Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Способы представления данных в информационных системах (Общие понятия представления данных)

Содержание:

Введение

На сегодняшний день информация является очень важным аспектом общественной жизни. Компьютеры и другие устройства, использующие информацию, воспринимают ее по-своему, часто отлично от человеческого восприятия. Информация может существовать во множестве различных вариантов, и для интерпретации ее в компьютерные системы необходимо использовать разнообразные преобразования. Преобразованная информация является представленной в удобном виде для информационной системы. Преобразования используются в двух случаях: для представления компьютерной информации в удобной для человека форме и для представления информации от человека в форме, удобной для компьютера. В данной работе будут рассмотрены различные способы представления информации от человека в форме, удобной для компьютера.

Целью данной работы является повышение информационной грамотности путем разбора различных вариантов преобразований информации для использования в информационных системах и других компьютерных усройствах.

Актуальность данной работы заключается в том, что непосвященному человеку сложно ориентироваться во всем многообразии информации, но при корректной структуризации данных имеется возможность правильно интерпретировать работу информационных систем.

Объектом исследования в данной работе являются общие понятия представления данных, предметом – представление данных в различных сферах.

Задачами данной работы являются:

  • изучение понятия представления данных;
  • рассмотрение кодирования информации;
  • разбор представления данных в различных сферах с примерами.

В основу данной работы легли книги таких авторов, как Грэхем и Семакин.

1. Общие понятия представления данных

1.1. Принципы представления данных в компьютере

Информация в компьютере представлена в виде кода, который состоит из нулей и единиц в разной последовательности.

Код является набором условных обозначений, предназначенных для представления информации. Кодирование является процессом представления информации в виде кода[1] [1].

Схема приема информации и ее передачи представлена на рисунке 1.

http://www.infosgs.narod.ru/picture/w11.gif

Рис. 1. Схема приема и передачи информации

1.2. Кодирование информации

Кодирование является переходом от одной формы представления информации к другой, которая более удобна для обработки, восприятия, передачи или хранения в зависимости от целей. Обязательным условием кодирования является изменение формы представления без изменения содержания[2] [8].

1.2.1. Кодирование текстовой информации

Кодовая таблица является внутренним представлением символов в компьютере. Всемирно в качестве стандарта является принятой таблица ASCII, которая расшифровывается как American Standard Code for Information Interchange, что обозначает Американский стандартный код для обмена информацией. С целью хранения одного символа двоичного кода выделен байт, равный 8 битам. С учетом приема каждым битом значения 0 или1, можно рассчитать количество возможных сочетаний в байте, которое равно 28 = 256. Таким образом, с помощью 1 байта можно получить 256 различных двоичных кодовых комбинаций и отобразить с их помощью 256 разных символов. Данные комбинации и составляют таблицу ASCII[3].

С целью сокращения записей и удобства использования кодов символов используют шестнадцатеричную систему счисления, которая состоит из 16 символов, которые представляют собой 10 цифр и 6 латинских букв от A до F. К примеру, буква T будет представлена в шестнадцатеричной системе более компактным по сравнению с двоичной системой кодом 54. Стандартом ASCII определяются первые 128 символов от 0 до 127: управляющие символы, буквы латинского алфавита и цифры. Первые 32 символа являются управляющими, предназначенными, в основном, для передачи команд управления. Вторая половина таблицы от 128 до 255 представляет собой национальный алфавит[4] [1, 4].

1.2.2. Кодирование чисел

Двоичная система счисления обладает аналогичными свойствами, как и десятичная, но использует не 10 цифр для представления чисел, а всего две. Соответственно и разряд числа называют двоичным, а не десятичным.

Для кодирования числа, которое учувствует в вычислениях, используется специальная система правил перевода в двоичную систему исчисления из десятичной. В результате использования данного метода число будет записано двоичным кодом, то есть представлено различным сочетанием всего двух цифр - 1 и 0[5] [8].

1.2.3. Кодирование графической информации

Хранить и создавать в компьютере графические объекты можно двумя способами, такими как в виде растрового изображения или в виде векторного изображения. Для каждого вида изображений используется собственный способ кодирования.

Векторное изображение является графическим объектом, который состоит из элементарных дуг и отрезков. Положение указанных элементарных объектов определяется длиной радиуса и координатами точек. Для каждой линии указывается ее цвет, толщина и тип, такой как, например, сплошная, пунктирная, штрих-пунктирная. Информация о векторном изображении кодируется в обычном буквенно-цифровом виде и обрабатывается специальными программами[6] [4].

1.2.4. Кодирование звуковой информации

Звуковая информация обычно представляется последовательностью элементарных звуков и пауз между ними. Каждый отдельный звук хранится и кодируется в памяти. Из компьютера вывод звуков осуществляется синтезатором речи, считывающим из памяти хранящийся код звука[7] [1].

По итогам данной главы можно сделать вывод, о том, что представление данных является довольно обширным понятием, котором может охватывать различные виды информации в различных сферах.

2. Представление данных в различных средах

2.1. Представление данных в математике

Любое десятичное число можно представить в любой позиционной системе счисления, для целых чисел это можно сделать единственным способом. На основании этого можно утверждать, что любое число может быть записано в виде суммы степеней числа P, где Р – натуральное число больше 1. В качестве базиса позиционной системы берется возрастающая последовательность степеней числа Р и тем самым однозначно определяется Р-ичная система счисления. Разложение числа по степеням Р является представлением данного числа в Р-ичной системе счисления. Представление числа в Р-ичной системе счисления называют развернутой формой записи числа. Другим способом записи является последовательное перечисление значащих цифр, начиная со старшей[8].

Во всех позиционных системах счисления арифметические операции выполняются по одинаковым правилам, согласно действующим таблицам умножения и сложения. Для всех систем счисления справедливы одинаковые законы арифметики; дистрибутивный, ассоциативный и коммутативный, а также правила вычитания, сложения, деления и умножения столбиком.

В Р-ичной системе счисления таблица сложения является результатом сложения каждой цифры алфавита из Р-ичной системы с любой другой цифрой в этой же системы. В случае, когда результат сложения двух цифр в Р-ичной системе больше Р – 1, то к следующему разряду добавляется 1[9].

Вычитание из большего числа меньшего в Р-ичной системе счисления можно производить столбиком аналогично вычитанию в десятичной системе. Для выполнения этой операции используется та же таблица сложения, что и в операции сложения Р-ичной системы счисления. Если вычитаемое число больше уменьшаемого, то из старшего разряда вычитается 1.

Для выполнения умножения двух многозначных чисел в Р-ичной системе надо иметь таблицы умножении и сложения в этой системе. Действия производятся по правилам умножения столбиком, при этом используется соответствующие таблицы умножения и сложения. Возможен также и подход с переводом каждого сомножителя в десятичную систему счисления, вычисление требуемого действия в этой системе и перевод результата в Р-ичную систему. Аналогичным способом можно поступать и при выполнении операций сложения и вычитания[10].

В случае деления столбиком в Р-ичной системе счисления в качестве промежуточных вычислений выполняются действия вычитания и умножения в соответствии с таблицами умножения и сложения. Тем не менее, результат деления не всегда является целым числом или конечной Р-ичной дробью. В таком случае при осуществлении операции деления обычно выделяют непериодическую часть дроби и ее период[11].

Для получения значения числа Р-ичной системы счисления в десятичной необходимо число и его коэффициенты при степенях Р записать в виде десятичных чисел и провести вычисления в десятичной системе. Данный способ можно сформулировать в виде следующего алгоритма.

  1. Каждая цифра Р-ичного числа переводится в десятичную систему счисления.
  2. Полученные числа нумеруются начиная с нуля справа налево.
  3. Число Р переводится в десятичную систему.
  4. Соответствующее каждой Р-ичной цифре десятичное число умножается на Pk, где k – номер этого числа.
  5. Результаты складываются в десятичной системе[12].

Для того, чтобы перевести число из двоичной в десятичную систему счисления, надо в десятичной системе счисления сложить все степени двоек, которые соответствуют единицам в записи исходного двоичного числа. Нумерация степеней ведется справа налево, начиная с нулевой[13] [1, 4, 8].

2.2. Представление данных в памяти ЭВМ

Современные электронные вычислительные машины реализованы на электронных элементах, называемых триггерами, которые имеют два устойчивых состояния типа выключен или включен. Данные состояния кодируются, так что одно обозначается нулем, а другое – единицей. Таким образом, язык электронных вычислительных машин содержит только два символа, также, как и телеграфная азбука Морзе. Данный метод, в свою очередь, вынуждает использовать специальные коды с целью представления данных в электронных вычислительных машинах. Данные по типу делятся на четыре группы[14].

Символьные данные используются для обозначения объектов, понятий и формирования текстов по правилам определенного языка сообщений.

Числовые данные используются для обозначения количество в различных системах счисления, таких как двоичная, восьмеричная, десятичная и шестнадцатеричная, и различных формах[15].

Данные дат используется для представления дат в различных формах, таких как американская, германская, европейская и другие подобные.

Логические данные используются для обозначения отсутствия или наличия какого-либо признака, имея только два значения: истины и лжи[16].

Основным элементом кодированного представления данных в электронных вычислительных машинах является байт. Байт представляет собой код из восьми позиций, каждая из которых содержит либо ноль, либо единицу. Например, 01001000 или 01000101 и другие подобные записи. Каждая позиция называется битом или разрядом. В зависимости от типа представляемых байтом данных, его содержимое может интерпретироваться по-разному.

В случае представлении символьных данных один байт является кодированным представлением одного символа, например, 01001101 является кодом буквы M, а 01000110 является кодом буквы F[17].

Байтом имеется представлять собой 256 различных символов. При использовании такого представления используется стандартная таблица ASCII, в которой первые 128 кодовых комбинаций являются общими для всех стран, а последние 128 кодов символов используются в различных языках, например, в русском. Каждому символу таблицы ASCII соответствует только свой и ничей другой код[18].

При представлении числовых данных один байт интерпретируется как целое число в пределах от -127 до 128. Поскольку это очень узкий диапазон, то для представления любого как дробного, так и целого числа используется несколько байт, чаще всего четыре. Получается, что если рассматривать коды букв M и F как числовые данные, то это 77 и 70 соответственно. Но если рассматривать оба байта как одно число 0100110101000110, то оно соответствует значению19782. На данный момент принят стандарт, при котором целое число занимает два байта, а дробное число четыре байта[19].

Данные типа даты представлены всегда восьмью байтами.

При представлении логических данных для одного значения достаточно одного бита (0 - .F., 1 - .T.), но в большинстве случаев для представления одного значения используется один байт[20] [2,3, 5, 7].

2.3. Представление в базах данных

Представление является виртуальной (логической) таблицей, которая представляет собой поименованный запрос, подставленный как подзапрос при использовании представления.

По сравнению с обычными таблицами реляционных баз данных, представление представляет собой не самостоятельную частью набора данных, который хранится в базе. Содержимое представления динамически вычисляется на основании данных, которые уже находятся в реальных таблицах. Изменение данных в реальной таблице БД тут же отражается в содержимом всех представлений, которые построены на основании данной таблицы[21].

Типичным способом создания представлений для систем управления базами данных, которые поддерживают структурированный язык запросов SQL, является связывание представления с определенным SQL-запросом. Получается, что содержимое представления является результатом выполнения этого запроса, а возможности построения представления ограничиваются только степенью сложности поддерживаемого конкретной СУБД диалекта SQL. Так, для типичных СУБД, таких как Oracle, Interbase, PostgreSQL, Microsoft SQL Server, Firebird, представление может содержать:

  • подмножество записей из таблицы базы данных, которое отвечает определенным условиям (например, на основе одной таблицы «Люди» можно создать два представления «Женщины» и «Мужчины», каждое из которых будет содержать записи только о людях соответствующего пола);
  • подмножество столбцов таблицы базы данных, которое требуется программе (например, из реальной таблицы «Сотрудники» представление может содержать по каждому человеку только табельный номер и ФИО);
  • результат обработки данных таблицы определенными операциями (например, представление может содержать все данные реальной таблицы, с обработкой в виде приведения строк в верхний регистр и обрезания начальных и концевых пробелов);
  • результат объединения нескольких таблиц с помощью функции объединения (например, при наличии таблиц «Адреса», «Люди», «Фирмы и организации», «Улицы» возможно построение представления, выглядящего как таблица, для каждого человека содержащее его адрес места жительства, личные данные, название места работы и адрес этой организации);
  • результат слияния нескольких таблиц с одинаковыми типами полей и именами, когда в представлении попадают все записи каждой из сливаемых таблиц (также возможно, с исключением дублирования) [22];
  • результат группировки записей в таблице (например, при наличии таблицы «расходы» с записями по каждому платежу можно построить представление, которое будет содержать израсходованные средства на каждую отдельную статью расходов);
  • практически любые комбинации вышеперечисленных возможностей.

Представления используются в запросах к базе данных таким же образом, как и обычные таблицы. В случае SQL-СУБД имя представления может находиться в SQL-запросе на месте имени таблицы. Запрос из представления обрабатывается системой управления базой данных аналогично запросу, в котором на месте имени представления находится определяющий это представление подзапрос. При этом система управления базой данных с развитыми возможностями оптимизации запросов перед выполнением запроса из представления могут проводить совместную оптимизацию запроса, который определяет представление, и запроса верхнего уровня для минимизации затрат выборки данных[23].

Использование представлений не дает каких-то совершенно новых возможностей в работе с базой данных, но может быть очень удобным.

Представлениями от прикладной программы скрываются структура таблиц базы данных и сложность запросов. В случае, когда прикладной программе требуется таблица с определенным набором данных, она осуществляет простейший запрос из подготовленного представления. В этом случае, даже если при получении этих данных используется чрезвычайно сложный запрос, сама программа этого запроса не содержит[24].

Использование представлений позволяет отделять схемы хранения от прикладной схемы представления данных. Структура данных, с точки зрения прикладной программы, соответствует тем представлениям, из которых программа эти данные извлекает. На самом деле данные могут храниться совершенно иным образом, достаточно лишь создать представление, которое отвечает потребностям программы. Разделение позволяет независимо осуществлять модификацию схемы хранения данных и прикладной программы: как при изменении программы, так и при изменении структуры физических таблиц достаточно изменять представления соответствующим образом. Изменение физической структуры таблиц не требует корректировки программы, а изменение программы не затрагивает физические таблицы[25].

С помощью представлений обеспечивается дополнительный уровень защиты данных. Пользователю могут предоставляться права только на представление, за счет чего он не будет иметь доступа к находящимся в тех же таблицах данным, которые не предназначены для него.

Поскольку выбирающий данные представления SQL-запрос фиксируется на момент его создания, система управления базой данных получает возможность применять к данному запросу предварительную компиляцию или оптимизацию, что положительно сказывается на скорости обращения к представлению, по сравнению с прямым выполнением того же запроса из прикладной программы[26].

Некоторые системы управления базой данных имеют расширенные представления для доступных только для чтения данных. Так, система управления базой данных Oracle реализует концепцию «материализованных представлений», являющихся представлениями, содержащими предварительно выбранные невиртуальные наборы данных, совместно используемых в распределенных базах данных. Эти данные извлекаются из различных удаленных источников (с разных серверов распределенной системы управления базой данных). Целостность данных в материализованных представлениях поддерживается с использованием триггеров или за счет периодических синхронизаций. Аналогичный механизм предусмотрен в Microsoft SQL Server[27].

По самой сути представления могут иметь доступ только для чтения. Но в некоторых системах управления базой данных представления могут быть редактируемыми, также, как и обычные физические таблицы. Редактирование может допускаться для представлений, которые выбраны из единственной физической таблицы таким образом, чтобы каждой записи в представлении соответствовала строго одна запись в таблице-источнике, а в числе полей представления был первичный ключ физической таблицы. При выполнении команд редактирования, удаления или добавления для такого представления сервер системы управления базой данных преобразует эти команды в соответствующие команды для физической таблицы-источника. Разумеется, если в представлении используется преобразование значений в полях или группировка записей, редактирование такого представления невозможно даже теоретически. Но и такие представления могут, тем не менее, редактироваться, за счет написания соответствующих триггеров. Но редактируемые представления, как и возможность создания триггеров для представлений, поддерживают лишь немногие системы управления базой данных[28] [3, 5, 8].

2.3.1. Представление данных в табличной форме

Таблицы являются удобной для обработки и анализа формой представления информации. Таблицы с отражением одного свойства, характеризующее два или более объектов, называются таблицами типа «объект – объект»[29].

Таблицы, где все объекты принадлежат одному множеству и отражаются несколько свойств объекта, называются таблицами вида «объект – свойство».

Комбинирование в одной таблице нескольких таблиц вида «объект – объект» и «объект – свойство» позволяет построить таблицы более сложного вида, например, таблицы «объекты - свойства – объекты»[30].

Таблица характеризуется

  • количеством строк и их названиями;
  • количеством столбцов и их названиями;
  • названием (а если таблиц несколько, то еще и номером);
  • содержимым находящихся на пересечении столбцов и строк ячеек.

В случае многоуровневых заголовков столбцов и строк уровни заголовков строк называются ступенями, уровни заголовков столбцов – ярусами[31].

Основные элементы таблицы:

  • записи являются строками таблицы, содержащими данные разного типа, но чаще всего относящиеся к одному объекту;
  • поля являются столбцами таблицы, которые обычно содержат данные одного типа;
  • реквизиты являются находящимися в ячейках таблицы конкретными значениями.

Этапы приведения к табличному виду:

  • анализ информации и выделение объектов, о которых идет речь;
  • выделение свойств объектов и отношений между ними;
  • определение того, можно ли объекты объединить в некоторые подмножества, и в зависимости от этого определение количества уровней и ступеней в заголовках;
  • определение общего количества столбцов с порядком их расположения;
  • определение наименований столбцов и типа располагающихся там данных;
  • выбор порядка размещения строк и определение названия каждой из них;
  • занесение в ячейки таблицы реквизитов – данных (по столбцам или построчно) [32] [3, 5, 8].

По итогам данной главы можно сделать вывод, что представление данных зависит от сферы применения. Представление чаще всего является переформированным видом определенной информации.

Заключение

В рамках данной работы было рассмотрено представление данных. Представление данных является характеристикой, которая выражает правила кодирования элементов и образования конструкций данных на конкретном уровне рассмотрения в вычислительной системе. Было рассмотрено кодирование информации, как переход от одной формы представления информации к другой, более удобной для восприятия, обработки, хранения или передачи в зависимости от цели. Отдельно были выделены кодирование текстовой информации, численной, графической и звуковой. Кодирование текста происходит в соответствии со стандартами по общепринятой таблице American Standard Code for Information Interchange. Для кодирования чисел используется специальная двоичная система. Для кодирования графических изображений используются специальные вектора, которые состоит из элементарных дуг и отрезков и определяются длиной радиуса и координатами точек. Звуковая информация обычно представляется последовательностью элементарных звуков и пауз между ними.

Во второй части работы были рассмотрены представления в зависимости от сферы использования, в частности были рассмотрены представления в памяти ЭВМ, в математике и в базах данных. Для представления как числовой, так и не числовой информации в памяти ЭВМ используется двоичный способ кодирования. В математике любое десятичное число можно представить в любой позиционной системе счисления. Применительно к базам данных представление является виртуальной таблицей, которая представляет собой поименованный запрос, подставленный как подзапрос при использовании представления. В забах данных представление может содержать подмножество записей из таблицы базы данных с определённым условием, подмножество требуемых столбцов таблицы базы данных, результат обработки данных таблицы определенными операциями, результат объединения нескольких таблиц с помощью функции объединения, результат полного слияния нескольких таблиц с одинаковыми типами полей и именами, результат группировки записей в таблице, а также любые комбинации из представленных методов.

Отдельным вопросом было рассмотрено представление данных в табличной форме, рассмотрены таблицы типов «объект – объект», «объект – свойство» и комбинированные.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – 312 с.
  2. Глик Д. Информация. История. Теория. Поток / Д. Глик. — М.: CORPUS, 2013. — 576 с.
  3. Годин В. Базы данных. Проектирование. Учебник / В. Годин. – М.: Юрайт, 2016. – 478 с.
  4. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – 784 с.
  5. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – 304 с.
  6. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.: Юрайт, 2011. – 224 с.
  7. Исаев Г. Проектирование информационных систем / Г. Исаев. – М.: Омега-Л, 2012. – 432 с.
  8. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – 400 с.
  1. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 246.

  2. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 256.

  3. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 425.

  4. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 174.

  5. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 166.

  6. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 124.

  7. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 215.

  8. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 235.

  9. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 162.

  10. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 300.

  11. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 556.

  12. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 226.

  13. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 146.

  14. Глик Д. Информация. История. Теория. Поток / Д. Глик. — М.: CORPUS, 2013. — С. 352.

  15. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 124.

  16. Годин В. Базы данных. Проектирование. Учебник / В. Годин. – М.: Юрайт, 2016. – С. 252.

  17. Исаев Г. Проектирование информационных систем / Г. Исаев. – М.: Омега-Л, 2012. – С. 52.

  18. Глик Д. Информация. История. Теория. Поток / Д. Глик. — М.: CORPUS, 2013. — С. 253.

  19. Годин В. Базы данных. Проектирование. Учебник / В. Годин. – М.: Юрайт, 2016. – С. 235.

  20. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 125.

  21. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 163.

  22. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 133.

  23. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 211.

  24. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 122.

  25. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 251.

  26. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 125.

  27. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 151.

  28. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 135.

  29. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 83.

  30. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 149.

  31. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 94.

  32. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 85.