Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Что такое нейронная сеть?

Содержание:

Введение.

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному — ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Что такое нейрон?

Нейрон — это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый).

Важно помнить, что нейроны оперируют числами в диапазоне [0,1] или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ — это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях.

Что такое синапс?

Синапс это связь между двумя нейронами. У синапсов есть 1 параметр — вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример — смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов — это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.
Важно помнить, что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Что такое нейронная сеть ?

Нейронная сеть — это последовательность нейронов, соединенных между собой синапсами.

Нейронная сеть - то система соединенных и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, эти процессоры вместе способны выполнять довольно сложные задачи, поскольку нейронные сети обучаются в процессе работы.

Какими бывают нейронные сети и что они умеют?

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры — наборов параметров данных и веса этих параметров, некой приоритетности.

Самыми распространенными применениями нейронных сетей является:

Классификация — распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание — возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.



Распознавание — в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Как работает нейронная сеть?

https://habrastorage.org/files/8bf/88c/293/8bf88c293fc64a55bf09ea3e8c991ecb.png


В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H — скрытый нейрон, а буквой w — веса. Из формулы видно, что входная информация — это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации.

Функция активации — это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия — это диапазон значений

Линейная функция

https://habrastorage.org/files/84d/a8a/f6b/84da8af6b86c4c48bcaafb5be1c53ff6.png


Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.
 

Сигмоид

https://habrastorage.org/files/150/8ef/062/1508ef06235444c3bc74a942812b4eb7.png


Это самая распространенная функция активации, ее диапазон значений [0,1]. Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

Гиперболический тангенс

https://habrastorage.org/files/c71/db2/a75/c71db2a756494e5298ed1d5b5f15cbc9.png


Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.
 

Тренировочный сет

Тренировочный сет — это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.
 

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.
 

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.

https://habrastorage.org/files/d73/0a6/439/d730a643937f45ca997d73eec4fabddd.png


Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n
раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.
 

Ошибка

Ошибка — это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации,

и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

MSE

https://habrastorage.org/files/8b2/b5a/997/8b2b5a9974f841a0af487f671aae850b.png


Root MSE

https://habrastorage.org/files/2dc/6e7/193/2dc6e7193baa47178ddd5ea8f33faa11.png


Arctan

https://habrastorage.org/files/7df/1a8/e0f/7df1a8e0f36944af87d7452701c97624.png


Принцип подсчета ошибки во всех случаях одинаков. За каждый сет, мы считаем ошибку, отняв от идеального ответа, полученный. Далее, либо возводим в квадрат, либо вычисляем квадратный тангенс из этой разности, после чего полученное число делим на количество сетов.
 

Задача


Теперь, чтобы проверить себя, подсчитайте результат, данной нейронной сети, используя сигмоид, и ее ошибку, используя MSE.

Данные: I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.

https://habrastorage.org/files/dad/168/f54/dad168f54a2d4cf0b6508200eda50eef.png

В последние несколько лет мы наблюдаем взрыв интереса к нейроным сетям, которые успешно применяются в самых различных областях - бизнесе, медицине, технике, геологии , физике. Нейронные сети вошли в практику везде, где нужно решать задачи прогнозирования, классификации или управления. Такой впечатляющий успех определяется несколькими причинами:

  • Богатые возможности.  Нейронные сети - исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. В частности, нейронные сети нелинейны по свой природе (смысл этого понятия подробно разъясняется далее в этой главе). На протяжение многих лет линейное моделирование  было основным методом моделирования в большинстве областей, поскольку для него хорошо разработаны процедуры оптимизации. В задачах, где линейная аппроксимация неудовлетворительна (а таких достаточно много), линейные модели работают плохо. Кроме того, нейронные сети справляются с "проклятием размерности", которое не позволяет моделировать линейные зависимости в случае большого числа переменных
  • Простота в использовании.  Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, конечно, требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики.

Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на примитивной биологической модели нервных систем. В будущем развитие таких нейро-биологических моделей может привести к созданию действительно мыслящих компьютеров. Между тем уже "простые" нейронные сети, которые строит система ST Neural Networks , являются мощным оружием в арсенале специалиста по прикладной статистике.

Список используемый материалов:

http://statsoft.ru/home/textbook/modules/stneunet.html

https://blog.ingate.ru/detail/neyronnye-seti-kakie-byvayut-i-kak-ikh-ispolzuyut-brendy/

https://habr.com/post/312450/