Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Характеристики и типы мониторов для персональных компьютеров.(История создания первого монитора )

Содержание:

Введение

Предметом данной курсовой является монитор. Сегодня компьютерная техника используется во всех отраслях нашей жизни. Во многих профессиях, городах, на разных континентах общаются друг с другом с помощью компьютера. Персональный компьютер помогает при обучении языкам и наукам, помогает решать массу проблем и вопросов. Неотъемлемой частью персонального компьютера является монитор. Монитор-это высокотехнологическое устройство для принятия изображений, созданных видеоадаптером компьютера. С монитором мы взаимодействуем постоянно в процессе пользования. От его характеристик зависит наше здоровье и комфортность восприятия глаз. Мониторы могут воспроизводить графические изображения отличного качества, видеофильмы, рисунки наполненные информацией. На сегодняшний день существует множество разных видов мониторов с разными характеристиками. Каждый пользователь может подобрать индивидуальный монитор для своей сферы использования и настроить его под себя. В целом, мониторы приняли виртуальное окно в современном мире.

Цель курсовой работы – ознакомится и проанализировать основные виды мониторов, сравнить характеристики. Рассмотреть все возможные инновационные технологии, применяемые в первых в истории мониторах, а так же в мониторах, используемых на сегодняшний день.

В качестве основных задач данной курсовой работы выделим следующее:

- изучить историю создания первого монитора

- проанализировать и выделить основное использование мониторов

-сравнить характеристики и выявить для потребителя качественный монитор

Предметом данного исследования являются мониторы для персонального компьютера.

1. МОНИТОР КАК ОБЪЕКТ ИЗУЧЕНИЯ.

1.1 История создания первого монитора.

Монитор является электронно-отображающим дисплеем как для персонального компьютера так и для отдельных систем теле вещания, систем видео слежения и мониторинга систем безопасности. Монитор включает в себя:

  • Устройство отображения.
  • Электросхемы.
  • Корпус.

Устройство отображения информации в современных мониторах, как правило, тонкопленочный транзистор с жидкокристаллическим дисплеем, в то время как старые мониторы используют электронно-лучевую трубку, глубиной в зависимости от размера экрана.

История создания ЭЛТ-мониторов можно считать 1855[1] году. В то время немецким стеклодувом Генрихом Гейслером было сделано, на первый взгляд, не относящееся к монитором изобретение. Он создал вакуумный стеклянный сосуд.

Через несколько лет после этого изобретения один немецкий ученый, математик, физик, друг Генриха Гейслера, - Юлиус Плюккер впаял в вакуумный сосуд два электрода и подал на них напряжение. В результате возникшей разности потенциала, от одного электрода к другому пошел ток, стремящийся выровнять разность потенциалов. Под действием тока в вакуумной трубке возникло свечение , характер которого зависел от глубины вакуума.

Свечение вызывалось столкновением атомов, оставшихся в сосуде газов, с электронами, идущими от электрода с большим потенциалом к электрону с меньшим потенциалом. Так как электрон с большим потенциалом называется катодом, а с меньшим потенциалом – анодом, то поток электронов, излучаемый катодом получил название – катодные лучи.

В 1903 году Артур Венельт поместил в трубку цилиндрический электрод с отрицательным, относительно катода, потенциалом. Изменение потенциала позволяло менять интенсивность катодных лучей и тем самым яркость свечения люминофора.

В 1906 году М. Дикман и Г. Глаге доработали трубку Брауна и ввели возможность управления током, подаваемым на электромагниты. В результате они смогли отображать на экране не просто изменение тока от времени, а конкретные фигуры. В том же году они получили патент на использование трубки Брауна для передачи изображений букв и штрихов.

Электронно-лучевые трубки оказались незаменимыми в различных приборах, таких как осциллографы, позволяющих исследовать быстропротекающие процессы. Но на этом область их применения не ограничивалась. Возможность формирования изображения с помощью электронно-лучевых трубок заинтересовала множество ученых во всем мире, и вскоре стали появляться все более и более совершенные устройства.

В ней использовалось целых три электронно-лучевые трубки. Однако только одна из них отображала информацию, две других представляли собой оперативную память, позволившую избавиться от громоздких, трудоемких и опасных ртутных линий задержки.

На прообраз монитора в SSEM выводилась информация, содержавшаяся в двух других электронно-лучевых трубках.

1.2 Использование мониторов с персональным компьютером.

Первоначально, компьютерные мониторы использовались для обработки данных. Например ЭВМ[2] SSEM (Manchester Small-Scale Experimental Machine) – манчестерская малая экспериментальная машина, заработавшая в июне 1948 года.

ЭЛТ[3]-мониторы для вывода информации использовались и в ЭВМ CSIRAC (Council for Scientific and Industrial Research Automatic Computer) - Автоматическом Компьютере Совета по Научным и Промышленным Исследованиям. CSIRAC был разработан в Австралии и заработал в ноябре 1949 года.

В первых компьютерных мониторах использовались электронно-лучевые трубки (ЭЛТ). До начала 1980-х годов, они были известны как «видеотерминалы» и были физически подключены к компьютеру и клавиатуре. Мониторы были монохромными, мерцали, и качество изображения было неудовлетворительным. В 1981 году IBM представила адаптер цветная графики, который мог отображать четыре цвета с разрешением 320 на 200 пикселей. В 1984 году IBM представила расширенный графический адаптер, который был способен отображать 16 цветов и имел разрешение 640 х 350.

ЭЛТ по-прежнему являются стандартом для компьютерных мониторов ЭЛТ - технология остается доминирующей на рынке ПК мониторов в новом тысячелетии, отчасти потому, что она дешевле в производстве, и предлагает угла обзора близкие к 180 градусам. Есть несколько технологий, которые были использованы для реализации жидкокристаллических дисплеев (LCD). На протяжении 1990-х годов основное использование ЖК-технологии, как компьютерных мониторов, было в ноутбуках, где низкое энергопотребление, легкий вес и небольшие физические размеры ЖК оправдывали более высокую цену по сравнению с ЭЛТ. Например, тот же ноутбук предлагался с ассортиментом параметров отображения, на повышение цен: монохромный, пассивный цвет, цвет с активной матрицей (TFT). С ростом объема и производственных мощностей, монохромные и пассивные технологии цвета были исключены из линий производства.

Современные кинескопы по форме экрана делятся на три типа:

  • сферический
  • цилиндрический
  • плоский

У сферических экранов поверхность выпуклая и все пиксели (точки) находятся на равном расстоянии от электронной пушки. Такие ЭЛТ не дороги, изображение, выводимое на них, не очень высокого качества. В настоящее время применяются только в самых дешевых мониторах.

Шаг точки (dot pitch) - это расстояние между точками люминофора одного цвета, которые находятся в разных строках. Поскольку точки в разных рядах смещены, и не находятся друг под другом, расстояние между точками больше, чем расстояние между строками точек. Иногда шаг точки называют зерном кинескопа. Но следует помнить, что шаг точки - это ни в коем случае не размер люминофорной точки, а именно расстояние между точками разных триад. Чем меньше шаг точки, тем более четкое и детализированное изображение может воспроизводить монитор. Но утверждать, что монитор с шагом точки 0,22 лучше, чем монитор с шагом точки 0.25, неверно, так как на качество изображения влияет целый ряд более важных характеристик: точность фокусировки, качество сведения цветов

Цилиндрический экран представляет собой сектор цилиндра: плоский по вертикали и закругленный по горизонтали. Преимущество такого экрана — большая яркость по сравнению с обычными плоскими экранами мониторов и меньшее количество бликов. Основные торговые марки — Trinitron и Diamondtron.

Плоские экраны (Flat Square Tube) наиболее перспективны. Устанавливаются в самых совершенных моделях мониторов. Некоторые кинескопы этого типа на самом деле не являются плоскими, но из-за очень большого радиуса кривизны (80 м по вертикали, 50 м по горизонтали) они выглядят действительно плоскими (это, например, кинескоп FD Trinitron компании Sony).

Тип маски.

Существует три типа маски:

  • теневая маска;
  • апертурная решетка;
  • щелевая маска.

Экранное покрытие.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего - которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Апертурная решетка — это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии.

Щелевая маска—это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов (красный, синий, зеленый).

Важными параметрами кинескопа являются отражающие и защитные свойства его поверхности. Если поверхность экрана никак не обработана, то он будет отражать все предметы, находящиеся за спиной пользователя, а также его самого что делает использование монитора не комфортным и в некоторой ситуации невозможным из за отраженного света и предметов на экране монитора. Кроме того, поток вторичного излучения, возникающий при попадании электронов на люминофор, может негативно влиять на здоровье человека. Неровный верхний слой призван бороться с отражением. В техническом описании монитора обычно указывается, какой процент падающего света отражается (например, 40%). Слой с различными преломляющими свойствами дополнительно снижает отражение от стекла экрана.

Наиболее распространенным и доступным видом антибликовой обработки экрана является покрытие диоксидом кремния[4]

(Диоксид кремния (silica, Silicon dioxide, кремнезем) - вещество, состоящее из бесцветных кристаллов, обладающих высокой прочностью, твердостью и тугоплавкостью). Диоксид кремния устойчив к воздействию кислот и не взаимодействует с водой .
Это химическое соединение внедряется в поверхность экрана тонким слоем. Если поместить обработанный диоксидом кремния экран под микроскоп, то можно увидеть шершавую, неровную поверхность, которая отражает световые лучи от поверхности под различными углами, устраняя блики на экране. Антибликовое покрытие помогает без напряжения воспринимать информацию с экрана, облегчая этот процесс даже при хорошем освещении. Большинство запатентованных видов защитных покрытий против отражений и бликов основано на использовании диоксида кремния. Некоторые изготовители кинескопов добавляют в покрытие также химические соединения, выполняющие функции антистатиков. В наиболее передовых способах обработки экрана для улучшения качества изображения используются многослойные покрытия из различных видов химических соединений. Покрытие должно отражать от экрана только внешний свет. Оно не должно оказывать никакого влияния на яркость экрана и четкость изображения, что достигается при оптимальном количестве диоксида кремния, используемого для обработки экрана.

Антистатическое покрытие предотвращает попадание пыли на экран. Оно обеспечивается с помощью напыления специального химического состава для предотвращения накопления электростатического заряда. Антистатическое покрытие требуется в соответствии с рядом стандартов по безопасности и эргономике.

Также необходимо отметить, что для защиты пользователя от фронтальных излучений экран кинескопа выполняется не просто из стекла, а из композитного стекловидного материала с добавками свинца и других металлов.

Вес и размеры.

Средний вес 15-дюймовых ЭЛТ-мониторов — 12–15 кг, 17-дюймовых — 15–20 кг, 19-дюймовых — 21–28 кг, 21-дюймовых — 25–34 кг. ЖК-мониторы намного легче — их вес в среднем колеблется от 4 до 10 кг. Большой вес плазменных мониторов обусловлен их крупными размерами, вес 40-42-дюймовых панелей достигает 30 кг и выше. Типичные размеры ЭЛТ-мониторов 

Потребляемая мощность.

ЭЛТ-мониторы в зависимости от размера экрана потребляют от 65 до 140 Вт. В энергосберегающих режимах современные мониторы потребляют в среднем: в режиме «sleep» — 8,3 Вт, в режиме «off» — 4,5 Вт (обобщенные данные по 1260 мониторам, сертифицированным по стандарту «Energy Star[5]»). Существуют два варианта установки блока питания - внутри корпуса монитора и снаружи. Встроенный блок питания находится внутри корпуса монитора. Внешний блок питания расположен снаружи, вблизи монитора.

1.3 Мониторы LCD характеристики.

Технология LCD мониторов. Жидкокристаллический дисплей (LCD) — это плоскоэкранный дисплей, электрический визуальный дисплей или видеодисплей, использующий модулирующие свет свойства жидких кристаллов (ЖК). ЖК не излучают света напрямую.

Существование жидких кристаллов было установлено очень давно, почти столетие тому назад, а именно в 1888 году.

Первым, кто обнаружил жидкие кристаллы, был авст­рийский ученый-ботаник Рейнитцер. Исследуя новое син­тезированное им вещество холестерилбензоат[6], он обна­ружил, что при температуре 145°С кристаллы этого ве­щества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начина­ет вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холе-стерилбензоат обнаруживал в мутной фазе. Рассматри­вая эту фазу под поляризационным микроскопом, Рей­нитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е скорость света в этой фазе, зависит от поляризации.

Жидкий кристалл – это специфическое агрегатное со­стояние вещества, в котором оно проявляет одновре­менно свойства кристалла и жидкости. Сразу надо сказать, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Большинство веществ может быть только в четырёх, всем хорошо известных агрегатных состояниях: твердом или кристаллическом, жидком и газообразном. На самом деле, некоторые органические вещества, обладающие сложными молеку­лами, кроме четырёх названных состояний, могут образовы­вать пятое агрегатное состояние — жидкокристалли­ческое. Это состояние образуется при плавлении кристаллов некоторых веществ. При их плавлении обра­зуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость. Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жид­костью, он обладает свойством, характерным для кри­сталлов. Это — упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не та­кое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное про­странственное упорядочение молекул, образующих жид­кий кристалл, проявляется в том, что в жидких кристал­лах нет полного порядка в пространственном располо­жении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кри­сталлической решетки. Поэтому жидкие кристаллы, по­добно обычным жидкостям, обладают свойством текуче­сти.

Матрица — это основная деталь жк-монитора, которая непосредственно формирует изображение на экране. Качество изображения любого ЖК (LCD) монитора, в первую очередь, зависит от встроенной в него матрицы.

Матрицы на основе жидких кристаллов используются не только в компьютерных мониторах, они широко применяются в различных электронных устройствах, таких как: телевизоры, фото, видео - камеры,  ноутбуки, планшеты, сканеры, принтеры, смартфоны, телефоны, автомобильные навигаторы, электронные книги, плееры, часы, термометры и прочие.

TFT[7]матрица — матрица на основе тонкоплёночных транзисторов.

В различных электронных устройствах применяются разные типы TFT-матриц. Компьютерные LCD (ЖК) мониторы, в том числе экраны ноутбуков, планшетов и смартфонов, как правило, комплектуются TFT-матрицами следующих типов: TN, VA, MVA, PVA, IPS, PLS. Все они управляется тонкоплёночными транзисторами (TFT) и отличаются друг от друга принципиальными технологическими решениями.

Каждый пиксель на экране управляется тремя транзисторами, соответствующими основным цветам RGB (красному, зеленому и синему). Если включен только один из этих трёх транзисторов образуется субпиксель. Так называемые «битые» пиксели появляются при выходе из строя этих транзисторов. На разных типах TFT-матриц битые пиксели выглядят по-разному, например на TN-матрицах они светятся, образуя белые точки, а на IPS-матрицах — чёрные.

TN-TFT — технология выполнения LCD (ЖК) матрицы, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90° в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения — белые.

Качество цветопередачи матриц TN-TFT — довольно удовлетворительно. На таких матрицах пиксели имеют неоднородное свечение, в результате чего искажаются цвета. Это особенно заметно при изменении угла наблюдения (особенно по вертикали). С другой стороны матрицы TN + film (Twisted Nematic + film), или просто TN — самые быстрые по отклику и дешевые в производстве.

LCD - мониторы, оснащённые TN - матрицами отлично подходят для работы с текстовыми документами, просмотра фильмов и компьютерных игр. Так же, TN-матрицы наиболее часто используются в мобильных и портативных устройствах из-за их малой энергоёмкости.

IPS-матрицы имеют как преимущества, так и недостатки по сравнению с TN-матрицами. Преимуществом является тот факт, что в данном случае получается идеально черный цвет, а не серый, как в TN-матрицах. Другим неоспоримым преимуществом данной технологии являются большие углы обзора. К недостаткам IPS-матриц стоит отнести большее, чем для TN-матриц, время реакции пикселя. Впрочем, к вопросу о времени реакции пикселя мы еще вернемся. В заключение отметим, что существуют различные модификации IPS-матриц (Super IPS, Dual Domain IPS), позволяющие улучшить их характеристики.

MVA является развитием технологии VA, то есть технологии с вертикальным упорядочиванием молекул. В отличие от TN- и IPS-матриц, в данном случае используются жидкие кристаллы с отрицательной диэлектрической анизотропией, которые ориентируются перпендикулярно к направлению линий электрического поля. С целью увеличения углов обзора в системах с вертикальным упорядочиванием молекул используется мультидоменная структура, что и приводит к созданию матриц типа MVA. Смысл этой технологии заключается в том, что каждый субпиксел разбивается на несколько зон (доменов) с использованием специальных выступов, которые несколько меняют ориентацию молекул, заставляя их выравниваться по поверхности выступа. Это приводит к тому, что каждый такой домен светит в своем направлении (в пределах некоторого телесного угла), а совокупность всех направлений расширяет угол обзора монитора.

К достоинствам MVA-матриц следует отнести высокую контрастность (благодаря возможности получения идеально черного цвета) и большие углы обзора (вплоть до 170°). В настоящее время существует несколько разновидностей технологии MVA, например PVA (Patterned Vertical Alignment) компании Samsung, MVA-Premium и др., которые в еще большей степени повышают характеристики MVA-матриц.

Сегодня в ЖК-мониторах максимальная яркость, заявляемая в технической документации, составляет от 250 до 500 кд/м2. И если яркость монитора достаточна высока, то это обязательно указывается в рекламных буклетах и преподносится как одно из основных преимуществ монитора. Впрочем, как раз в этом кроется один из подводных камней. Парадокс заключается в том, что ориентироваться на цифры, указанные в технической документации, нельзя. Это касается не только яркости, но и контраста, углов обзора и времени реакции пикселя.

Мало того, что они могут вовсе не соответствовать реально наблюдаемым значениям, иногда вообще трудно понять, что означают эти цифры. Прежде всего, существуют разные методики измерения, описанные в различных стандартах; соответственно измерения, проводимые по разным методикам, дают различные результаты, причем вы вряд ли сможете выяснить, по какой именно методике и как проводились измерения. Вот один простой пример. Измеряемая яркость зависит от цветовой температуры, но когда говорят, что яркость монитора составляет 300 кд/м2, то возникает вопрос: при какой цветовой температуре достигается эта самая максимальная яркость? Более того, производители указывают яркость не для монитора, а для ЖК-матрицы, что совсем не одно и то же.

Для измерения яркости используются специальные эталонные сигналы генераторов с точно заданной цветовой температурой, поэтому характеристики самого монитора как конечного изделия могут существенно отличаться от заявленных в технической документации. А ведь для пользователя первостепенное значение имеют характеристики собственно монитора, а не матрицы.

Яркость является для ЖК-монитора действительно важной характеристикой. К примеру, при недостаточной яркости вы вряд ли сможете играть в различные игры или просматривать DVD-фильмы. Кроме того, окажется некомфортной работа за монитором в условиях дневного освещения (внешней засветки).

Однако делать на этом основании вывод, что монитор с заявленной яркостью 450 кд/м2 чем-то лучше монитора с яркостью 350 кд/м2, было бы преждевременно. Во-первых, как уже отмечалось, заявленная и реальная яркость – это не одно и то же, а во-вторых, вполне достаточно, чтобы ЖК-монитор имел яркость 200-250 кд/м2 (но не заявленную, а реально наблюдаемую). Кроме того, немаловажное значение имеет и тот факт, каким образом регулируется яркость монитора.

С точки зрения физики регулировка яркости может производиться путем изменения яркости ламп подсветки. Это достигается либо за счет регулировки тока разряда в лампе (в мониторах в качестве ламп подсветки используются лампы дневного света с холодным катодом Cold Cathode Fluorescent Lamp, CCFL), либо за счет так называемой широтно-импульсной модуляции питания лампы. При широтно-импульсной модуляции напряжение на лампу подсветки подается импульсами определенной длительности. В результате лампа подсветки светится не постоянно, а только в периодически повторяющиеся интервалы времени, но за счет инертности зрения создается впечатление, что лампа горит постоянно (частота следования импульсов составляет более 200 Гц).

Кроме регулирования яркости монитора за счет лампы подсветки, иногда это регулировка осуществляется самой матрицей. Фактически, к управляющему напряжению на электродах ЖК-ячейки добавляется постоянная составляющая. Это позволяет полностью открывать ЖК-ячейку, но не позволяет полностью ее закрывать. В этом случае при увеличении яркости черный цвет перестает быть черным (матрица становится частично прозрачной даже при закрытой ЖК-ячейке).

Потребляемая мощность.

Потребляемая мощность LCD монитора – примерно 50 Ватт. Она зависит в основном от размера экрана. Чем он больше – тем больше электроэнергии необходимо для обеспечения работы. В отличие от ЖК, ЭЛТ мониторы более прожорливы. ЖК-мониторы являются самыми экономичными — они потребляют от 25 до 70 Вт. В зависимости от режима, в котором они работают, для любого вида мониторов их можно выделить три – рабочий, режим ожидания и спящий. В спящем режиме лампа подсветки не работает, соответственно, на нее не надо тратить электроэнергию. Заметим, что потребляемая мощность LCD и ЭЛТ мониторов зависит от уровня яркости. Уменьшив ее, вы уменьшаете потребление электроэнергии, особенно наглядно это заметно по работе ноутбуков. Уменьшение яркости позволяет продлить время его работы в некоторых случаях даже в полтора раза.

Время реакции пикселя.

Время реакции, или время отклика пикселя, как правило, указывается в технической документации на монитор и считается одной из важнейших характеристик монитора (что не совсем верно).

В ЖК-мониторах время реакции пикселя, которое зависит от типа матрицы, измеряется десятками миллисекунд (в новых TN+Film-матрицах время реакции пикселя составляет 12 мс), а это приводит к смазанности меняющейся картинки и может быть заметно на глаз.

Различают время включения и время выключения пикселя. Под временем включения пикселя понимается промежуток времени, необходимый для открытия ЖК-ячейки, а под временем выключения – промежуток времени, необходимый для ее закрытия. Когда же говорят о времени реакции пикселя, то понимают суммарное время включения и выключения пикселя.

Время включения пикселя и время его выключения могут существенно различаться.

Когда говорят о времени реакции пикселя, указываемом в технической документации на монитор, то имеют в виду время реакции именно матрицы, а не монитора. Кроме того, время реакции пикселя, указываемое в технической документации, различными производителями матриц трактуется по-разному. К примеру, один из вариантов трактовки времени включения (выключения) пикселя заключается в том, что это время изменения яркости пикселя от 10 до 90% (от 90 до 10%).

Измерении времени реакции пикселя, подразумевается, что речь идет о переключениях между черным и белым цветами. Если с черным цветом вопросов не возникает (пиксель просто закрыт), то выбор белого цвета не очевиден. Как будет меняться время реакции пикселя, если измерять его при переключении между различными полутонами? Этот вопрос имеет огромное практическое значение. Дело в том, что переключение с черного фона на белый или, наоборот, в реальных приложениях встречается сравнительно редко. В большинстве приложений реализуются, как правило, переходы между полутонами. И если время переключения между черным и белым цветами окажется меньше, чем время переключения между градациями серого, то никакого практического значения время реакции пикселя иметь не будет и ориентироваться на эту характеристику монитора нельзя. Какой же можно вывод сделать из вышеизложенного? Все очень просто: заявляемое производителем время реакции пикселя не позволяет однозначно судить о динамической характеристике монитора. Более правильно в этом смысле говорить не о времени переключения пикселя между белым и черным цветами, а о среднем времени переключения пикселя между полутонами.
 

Количество отображаемых цветов.

Все мониторы по своей природе являются RGB-устройствами, то есть цвет в них получается за счет смешения в различных пропорциях трех базовых цветов: красного, зеленого и синего. Таким образом, каждый LCD-пиксель состоит из трех цветных субпикселов. Кроме полностью закрытого или полностью открытого состояния LCD-ячейки, возможны и промежуточные состояния, когда LCD-ячейка частично открыта. Это позволяет формировать цветовой оттенок и смешивать цветовые оттенки базовых цветов в нужных пропорциях. Количество воспроизводимых монитором цветов теоретически зависит от того, сколько цветовых оттенков можно сформировать в каждом цветовом канале. Частичное открытие LCD-ячейки достигается за счет подачи требуемого уровня напряжения на управляющие электроды. Поэтому количество воспроизводимых цветовых оттенков в каждом цветовом канале зависит от того, сколько различных уровней напряжений можно подавать на LCD-ячейку.

Для формирования произвольного уровня напряжения потребуется использование схем ЦАП с большой разрядностью, что крайне дорого. Поэтому в современных ЖК-мониторах чаще всего применяют 18-битные ЦАП и реже – 24-битные. При использовании 18-битной ЦАП на каждый цветовой канал приходится по 6 бит. Это позволяет сформировать 64 (26=64) различных уровня напряжения и соответственно получить 64 цветовых оттенка в одном цветовом канале. Всего же за счет смешения цветовых оттенков разных каналов возможно создание 262 144 цветовых оттенков. Чего вполне достаточно для восприятия глаза человеком.

При использовании 24-битной матрицы (24-битная схема ЦАП) на каждый канал приходится по 8 бит, что позволяет сформировать уже 256 (28=256) цветовых оттенков в каждом канале, а всего такая матрица воспроизводит 16 777 216 цветовых оттенков.

В то же время для многих 18-битных матриц в паспорте указывается, что они воспроизводят 16,2 млн. цветовых оттенков. Оказывается, что в 18-битных матрицах за счет всяческих ухищрений можно приблизить количество цветовых оттенков к тому, что воспроизводится настоящими 24-битными матрицами. Для экстраполяции цветовых оттенков в 18-битных матрицах используются две технологии (и их комбинации): dithering (дизеринг) и FRC (Frame Rate Control).

Суть технологии дизеринга заключается в том, что недостающие цветовые оттенки получаются за счет смешения ближайших цветовых оттенков ближайших пикселей. Рассмотрим простой пример. Предположим, что пиксель может находиться только в двух состояниях: открытом и закрытом, причем закрытое состояние пикселя формирует черный цвет, а открытое – красный. Если вместо одного пикселя рассмотреть группу из двух пикселей, то, кроме черного и красного, можно получить еще и промежуточный цвет, осуществив тем самым переход от двухцветного режима к трехцветному. В конечном результате если первоначально такой монитор мог генерировать шесть цветов (по два на каждый канал), то после такого дизеринга он будет воспроизводить уже 27 цветов.

Схема дизеринга имеет один существенный недостаток: увеличение цветовых оттенков достигается за счет уменьшения разрешения. Фактически при этом увеличивается размер пикселя, что может негативно сказаться при прорисовке деталей изображения.

Суть технологии FRC заключается в манипуляции яркостью отдельных субпикселов с помощью их дополнительного включения/выключения. Как и в предыдущем примере, считается, что пиксель может быть либо черным (выключен), либо красным (включен). Каждый субпиксел получает команду на включение с частотой кадровой развертки, то есть при частоте кадровой развертки 60 Гц каждый субпиксел получает команду на включение 60 раз в секунду. Это позволяет генерировать красный цвет. Если же принудительно заставлять включаться пиксель не 60 раз в секунду, а только 50 (на каждом 12-м такте производить не включение, а выключение пикселя), то в результате яркость пикселя составит 83% от максимальной, что позволит сформировать промежуточный цветовой оттенок красного.

Оба рассмотренных метода экстраполяции цвета имеют свои недостатки. В первом случае – это возможное мерцание экрана и некоторое увеличение времени реакции, а во втором – вероятность потери деталей изображения.

Отличить на глаз 18-битную матрицу с экстраполяцией цвета от истинной 24-битной довольно сложно. При этом стоимость 24-битной матрицы значительно выше.

Угол обзора.

Максимальный угол обзора (как по вертикали, так и по горизонтали) определяется как угол, при обзоре с которого контрастность изображения в центре составляет не менее 10:1. Некоторые производители матриц при определении углов обзора используют контрастность не 10:1, а 5:1, что также вносит некоторый беспорядок в технические характеристики. Формальное определение углов обзора довольно неясное, что самое главное, не имеет прямого отношения к правильности цветопередачи при просмотре изображения под углом.

В действительности для пользователей куда более важным обстоятельством является тот факт, что при просмотре изображения под углом к поверхности монитора происходит не падение контрастности, а цветовые искажения. К примеру, красный цвет превращается в желтый, а зеленый – в синий. Причем подобные искажения у разных моделей проявляются по-разному: у некоторых они становятся заметными уже при незначительном угле, много меньшем угла обзора. Поэтому сравнивать мониторы по углам обзора в принципе неправильно. Сравнить-то можно, но вот практического значения такое сравнение не имеет.

Способ подключения монитора к компьютеру

Существует два способа подключения монитора к компьютеру: сигнальный (аналоговый) и цифровой. 
Монитору необходимо подведение видеосигналов, несущих информацию, отображаемую на экране. Цветному монитору требуется три сигнала, кодирующих цвет (RGB), и два сигнала синхронизации (вертикальной и горизонтальной развертки). Для подключения монитора к компьютеру используют сигнальные (аналоговые) кабели различных типов. Со стороны компьютера такой кабель в большинстве случаев имеет трехрядный разъем DB15/9, который еще называют VGA-разъемом. Этот разъем используется в большинстве IBM-совместимых компьютеров. Компьютеры Macintosh производства компании Apple используют другой соединитель — двухрядный DB15. Кроме того, существуют специальные коаксиальные кабели.

Со стороны монитора кабель может быть вмонтирован в монитор либо иметь разъемное соединение, в качестве которого используется тот же DB15/9, либо коаксиальный соединитель типа BNC. Некоторые мониторы для удобства имеют два переключаемых входных интерфейса: DB15/9 и BNC. Имея два компьютера, можно один монитор использовать для работы с двумя компьютерами (естественно не одновременно).

Помимо сигнального соединения возможно соединение монитора с компьютером через цифровой интерфейс, позволяющий управлять монитором из компьютера: калибровать его внутренние цепи, настраивать геометрические параметры изображения и т. п. В качестве цифрового интерфейса наиболее часто применяется разъем RC-232C.

Средства управления и регулирования

После настройки монитора на заводе он проделывает долгий путь, прежде чем попадет на стол к пользователю. На этом пути монитор подвергается различным механическим, термическим и прочим воздействиям. Это приводит к тому, что предустановленные настройки сбиваются и после включения изображение на экране отображается не очень качественно. Этого не может избежать ни один монитор. Для того, чтобы устранить эти, а также прочие, возникающие в процессе использования монитора, дефекты, монитор должен обладать развитой системой автоматического регулирования и управления, в противном случае потребуется вмешательство специалистов.

Под управлением понимают подстройку таких параметров, как яркость, геометрия изображения на экране. Существуют два типа систем управления и регулирования монитора: аналоговые (ручки, движки, потенциометры) и цифровые (кнопки, экранное меню, цифровое управление через компьютер). Аналоговое управление используется в дешевых мониторах и позволяет напрямую изменять электрические параметры в узлах монитора. Как правило, при аналоговом управлении пользователь имеет возможность настраивать только яркость и контраст. Цифровое управление обеспечивает передачу данных от пользователя к микропроцессору, управляющему работой всех узлов монитора. Микропроцессор на основании этих данных делает соответствующие коррекции формы и величины напряжений в соответствующих аналоговых узлах монитора. В современных мониторах используется только цифровое управление, хотя количество контролируемых параметров зависит от класса монитора и варьируется от нескольких простейших параметров (яркость, контраст, примитивная подстройка геометрии изображения) до сверх расширенного набора — 25–40 параметров, обеспечивающие точные настройки и более простые в эксплуатации 

2. ТЕХНОЛОГИИ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ.

2.1 Основные компоненты для передачи визуальной информации.

Монитор является жизненно важным посредником в обмене информацией между человеком и компьютером, таким же, как клавиатура и мышь. Однако на свет он появился позже других устройств. До появления первых мониторов с электронно-лучевыми трубками стандартным интерфейсом служил телетайп — громоздкая и очень шумная машина, печатающая на рулоне бумаги вводимую и выводимую информацию. В первых персональных компьютерах для отображения выводимой информации часто использовались светодиодные экраны. По сравнению с современными стандартами первые компьютерные мониторы были крайне примитивны; текст отображался только в одном цвете (как правило, в зеленом), однако в те годы это было важнейшим технологическим прорывом, поскольку пользователи получили возможность вводить и выводить данные в режиме реального времени. Затем появились цветные мониторы, увеличился размер экрана и жидкокристаллические панели перекочевали из портативных компьютеров на рабочие столы пользователей. Последние тенденции — крупноформатные плазменные дисплеи и LCD/DLP-проекторы — полностью отражают все возрастающую конвергенцию компьютерных технологий и сферы развлечения. В наши дни компьютерные мониторы достигли высшей ступени развития, что не избавляет пользователя от необходимости разбираться в аппаратном обеспечении. Медленный видеоадаптер может затормозить работу даже самого быстрого компьютера. А неправильное сочетание монитора и видеоадаптера не только не позволит полноценно выполнять поставленные задачи, но и может привести к ухудшению зрения. Система отображения компьютера состоит из двух главных компонентов. Монитор (дисплей) обычно представляет собой жидкокристаллический экран или переднюю панель электронно-лучевой трубки, но может быть и широкоформатным телевизором, плазменной панелью и проектором, использующими технологии LCD и DLP[8].

Видеоадаптер (графический адаптер или видеокарта) в большинстве систем представляет собой карту расширения, вставляемую в один из разъемов материнской платы. В некоторых системах он интегрирован в саму системную плату или в ее набор микросхем системной логики, однако и такие компьютеры можно дополнить обособленным и более производительным видеоадаптером AGP, PCI или PCI-Express. В этой главе рассматриваются видеоадаптеры, используемые в PC-совместимых компьютерах, и мониторы, которые могут к ним подключаться. Примечание Термин видео не обязательно означает именно изображение, движущееся на экране, подобном телевизионному. Все адаптеры, передающие сигналы монитору или другому устройству, называются видеоадаптерами (или графическими адаптерами) независимо от их назначения: они могут использоваться как в приложениях с движущимися изображениями наподобие мультимедийных программ, так и для видеоконференций. Поэтому видеокарты более уместно было бы называть графическими адаптерами. Компьютерный монитор обычно базируется на одной из двух основных технологий: жидкокристаллический дисплей LCD (Liquid Crystal Display) или электронно-лучевая трубка CRT (Cathode-Ray Tube). Проекторы базируются на технологии LCD или DLP (Digital Light Processing — цифровая обработка света).

ЗАКЛЮЧЕНИЕ.

Сложно представить использование персонального компьютера без имеющихся на сегодняшний день типов мониторов с их индивидуальными характеристиками. Сегодня пользователь сам может диктовать и настраивать монитор под его вкус: цветопередачи, контрастности и яркости, задавать режим автоматического включения и выключения монитора, заранее запрограммировав его заблаговременно. Производители мониторов идут навстречу своему потребителю, ежедневно улучшая и приближая монитор к экологически и физически безопасному устройству, используя качественные и надежные материалы для сборки мониторов на производстве. При этом изготовитель стремится, каждый раз удивить покупателя не только усовершенствованной технологией отображения информации, но и снижением цен на технологию использующейся еще вчера и по сей день в различных устройствах и приборах, используемые как на производстве, военном вооружении так и в быту.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. В.Э.Фигурнов “IBM PC для пользователя “, -67стр.
  2. С.Чандрасекар "Жидкие кристаллы",-153стр.
  3. А.В.Петроченков “Hardware—компьютер и периферия “, -106стр.
  4. “HARD 'n' SOFT “ (компьютерный журнал для широкого круга пользователей)2003. -№6
  5. Чеканов Д., Мильчаков С. Технология жидкокристаллических мониторов (LCD). − 3DNews.
  6. Пахомов С. “Компьютер пресс” (компьютерный журнал),2004.-126стр.
  7. http://all-ht.ru/inf/pc/monit_crt_hist.html
  8. http://www.hardline.ru/3/24/4983/

Приложения

Приложение А

Виды мониторов:

C:\Users\Владелец\Desktop\monitors.jpg

ЭЛТ-мониторы – это мониторы, формирующие изображение с помощью электронно-лучевой трубки, из которой под действием электростатического поля исходит поток электронов, бомбардирующий внутреннюю поверхность экрана монитора, покрытую люминофором. Люминофор под воздействием электронов начинает светиться, формируя изображение на экране монитора.

Рисунок 1.

C:\Users\Владелец\Desktop\1-1.gif

(Электронно-лучевая трубка монитора ЭЛТ)

Номинальный размер диагонали, дюймов

Типичный видимый размер диагонали, см

Видимая площадь экрана, см2

Увеличение видимой площади экрана по сравнению с предыдущим типом, %

14

33,55

540,3

15

35,05

598,7

10,8

17

40,55

789,3

33,4

20

47,50

1083,0

37,2

21

50,35

1216,9

12,4

Таблица 1. Типичные значения видимого размера диагонали и площади экрана монитора. Источник: http://www.hardline.ru/3/24/4983/

Рисунок 2

Трубка крукса

(трубка Крукса) Источник: http://all-ht.ru/inf/pc/monit_crt_hist.html

Трубка Крукса – модифицированная сильно-разряженная трубка Гейсслера, использованная английским физиком Уильямом Круксом (William Crookes, 1832-1919) для своих исследований. Он установил, что характер разряда в трубке Гейсслера меняется в зависимости от давления и полностью исчезает при глубоком вакууме. Трубка Крукса имеет холодный катод, а значит, генерация электронов может быть обеспечена только ионизацией остаточного газа  высоким напряжением между электродами, приводящей к так называемому разряду Таундсенда  (Townsend discharge). Сущность данного явления заключается в том, что положительные ионы газа выбивают с поверхности катода отрицательные электроны, которые и создают катодный ток. Так как трубка достаточно разряжена, электроны при своём движении к аноду почти не соударяются с молекулами газа. Часть электронов проходит мимо анода, ударяет атомы в стекле, переводит их на более высокий энергетический уровень и вызывает флуоресценцию, как правило, жёлто-зелёную. Сами электроны невидимы, но свечение показывает, где пучок электронов попадает на стекло. Физические процессы в трубке Крукса сложны и были досконально изучены только с развитием физики плазмы в начале 20 века.

Приложение Б

LCD - это плоскоэкранный дисплей, электрический визуальный дисплей или видеодисплей, использующий модулирующие свет свойства жидких кристаллов (ЖК). ЖК не излучают света напрямую.

Рисунок 3

http://myhdplayer.ru/wp-content/uploads/2010/08/lcd-how-to.png

(Принцип работы монитора LCD)

Исходя из всего вышеприведенного, может сложиться впечатление, что технологии LCD не имеют недостатков. Это, конечно же, не так и у LCD-мониторов имеются свои недостатки. Но в то время как выпуск мониторов на электронно-лучевых трубках сокращается, технологии LCD развиваются и такие известные их недостатки, как малое время отклика или небольшой угол обзора, становятся все менее актуальными. А по большому числу параметров LCD-монитор все больше и больше превосходит CRT. И если дизайнеры до сих пор отдают предпочтение профессиональным и дорогим мониторам на электронно-лучевых трубках из-за их качественной цветопередачи, то большинство остальных пользователей, как в офис, так и домой все больше склоняются в пользу LCD. И, думаю, перевес в сторону LCD будет только увеличиваться. 

Приложение В

LED- мониторы заключены в тонкий, элегантный корпус. На треть тоньше и легче по сравнению с большинством традиционных LCD-мониторов. Это стало возможно благодаря использованию светодиодной подсветки вместо обычных ламп. LED-мониторы имеют потрясающе высокий уровень динамической контрастности 5 000 000:1. Благодаря этому цвета становятся более насыщенными, а оттенки более глубокими. Повышается детализация не только светлых, но темных объектов.

Оптимальная яркость

Использование светодиодов позволяет динамически изменять подсветку для достижения лучшей цветопередачи и отображения каждой детали с оптимальной яркостью. LED наиболее эффективно справляется с такими традиционно трудными областями, как отображение темных и желтых оттенков, не допуская засвета изображения.

Кроме того,  светодиоды абсолютно безынерционны и набирают полную яркость немедленно после подачи питания. Тогда как CCFL-дисплеи начинают соответствовать заявленным характеристикам лишь через полчаса-час после включения.

Экономичность и экологичность

LED-мониторы потребляют на 36% меньше электроэнергии, чем обычные мониторы. Это не только позволяет снизить выброс вредных веществ в атмосферу, но и сэкономить на счетах за электроэнергию. Мониторы с LED-подсветкой не содержат ртути, и потому безопасны для окружающей среды. Режим Eco, доступный на некоторых моделях мониторов, поможет еще больше сократить энергопотребление.

http://www.oz-softservice.ru/upload/blog/1e8/3.JPGРисунок 4

(светопередача LED мониторов)

  1. http://all-ht.ru/inf/pc/monit_crt_hist.html

  2. http://all-ht.ru/inf/pc/monit_crt_hist.html

    ЭВМ—электронно-вычислительная машина

  3. ЭЛТ—Электронно-лучевая трубка

  4.  http://www.neboleem.net/dioksid-kremnija.php

  5. http://faqhard.ru/hard/spr/3/03.php

  6. http://chem21.info/info/1106044/

  7. TFT—тонкопленочный транзистор

  8. DLP (Digital Light Processing) — технология, используемая в проекторах. Её создал Лари Хорнбек из компании Texas Instruments в 1987 году.