пригодится опыт работы с базами данных, азы JavaScript и SQL. Кроме самих языков программирования нужно изучить все прилагающиеся надстройки.

Для разработки мобильных приложений используются JavaScript для Андроид и Objective-C для iOS. Полезно посетить официальные ресурсы для разработчиков, а в случае работы с iOS еще и познакомиться с интерфейсом и функционалом Xcode – бесплатной среды для создания приложений. Для игр и 3Д-анимации нужен С++.

Тем, кто в перспективе хочет устроиться в одну из высокотехнологичных корпораций и больше не беспокоиться о благополучии завтрашнего дня, хорошо выполняя свои обязанности, нужно исходить из выбора этой самой корпорации. Windows работают с C#, Google и Фейсбук – с Python, а Apple – это Objective-C. Выбор языка программирования должен основываться на следующих факторах: Востребованность на рынке труда. Легкость изучения. Долгосрочные перспективы. Какие проекты можно разработать на этом языке (выбор языка и среды программирования). Если с последним пунктом – платформы и подходящие языки программирования кратко перечислены выше – все более или менее понятно, то как быть с остальными пунктами? Indeed.com – ведущий сайт поиска работы в мире – время от времени публикует статистические данные по вакансиям (соотношение предложений и соискателей). Выбор языка программирования хорошо бы делать, основываясь именно на этих данных, но одной только сухой статистикой тоже руководствоваться не стоит. Итак, на одно место разработчика Python, Java, Objective-C или РНР приходится 2,7 специалиста. Если взять данные по JavaScript, то видно, что это определенно рынок продавца – на одно место приходится всего 0,6 программиста. Кроме того, JavaScript развивается куда быстрее, чем любой другой язык, что открывает прекрасные долгосрочные перспективы. Обоснование выбора языка программирования C ++, С#, Objective-C, РНР или любого другого строится и на легкости изучения. Новичок, особенно тот, который учит язык по книгам или курсам, вряд ли справится со сложными С++ или Java. Сравнительно легко учатся Python, JavaScript или Ruby. Ruby и Python читабельны и отличаются одними из самых активных сообществ.

В том случае, если программирование представляется очень сложной задачей, начать стоит с чего-то более легкого, например, HTML или CSS. HTML не является языком программирования в полном понимании, скорее это язык разметки веб-страниц. CSS – это более современный «помощник» HTML, который позволяет делать страницы более приятными глазу, играть со шрифтами, добавлять дизайнерские элементы оформления сайтов и так далее.

Любой, кто когда-то писал статьи на заказ, наверняка уже сталкивался с HTML, а тем, кто пытался вести свой блог, возможно, знаком и CSS. Да и любой курс основ программирования начинается именно с этих двух элементов, так что знания азов лишними не будут. Учить можно по книгам: Б.Лоурсон, Р.Шарп «Изучаем HTML 5». К.Шмитт «CSS. Рецепты программирования». Раньше с парой умных книг по CSS и HTML можно было уже претендовать на какую-то должность, сейчас – это плацдарм, с которого нужно двигаться дальше.

Выбор языка программирования PHP или JavaScript – это для веб-разработчиков. Чтобы делать интернет-ресурсы красивее, интереснее и функциональнее понадобится JavaScript. С помощью него можно сделать довольно много очень разных вещей в пользовательском интерфейсе. Наилучшее обоснование выбора языка программирования PHP - именно веб-разработка. Если речь идет о серверной части, подойдут PHP, Python, Ruby и тот же JavaScript. Выбор языка программирования С # - тоже хорошая идея. На С# работают в Microsoft, Python похож на Лего, а Ruby– на пластилин.

Дизайнеры – творческие люди, которые могут считать себя далекими от точных наук. Но писать код – это как писать картину, так что сомнения, касательно того стоит ли вообще учить программирование, нужно отбросить сразу. Есть мнение, что лучше быть первоклассным дизайнером, чем второстепенным программистом, но дизайнеру стоит знать JavaScript хотя бы для воплощения своих идей. Еще подойдут относительно простые Python или Ruby.

Приложения на "Андроид", как правило, разрабатываются в Java. Работать можно на любой операционной системе – распространенность "Андроид"-смартфонов сделала разработку приложений на них очень популярной. Среду для разработки можно установить и на Windows, и на iOS. Что касается Apple, так тут разработка куда более требовательна к инструментам. Нужно учить Objective-C, комплект средств разработки и инструкцию разработчика от Apple. Работать можно только с «яблочных» устройств – Mac с версией операционной системы от 10.7 и выше.

Ребенок вполне в состоянии самостоятельно создать короткий мультфильм или незамысловатую игру. Программирование дается детям не сложнее, чем иностранные языки, а еще это открывает больше перспектив уже в подростковом возрасте. Начать можно со Scratch. Этот сервис ориентирован на детей от 8 лет и позволит создавать мультфильмы, игры, анимацию. Среда распространяется бесплатно. Скорее всего, ребенку даже не понадобится помощь родителей, разобраться в сервисе довольно просто.

Есть один секрет, который поможет стать лучшим не только в сфере программирования, а вообще где угодно. Нужно просто делать что-нибудь. Хороший способ – найти проблему, которую нужно решить. Возможно, нужно сделать сайт-визитку для собственного бизнеса, найти удобный инструмент для контроля финансов или автоматизировать рассылку твитов своим подписчикам? Далее стоит убедиться, что цель достижима, ведь без опыта и команды сделать клон Call of Duty вряд ли получится. Теперь пора выбрать набор технологий, которые позволят решить проблему. В конце концов, никогда нельзя надеяться стать настоящим профессионалом за месяц или даже год. Некоторым программирование дается очень легко, другие изучают тонны информации и делают с десяток приложений, пока полностью не поймут наконец, как работает та или иная команда. И тот, и другой путь верный. Нужно просто делать что-нибудь. Да и на самом деле совсем неважно, какой выбирать язык программирования. Все равно придется учить их несколько. Тем более, что многие инструменты и техники в разных языках похожи. Перейти на что-то другое, доучить проблемные темы потом будет проще, чем было вычить первый язык. И это, безусловно, радует.  

5. ЗАКЛЮЧЕНИЕ

Изобретение языка программирования высшего уровня позволило нам общаться с машиной, понимать её (если конечно Вам знаком используемый язык), как понимает американец немного знакомый с русским языком древнюю азбуку Кириллицы. Проще говоря, мы в нашем развитии науки программирования пока что с ЭВМ на ВЫ. Поверьте мне это не сарказм вы только посмотрите как развилась наука программирования с того времени, как появились языки программирования, а ведь язык программирования высшего уровня, судя по всему ещё младенец. Но если мы обратим внимание на темпы роста и развития новейших технологий в области программирования, то можно предположить, что в ближайшем будущем, человеческие познания в этой сфере, помогут произвести на свет языки, умеющие принимать, обрабатывать и передавать информации в виде мысли, слова, звука или жеста. Так и хочется назвать это детище компьютеризированного будущего: «языки программирования «высочайшего» уровня». Возможно, концепция решения этого вопроса проста, а ближайшее будущее этого проекта уже не за горами, и в этот момент, где нибудь в Запорожье, Амстердаме, Токио или Иерусалиме, перед стареньким 133MHz горбится молодой, никем не признанный специалист и разрабатывает новейшую систему искусственного интеллекта, которая наконец-то позволит человеку, с помощью своих машинных языков, вести диалог с машиной на ТЫ.

Размышляя над этим, хочется верить в прогресс науки и техники, в высоко — компьютеризированное будущее человечества, как единственного существа на планете, пусть и не использующего один, определенный разговорный язык, но способного так быстро прогрессировать и развивать свой интеллект, что и перехода от многоязыковой системы к всеобщему пониманию долго ждать не придется.

Завершить свой труд хорошо бы на такой оптимистичной ноте, но нет, напоследок хочется процитировать человека, фрагменты работы которого, в виде информации о языке Си, вам уже попадались на страницах этого текста:

Единственный способ изучать новый язык программирования – писать на нём программы.

Брайэн Керниган

6. БИБЛИОГРАФИЯ

1) “LEX — генератор программ лексического анализа”

Давидов Михаил Изгияевич; Антонов Вадим Геннадьевич

МОСКВА – 1985;

2) «BASIC Face-off», Justin J.Crom,

PC Tech Journal, September 1987, p.136

Перевод: Лопухов В.Н. (Интегратор Promt98);

3) “Язык программирования Си.” Б.В. Керниган, Д. Ритчи, А. Фьюэр.

Русский перевод: Москва: Финансы и Статистика. 1985 г.;

4) Интернет Энциклопедия «Википедия

https://ru.wikipedia.org/wiki/Интегрированная_среда_разработки;

5) “Языки программирования” кн.5, Ваулин А.С., 1993 г.;

6) “Языки программирования: разработка и реализация”,

П. Терренс, 1979 г.;

7) “Введение в программирование на языке Ассемблер”

ч.1, Касвандс Э.Г.;

8) “Языки программирования высокого уровня”,

Хротко Г., 1982 г.;

9) “Языки программирования”,

Малютин Э.А., Малютина Л.В., 1982 г.;

10) “Новые языки программирования и тенденции их развития”, Ушкова В., 1982 г.;

11) http://fb.ru/article/334076/obosnovanie-vyibora-yazyika-programmirovaniya-i-kriterii

12) “Алгоритмические языки реального времени”, Янг С., 1985 г..