Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Этапы развития средств вычислительной техники.

Содержание:

Введение

Знание истории развития вычислительной техники, является неотъемлемым компонентом профессиональной компетентности будущего специалиста в области информационных технологий. Первые шаги автоматизации умственного труда относятся именно к вычислительной активности человека, который уже на самых ранних этапах своей цивилизации начал использовать средства инструментального счета.

При этом, следует иметь в виду, что хорошо зарекомендовавшие себя средства развития вычислительной техники используются человеком и в настоящее время для автоматизации различного рода вычислений .

Автоматизированные системы являются неотъемлемой частью любого бизнеса и производства. Практически все управленческие и технологические процессы в той или иной степени используют средства вычислительной техники. На сегодняшний день один компьютер может заметно повысить эффективность управления предприятием, при этом, не создавая дополнительных проблем. Персональные компьютеры устанавливают на каждом рабочем месте и уже, как правило, никто не сомневается в их необходимости. Значительные объемы средств вычислительной техники и их особая роль в функционировании любого предприятия ставят перед руководством целый ряд новых задач.

Целью данной работы является рассмотрение истории развития средств вычислительной техники.

Для достижения поставленной цели необходимо решить ряд задач:

  • Подбор и анализ научной литературы по данной теме
  • Систематизация полученной информации и выделение основных этапов развития
  • Характеристика поколений ЭВМ
  • Роль средств вычислительной техники в жизни человека
  • Выводы и заключения.

1. Этапы развития средств вычислительной техники

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ) − это совокупность устройств, предназначенных для автоматизированной обработки данных [30].

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка [32].

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer — «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач [33].

В истории ВТ можно выделить следующие четыре периода:

- домеханический;

- механический;

- электромеханический;

- электронный.

1.1 Домеханический период

На заре человеческой цивилизации начался ручной период автоматизации вычислений, который базировался на использовании различных частей тела, в первую очередь, пальцев рук и ног [18].

Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет [19]. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти.

Позднее началось использование подсобных средств для счета, создавались таблицы, календари, устройства и приборы, облегчающие счет человеку. Регистрация счета была довольно примитивной: счет либо осуществлялся на костяных или каменных орудиях труда, на которых делались зарубки, либо сводился к перекладыванию по определенным правилам камешков, костяшек, дощечек. В качестве математических приемов счисления уже в IV тысячелетии до н.э., надо полагать, применялась непозиционная (неоднозначная) система. А тысячу лет спустя появилась позиционная (шестидесятичная) система счисления. Первое свидетельство о средствах подсчета относится примерно к 3-тысячному году до н.э. Именно этим временем датируется найденная археологами вблизи местечка Вестаница в Чехии т.н. "вестаницкая кость" с зарубками. Тогда же месопотамские математики использовали табулированные величины (таблицы обратных величин, умножения, второй и третьей степени, квадратных и кубических корней), составлялись календарные расчеты астрономических явлений. В произведениях древнегреческих поэта Гомера и драматурга Аристофана, относящихся к V-IV вв. до н.э., упоминается о распространении пальцевого счета, который зародился, очевидно, ранее. Его до сих пор используют в ряде случаев биржевые маклеры. В середине I тысячелетия до н.э. были созданы древнейшие из вычислительных устройств: "саламинская доска" — на острове Саламин в Эгейском море, "абак" — в Древней Греции и Риме, а затем в Западной Европе, "суанпан" — в Китае, "серобян" — в Японии. Они представляли собой доски из бронзы, камня, дерева, слоновой кости, цветного стекла с полосковыми углублениями, в которых перемещались с целью вычисления кости или камешки (калькули). Эти счеты просуществовали до эпохи Возрождения [9]. Выдающимся событием I тысячелетия н.э. было создание в IX в. "Арифметического трактата" узбекским ученым Мухаммедом бен Муса ал-Хорезми (Мухаммедом сыном Мусы из Хорезма). В XII в. трактат был переведен с арабского на латинский язык средневековой Европы. Европейцы впервые познакомились с десятичной системой счисления, пришедшей к арабам из Индии. Широко в мире стали известны четыре арифметические действия, а сами их правила долгое время назывались именем ал- Харезми — алхоризм, algorithmi, алгоритм. Это не могло не способствовать развитию средств вычислительной техники [26], [27]. В эпоху Возрождения появились канцелярские счеты, пришедшие в Европу с Востока. В начале XVII в. стало известно несколько их устройств. Одним из них были палочки Непера, позволявшие производить умножение. Другим было устройство, которое называется сейчас логарифмической линейкой. В России средства, облегчавшие вычисления, также были известны еще в давние времена [14]. Так, при строительстве храмов в Киевской Руси применялись графики и специальные устройства для определения размеров и форм куполов, арок и других элементов архитектуры. В XVI в. здесь широко использовался "счет костьми" при измерении вотчинных и поместных владений, государственных земель, а также при подсчетах в торговле и артиллерии [13]. Для облегчения налоговых счислений была создана т.н. "сошная арифметика", в которой соха принималась за единицу счета, a в дальнейшем — "дощатый счет" и конторские счеты [2].

1.2 Механический период

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда [1].

Механический период означал появление машин, в которых операции выполнялись механизмами, приводившимися в действие человеком. Уже во времена средневековья стали механически интерпретировать и воспроизводить функции человеческого мозга. Так, "мыслительная машина" средневекового богослова Луллия, дававшая ответы на вопросы "сколько?", "когда?", "какой из двух?" и др. представляла собой попытку механического воспроизведения самого процесса мышления человека. Вопросы и ответы в ней строились на основе таких характеристик, как грех, добродетель и т.п. Один из проектов механической вычислительной машины принадлежит выдающемуся художнику и мыслителю эпохи итальянского Возрождения Леонардо да Винчи (1452—1519 гг.) [2]. Он набросал эскиз тринадцатиразрядного суммирующего устройства с десятизубными колесами. Этот набросок был обнаружен в конце 60-х годов XX в. в архиве автора, хранящемся в Национальной библиотеке Мадрида. В соответствии с ним уже в наши дни американская фирма по производству компьютеров IBM в целях рекламы построила действующую машину. Первая счетная машина, о которой сохранились сведения, описана в 1623 г. немецким профессором В. Шиккардом. Нет точных данных, была ли она построена, но в начале 60-х гг. нашего века ее сконструировали по этим описаниям ученые Тюрингского университета. Операции сложения и вычитания осуществлялись в ней механически, а умножения и деления — с элементами механизации. Более известна машина французского математика, физика и философа Б. Паскаля. Молодой. 18- летний Паскаль, независимо от В. Шиккарда, в течение трех лет упорного труда (1641-1644) создал машину ("Паскалину"), которая могла суммировать. Он делал ее в помощь отцу — правительственному ревизору финансов. О ней ходили легенды и писали стихи. Весь высший свет стекался в Люксембургский дворец, чтобы посмотреть на удивительное изобретение. Его автор получил королевскую привилегию на изготовление и продажу своей машины. В настоящее время существует более 50 экземпляров машины Паскаля. Несколько ее моделей демонстрируется в одном из музеев Парижа. Вычислительную машину, с помощью которой можно было складывать, умножать и делить, изобрел знаменитый немецкий математик и философ Г. Лейбниц. В 1673 г. он представил ее в Академию наук в Париже. Немало вычислительных приборов было создано в России — М. В. Ломоносовьм, Е. Г. Кузнецовым (верстметр), Е. Якобсоном (девятиразрядная суммирующая машина) и др [5]. Последний был механиком из Несвижа Минского воеводства. Его машина, датируемая не позднее 1770 г., хранится в музее им. М. В. Ломоцосова в Санкт-Петербурге. Конечно, первые машины были несовершенны. Дороговизна изготовления, частые поломки и сложность устройства препятствовали их широкому практическому применению. Они выпускались в одном или нескольких экземплярах. Массовое производство вычислительных машин впервые организовал К. Томас — основатель и руководитель двух парижских страховых обществ. В 1820 г. он построил вычислительную машину, в которой был использован принцип работы ступенчатого валика в машине Лейбница, и начал ее изготовление на рынок. Постепенно Томас совершенствовал свои машины. Так было положено начало счетному машиностроению. Изучив счетную машину Томаса, инженер Петербургской государственной экспедиции бумаг В. Т. Однер в 1873 г, построил знаменитый арифмометр [23]. В 1896 г. на Нижегородской выставке эта машина была удостоена серебряной медали, а в 1900 г. на Всемирной выставке в Париже — золотой медали. Через три года на выставке в Чикаго она вновь отмечается высшей наградой. В России впервые в мире было организовано ее фабричное производство. Конструкция оказалась настолько удачной, что она по существу не менялась более 100 лет. Впоследствии в конструировании и совершенствовании арифмометров принимали участие многие ученые, в том числе и выдающийся русский ученый П. Л. Чебышев. В 1878 г. он сконструировал и построил оригинальную машину для выполнения сложения, а в 1882 г. — первую автоматическую вычислительную машину, принцип работы которой долгое время применялся в большинстве механических машин. Модель счетной машины Чебышева экспонировалась в 1913 г. на Всемирной выставке в Париже. В настоящее время она хранится в Парижском музее. Появилось несколько типов вычислительных машин, в т.ч. клавишные вычислительные машины. Они автоматически складывали, умножали и делили многозначные числа. Некоторые могли извлекать квадратные корни и выполнять другие арифметические операции. Дальнейшее совершенствование вычислительных машин привело к тому, что их стали соединять с пишущими механизмами. Так появились машины, которые печатали исходные данные и результаты вычислений [3]. Производительность клавишных машин зависела от того, как быстро человек набирал числа на клавиатуре и нажимал на клавиши. Это одерживало скорость работы машин. Начались поиски ее повышения. В начале XIX в. англичанин М. Ж. Жаккарт изобрел принцип стандартных картонных прокладок с пробитыми отверстиями, который применил в ткацком деле. Эти прокладки несли на себе информацию, необходимую для управления работой станка. Они явились прототипом перфокарт. Решающий вклад в развитие вычислительной техники внес английский математик И. Бэббидж (1792—1871 гг.). Он разработал проект вычислительной машины, которая состояла из тех же узлов, что и современные компьютеры. В 1822 г. он построил небольшую рабочую модель аналитической машины, которая состояла из трех основных блоков: "склада" для хранения цифровой информации, "фабрики" для обработки информации и устройства управления. Однако попытка создания вычислительных машин такого типа окончилась тогда неудачей. Машина была технически сложной, а практической потребности в ней еще не было. Ч. Бэббидж опередил свое время. Его заслуги бесспорны. Он первым разработал принципы организации и создания вычислительных машин с программным управлением, в т.ч. принцип изменения программы вычислений в зависимости от их результатов. Кроме того, большой интерес вызвал и язык машины Бэббиджа, а именно разделение команд на команды пересылки и функциональные, возможность считывания информации, не допуская ее разрушения, и считывания с очисткой запоминающих данных регистра, что все еще представляет интерес для разработчиков современных ЭВМ, и др. Основные идеи, заключенные в конструкции аналитической машины Ч. Бэббиджа, были реализованы значительно позднее [22]. С аналитической машиной Ч. Бэббиджа связано и зарождение программирования. Именно для нее создавались первые в мире программы. А первой программисткой была леди А. Лавлейс — дочь известного английского поэта Байрона [10]. Она не только производила вычисления на машине Ч. Бэббиджа, но и заложила основы теоретического программирования, написав первый учебник по этому предмету. Важное теоретическое значение для последующего развития вычислительной техники имела в это время работа Дж. К. Максвелла "Динамическая теория поля" (1864—1865 гг.). В ней давалось точное определение электромагнитного поля. Вскоре Максвелл завершил создание электродинамической картины мира. Началась эра мировой электродинамики, породившая новый период в развитии вычислительной техники [4].

1.3 Электомеханический период

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет. Электромеханический период был связан с применением электроэнергии в конструкциях счетных механизмов. Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Германом Холлеритом в 1887 году и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт, а также механизации бухучета и экономических задач. В 1897 году Холлерит организовал фирму, которая в дальнейшем стала называться IBM [6].

Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов, из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

Заключительный период (40-е годы XX века) электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

Немалый вклад внесли ученые США (Д. Пауэрс сконструировал автоматический карточный перфоратор; В. Буш — дифференциальный анализатор, т.е. первую аналоговую вычислительную машину, способную моделировать системы дифференциальных уровней; Д. Штибиц — машину, основанную на двоичной системе счисления, и др.), Германии (К. Зюс, независимо от Д. Штибица, создал такую же машину; К. Цуге — универсальную цифровую вычислительную машину с программным управлением, и др.), России (А.Н.Крылов построил первый в мире дифференциальный анализатор непрерывного действия). В это же время появились выполненные Г. Эдисоном описание явления электронной эмиссии и А Тьюрингом — схемы абстрактной машины, а также разработанные К.Шенноном основные положения алгебры высказываний. Последним крупным проектом релейной вычислительной техники следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 года в основном для решения экономических задач [21]. Начинался новый период в истории вычислительной техники — электронный.

1.4 Электронный период

В силу физико-технической природы релейная вычислительная техника не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия [16], [28].

Первой ЭВМ можно считать английскую машину Colossus, созданную в 1943 году при участии Алана Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием, однако была узкоспециализированной.

Электронный период был ознаменован, прежде всего, созданием в 1946 г. первой в мире ЭВМ "Эниак" (Electronics Numerical Integrator and Computer). Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи. Ее построили ученые Пенсильванского университета (США). Она весила 30 т., занимала площадь, равную гаражу на два автомобиля, состояла из 18 тыс. вакуумных трубок, 1,5 тысячи реле и стоила по ценам того времени почти 2,8 млн. долларов. За одну секунду машина выполняла более 300 умножений многозначных чисел или 5,000 сложений. Эниак показала большие возможности, хотя и была громоздкой, этаким "монстром с непонятным характером", по сообщениям американской печати, и потребляла мощность в 150 квт, достаточную для работы нескольких сотен современных компактных компьютеров. Еще до начала эксплуатации ENIAC Джона Моучли и Преспера Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.

Ныне машина Эниак находится в одном из музеев США. Анализ сильных и слабых сторон Эниак позволил американскому математику Дж. фон Нейману сформулировать основные принципы ЭВМ: - использование двоичной системы, - иерархическая организация памяти, - наличие арифметического устройства на основе схем, реализующих операцию сложения; - хранение программы, как и чисел, в памяти машины. Компьютер EDSAC положил начало новому этапу развития вычислительной техники - первому поколению универсальных ЭВМ [20].

Вывод: для облегчения физического труда еще с древних времен изобретались разнообразные приспособления, механизмы и машины, усиливающие механические возможности человека. Но лишь немногие механизмы помогали человеку выполнять работу, похожую в каком-то смысле на умственную, хотя потребность в такой работе возникла очень давно. В течение долгого времени вначале использовались примитивные средства счета: счетные палочки, камешки и т. д. На заре цивилизации для облегчения вычислений стали применять счеты. Если раньше подавляющее большинство людей занималось физическим трудом, то в последнее время значительная часть работающих, особенно в развитых странах, занимается умственной деятельностью. Совершенно ясно, что без машин, способных резко усилить умственные возможности человека, теперь просто не обойтись.

2. Характеристика поколений ЭВМ 

Появление Эниак отвечало потребностям растущей информатизации общества. Изучение функционирования электронных вычислительных средств, наряду с достижениями математики, информатики и физиологии нервной деятельности, в условиях растущих потребностей информационного обслуживания общества привели к возникновению кибернетики — науки об управлении в технических устройствах, живых организмах и человеческих организациях. Ее основные идеи и принципы были сформулированы в работе американского математика Н. Винера [9], вышедшей в 1948 г. Все это предопределило "компьютерную революцию" в мире. Росло не только количество ЭВМ (только в США в 1954 г. их насчитывалось 100, в 1974 — 215 тыс., в 1994 — более 30 млн.), но и заметно изменялись их качественные характеристики: увеличивались быстрота действия и объем оперативной памяти, повышалась степень интеграции элементов, улучшались внешние устройства и архитектура ЭВМ. совершенствовались методы их использования. Происходила смена поколений ЭВМ — совокупности их типов и моделей, созданных на основе одних и тех же научных и технических принципов.

Машины первого поколения (вторая половина 40-х — середина 50-х гг.), работавшие на электронных лампах, были очень больших размеров и могли выполнять небольшое количество элементарных операций. В бывшем СССР — это ЭВМ, созданные под руководством академика С. А. Лебедева, и прежде всего БЭСМ-1 — самая быстродействующая в то время машина в Европе; в Беларуси, на Минском заводе ЭВМ им. Г.К. Орджоникидзе, — серийная Минск-22 и др. Основными пользователями первых ЭВМ были инженеры-программисты, занимавшиеся сложными расчетами, а также ученые, работавшие в различных областях физики, и др. Программу выполнения действий и данные пробивали вручную на перфоленте или перфокартах, посредством которых эти сведения вводились в ЭВМ. Затем производили "отладку", в процессе которой выявлялись ошибки и перебивались перфокарты. Этот процесс тянулся неделями и месяцами. Когда все было выверено, машина за несколько минут выдавала результат счета.

Машины второго поколения (конец 50-х — первая половина 60-х гг.), работавшие на транзисторах, были меньших размеров, более надежны в работе и могли выполнять до миллиона операций в секунду. Среди них — СТРЕЧ (США), АТЛАС (Англия), БЭСМ-6 (Россия); "Минск-32" (Беларусь) и др. БЭСМ-6 поставлялась на экспорт и оказалась "долгожительницей". Корректировку и выполнение программ на них производили операторы ЭВМ.

Машины третьего поколения (вторая половина 60-х — 70-е гг.) уже были собраны на интегральных схемах. Это машины IBM-360 (фирмы International Business Mashine Corporation, США), а среди отечественных — серии ЕС (единой системы). Их мощность позволяли решать не только вычислительные, но и экономические задачи, когда приходилось вводить и выводить огромные объемы данных. Только на этих машинах стало возможным эффективно обрабатывать и нечисловую информацию, т.е. вести поиск, работать в режиме "вопрос-ответ", реализующем человеко-машинный диалог. Многопрограммный режим работы в сочетании с режимом разделения времени обеспечил взаимодействие таких машин с автоматизированными классами, оснащенными алфавитно-цифровыми дисплеями. А поскольку за различными дисплеями могли решаться различные задачи, программисты вновь получили доступ к машинам.

Машины четвертого поколения (с 80-х гг.) в качестве элементной базы имели большие и сверхбольшие интегральные схемы (ILLIAC-4, ЕС-1060, 1065; "Эльбрус"-1,2 и др.). Их рекордная продуктивность (у ILLIAC-4 до 200 млн. операций в сек.) обеспечивала решение целого круга больших задач. ЭВМ стали объединяться в многомашинные комплексы и сети с использованием для этой цели телефонной кабельной и спутниковой связи. Тем самым пользователь получил доступ к различной информации большого объема. С другой стороны, успехи микроэлектроники привели к "новой революции" — микрокомпьютерной. Появились персональные компьютеры (ПК) — небольшие по размерам универсальные ЭВМ, предназначенные для индивидуального пользования и, в ряде случаев, не уступающие по своим характеристикам большим ЭВМ. Отцом микроЭВМ по праву считается американский инженер С. Джобс. Свою первую машину он построил вместе с С. Возняком в 1977 г. Она строилась в гараже на средства, вырученные Джобсом от продажи своего личного автомобиля "Фольксваген". Профессиональная карьера С. Джобса началась с момента основания им фирмы APPLE. Сразу же возникли и непредвиденные проблемы. Обнаружилось, что такое же название и очень похожий фирменный знак имеет рок-группа "Битлз". Возникла путаница, приведшая к судебным разбирательствам. Хотя они и стали неотъемлемой частью жизни Джобса, ему все же сопутствовала удача. Популярность разработанных его фирмой микрокомпьютеров Apple — Macintosh и Lisa — с каждым годом росла, и в первую очередь среди студентов, преподавателей и научных сотрудников американских университетов. И все же начало эпохи персональных компьютеров связано фирмой IBM. В 1981 г. она выпустила свой первый компьютер ЮМ РС (Personal Computer — персональный компьютер). Затем стала выпускать более современную модель на основе микропроцессора Intel 808i которая была названа ЮМ PC XT (буквы XT взяты из слова еХТга). 1984 г. она выпустила новую модель на основе Intel 80286 — IBM-28( которая стала называться ЮМ PC AT (Advanced Technology — передовая технология). IBM AT, хотя и была совместима аппаратно и программно с IBM XT, превосходила последнюю по производительности более чем в 10 раз и была способна хранить значительно больший объем информации. Вскоре на рынке появились компьютеры, совместимые с IBM AT, но с торговой маркой других фирм. Среди них оказались и отечественные ПК, в т.ч. ЕС-1840. 1841. 1842, 1849 и др. Во второй половине 80-х гг. были выпущены новые модели: IBM-386, способная реализовать сложные программы автоматизированного проектирования и искусственного интеллекта; PS/2 (Personal Sistem/2), аналогичная XT и AT; IBM-486, производительность которой была в 2-3 раза больше, чем у IBM-386. В 1994 г. появился Pentium (IBM- 586). Благодаря ему в Лондоне наконец-то удалось обыграть чемпиона мира по шахматам Гари Каспарова. А на горизонте уже предвиделись новые "гуманизированные" компьютеры — не просто более мощные, а и более компактные, удобные и безопасные.

Пятое поколение ЭВМ (1990-наст. время) [34]. На пути к пятому поколению происходит поиск ЭВМ с высоким показателем отношения производительности машин к их себестоимости. При этом немалые надежды возлагаются на микроэлектронику с большой степенью интеграции и динамическую топографию.

Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки – задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров – устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт – везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в Интернете: благодаря им, в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.[10]

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом: компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы. Компьютеры со многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Вывод: как показывает история, компьютерная техника и информационные технологии находятся в постоянном развитии, причем темпы роста с каждым годом увеличиваются. Разработка новых и преобразование имеющихся компьютерных средств, смена одних поколений ЭВМ другими, совершенствование новых информационных технологий (НИТ) предоставляет новые возможности, которые могут и должны использоваться в сфере образования.

3. Роль средств вычислительной техники в жизни человека

Роль информатики в целом в современных условиях постоянно возрастает. Деятельность, как отдельных людей, так и целых организаций все в большей степени зависит от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств. Внедрение компьютеров, современных средств переработки и передачи информации в различные индустрии послужило началом процесса, называемого информатизацией общества. Современное материальное производство и другие сферы деятельности все больше нуждаются в информационном обслуживании, переработке огромного количества информации. Информатизация на основе внедрения компьютерных и телекоммуникационных технологий является реакцией общества на потребность в существенном увеличении производительности труда в информационном секторе общественного производства, где сосредоточено более половины трудоспособного населения [7].

Информационные технологии вошли во все сферы нашей жизни. Компьютер является средством повышения эффективности процесса обучения, участвует во всех видах человеческой деятельности, незаменим для социальной сферы. Информационные технологии - это аппаратно-программные средства, базирующиеся на использовании вычислительной техники, которые обеспечивают хранение и обработку образовательной информации, доставку ее обучаемому, интерактивное взаимодействие студента с преподавателем или педагогическим программным средством, а также тестирование знаний студента [31].

Можно предположить, что эволюция технологии, в общем и целом продолжает естественную эволюцию. Если освоение каменных орудий помогло сформироваться человеческому интеллекту, металлические повысили производительность физического труда (настолько, что отдельная прослойка общества освободилась для интеллектуальной деятельности), машины механизировали физический труд, то информационная технология призвана освободить человека от рутинного умственного труда, усилить его творческие возможности.

Вывод: информационное общество подразумевает широкое применение компьютеров во всех сферах человеческой деятельности. Сейчас в нашем обществе огромную роль играют системы распространения, хранения и обработки информации, основанные на работе компьютера. Образуются и развиваются межрегиональные и международные системы связи, которые позволяют обмениваться информацией на больших территориях за минимальные сроки. Существующие сети используются не только для поиска информации и коммуникаций, но и для обучения, электронной коммерции и в других областях, знаменуя начало формирования глобального сетевого сообщества. Продолжает формироваться и развиваться рынок информационных услуг. Определяющими стимулами развития информационной технологии, являются социально-экономические потребности общества.

Заключение

В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Мир сейчас находится на пороге информационного общества, где основную роль будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

Для достижения поставленной цели в данной работе было проанализировано большое количество информации по истории развития средств вычислительной техники, которая была систематизирована и разбита на этапы, также составлена характеристика основных поколений ЭВМ и выделена роль средств вычислительной техники в жизни человека.

С помощью изучения истории развития средств вычислительной техники можно познать все строение и значение ЭВМ в жизни человека. Это поможет лучше в них разбираться и с легкостью воспринимать новые прогрессирующие технологии, ведь не нужно забывать о том, что компьютерные технологии прогрессируют, почти, каждый день и если не разобраться в строении машин, которые были много лет назад, трудно будет преодолеть нынешнее поколение.

Уже сейчас вычислительная техника достигла просто потрясающих высот. Каковы же перспективы совершенствования персональных компьютеров, и что нас ожидает в дальнейшем в этой сфере?

При бурно развивающейся технологии компьютер будущего, возможно, будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки. Учитывая масштабы человеческой фантазии и растущие требования потребителей, можно представить себе, гибкий экран телевизора или монитора, который не разобьется, если уронить его на землю. А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

 В будущем, возможно ученые найдут способ расстаться с электронами как основными действующими лицами на сцене микроэлектроники и обратиться к фотонам. Использование фотонов позволит изготовить процессор компьютера размером с атом. О том, что наступление эпохи таких компьютеров уже не за горами говорит факт, что американским ученым удалось на доли секунды остановить фотонный пучок, а это не что иное, как луч света.

Библиографический список

1. Апокин И.А., Майстров Л.Е. Развитие вычислительных машин. - М.: Наука, 1974. – 193 с.

2. Балашов Е.П., Частиков А.П. Эволюция вычислительных систем. - М.: Знание, 1981. – 481 с.

3. Балашов Е.П., Частиков А.П. Эволюция мини - и микроЭВМ. Малые вычислительные машины. - М.: Знание, 1983. – 219-224 с.

4. Бауэр Ф., Гооз Г. Информатика / Пер. с нем. - М.: Мир, 1990. – 93 с.

5. Васильев Б.М., Частиков А.П. Микропроцессоры: история, развитие, технология // Зарубежная радиоэлектроника. - 1994. – 72-84 с.

6. Винер Н. "Кибернетика или управление и связь в животном и машине",  2-е издание. - М.: Наука; Главная редакция изданий для зарубежных стран, 1983. – 344 с.

7. Глушков В. М. Кибернетика. Вопросы теории и практики. - М.: Наука, 1986. – 188 с.

8. Головкин Б.А. Эволюция параллельных архитектур и машин серии М // Вопросы радиоэлектроники. - 1993. - Вып.2. – 433-442 с.

9. Гутер Р.С., Полунов Ю.Л. От абака до компьютера. - 2-е изд. - М.: Знание, 1981.

10. Гутер Р.С., Полунов Ю.Л. Первая программистка // Техника - молодежи. - 1978. – 99 с.

11. Дорфман В.Ф., Иванов Л.В. ЭВМ и ее элементы. Развитие и оптимизация. - М.: Радио и связь, 1988. – 358 с.

12. Дубова Н. Макроконвейерная ЭВМ // CW Россия. - 2000. – 205-212 с.

13. Ершов А.П., Шура-Бура М.Р. Пути развития программирования в СССР // Кибернетика. - 1976. – 44 с.

14. История отечественной электронной вычислительной техники — М.: Столичная энциклопедия, 2014, - 576 с

15. Королев Л.Н., Мельников В.А. Об ЭВМ БЭСМ-6 // УСИМ. - 1976. – 178-184 с.

16. Малиновский Б.Н. История вычислительной техники в лицах. - К.: фирма "Кит", ПТОО "А.С.К.", 1995. – 364 с.

17. Мельников В.А. С.А.Лебедев - основоположник отечественной вычислительной техники // Информатика и образование. - 1987. – 201 с.

18. Минский М. На пути к созданию искусственного разума // Вычислительные машины и мышление. - М.: Мир, 1967. – 169-176 с.

19. Морозов Ю. М.  История и методология вычислительной техники СПб, 2012. – 293 с.

20. Нельсон Т. Информационные системы будущего // Информационный поиск / Пер. с англ. - М.: Воениздат, 1970. – 92 с.

21. Отечественная электронная вычислительная техника. Биографическая энциклопедия — М.: Столичная энциклопедия, 2014, - 400-406 с. 

22. Петренко А.К., Петренко О.Л. Машина Бэббиджа и возникновение программирования. Историко - математические исследования. Вып.XXIV. - М.: Наука, 1979. – 257 с.

23. Поваров Г. Н. Истоки российской кибернетики. — М.: МИФИ, 2005 – 38 с.

24. Ревич Ю. В. Информационные технологии в СССР. Создатели советской вычислительной техники — СПб.: БХВ-Петербург, 2014 – 314-321 с.

25. Троицкий И.Н. Алексей Андреевич Ляпунов // Вычислительная техника и ее применение. - 1990. – 43-51 с.

26. Частиков А.П. История информатики в лицах: Говард Айкен // Информатика и образование. - 1994. – 150 с.

27. Частиков А.П. История информатики в лицах: Грейс Мюррей Хоппер // Информатика и образование. - 1995. – 383 с.

28. Частиков А.П. От калькулятора до суперЭВМ. - М.: Знание, 1988. - 17-31 с.

29. Частиков А.П., Спиридонов В.В., Победнов В.А. Закономерности развития и интеллектуализация вычислительных систем // Информационное общество и интеллектуализация вычислительных систем: Сб. материалов Всесоюз. науч. конф. "Человек в системе общественных отношений". - М., 1992. – 202-204 с.

30. Энциклопедия «Техника». — М.: Росмэн. 2006. - 70 с.

31. Яблонский С.В., Лупанов О.Б., Журавлев Ю.И. Алексей Андреевич Ляпунов // Проблемы кибернетики. - 1977. – 32 с.

Интернет-источники:

32. http://osys.ru

33. https://ru.wikipedia.org/wiki

34. http://cssblok.ru/computer/istvtexnika.html