Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Различные способы представления данных в информационных системах (Кодирование и способы кодирования)

Содержание:

Введение

Актуальность темы в том, что вычислительная техника первоначально возникла как средство автоматизации вычислений. Следующим видом обрабатываемой информации стала текстовая. Сначала тексты просто поясняли труднообозримые столбики цифр, но затем машины все более существенным образом стали преобразовывать текстовую информацию. Оформление текстов достаточно быстро вызвали у людей стремление дополнить их графиками и рисунками. Делались попытки частично решить эти проблемы в рамках символьного подхода: вводились специальные символы для рисования таблиц и диаграммам. Но практические потребности людей в графике делали ее появление среди видов компьютерной информации неизбежной. Числа, тексты и графика образовали некоторый относительно замкнутый набор, которого было достаточно для многих решаемых на компьютере задачи. Постоянный рост быстродействия вычислительной техники создал широкие технические возможности для обработки звуковой информации, а также для быстро сменяющихся изображений. Объектом изучения, представленным в теоретической части являются данные в компьютере. Цель работы - рассмотреть форматы данных их представление и кодирование в компьютере.

Для достижения цели необходимо решить следующие задачи:

· Рассмотреть существующие форматы данных;

· Рассмотреть представление различных типов данных в компьютере и описать способы кодирования информации.

Задача, поставленная в практической части - это расчет платежей клиента по кредиту, будет решаться в программной среде MS Excel. Цель решения данной задачи состоит в определении сумм погашения кредита по месяцам для отслеживания своевременности и точности выплат клиента банку.

1. Теоретическая часть

1.1. Форматы данных

Информация - это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состояниях, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

В процессе обработки информация может менять структуру и форму. Признаком структуры являются элементы информации и их взаимосвязь. Формы представления информации могут быть различны. Основными из них являются: символьная; текстовая; графическая; световых или звуковых сигналов; радиоволн; электрических и нервных импульсов; магнитных записей; жестов и мимики; запахов и вкусовых ощущений и так далее.

В повседневной практике такие понятия, как информация и данные, часто рассматриваются как синонимы. На самом деле между ними имеются существенные различия.

Данными называется информация, представленная в удобном для обработки виде. Данные могут быть представлены в виде текста, графики, аудиовизуального ряда. Представление данных называется языком информатики, представляющим собой совокупность символов, соглашений и правил, используемых для общения, отображения, передачи информации в электронном виде.

1.2. Представление информации

Люди имеют дело со многими видами информации. Услышав прогноз погоды, можно записать его в компьютер, чтобы затем воспользоваться им. В компьютер можно поместить фотографию своего друга или видеосъемку о том как вы провели каникулы. Но ввести в компьютер вкус мороженого или мягкость покрывала никак нельзя.

Компьютер - это электронная машина, которая работает с сигналами. Компьютер может работать только с такой информацией, которую можно превратить в сигналы. Если бы люди умели превращать в сигналы вкус или запах, то компьютер мог бы работать и с такой информацией. У компьютера очень хорошо получается работать с числами. Он может делать с ними все, что угодно. Все числа в компьютере закодированы "двоичным кодом", то есть представлены с помощью всего двух символов 1 и 0, которые легко представляются сигналами.

Вся информация с которой работает компьютер кодируется числами. Независимо от того, графическая, текстовая или звуковая эта информация, что бы ее мог обрабатывать центральный процессор она должна тем или иным образом быть представлена числами. 

1.3. Кодирование информации

Кодирование – переход от одной формы представления информации к другой, более удобной для восприятия, обработки, хранения или передачи в зависимости от цели. Обязательным условием кодирования является изменение формы представления без изменения содержания[1].

Способы кодирования бывают:

  • графический – с помощью рисунков и знаков;
  • числовой – с помощью чисел;
  • символьный – с помощью символов алфавита;
  • звуковой – с помощью звуков[2] [1, 4].

По итогам данной главы можно сделать вывод, о том, что представление данных является довольно обширным понятием, котором может охватывать различные сферы, рассмотренные ниже.

2. Кодирование и способы кодирования

2.1. Кодирование изображений и звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно. Примером аналогового представления графической информации может служить, скажем, живописное полотно, цвет которого изменяется непрерывно, а дискретного - изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного - аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью). Графическая и звуковая информация из аналоговой формы в дискретную преобразуется путем дискретизации, т. е. разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация - это преобразование непрерывных изображений и звука в набор дискретных значений, каждому из которых присваивается значение его кода.

Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения количества информации

  • .

2.2. Единицы измерения количества информации

Любое десятичное число можно представить в любой позиционной системе счисления, для целых чисел это можно сделать единственным способом. На основании этого можно утверждать, что любое число может быть записано в виде суммы степеней числа P, где Р – натуральное число больше 1. В качестве базиса позиционной системы берется возрастающая последовательность степеней числа Р и тем самым однозначно определяется Р-ичная система счисления. Разложение числа по степеням Р является представлением данного числа в Р-ичной системе счисления. Представление числа в Р-ичной системе счисления называется развернутой формой записи числа. Другим способом записи является последовательное перечисление значащих цифр, начиная со старшей[3].

Во всех позиционных системах счисления арифметические операции выполняются по одним и тем же правилам, согласно действующим таблицам сложения и умножения. Для всех систем счисления справедливы одни и те же законы арифметики; коммутативный, ассоциативный, дистрибутивный, а также правила сложения, вычитания, умножения и деления столбиком.

В Р-ичной системе счисления таблица сложения представляет собой результаты сложения каждой цифры алфавита Р-ичной системы с любой другой цифрой этой же системы. Если результат сложения двух цифр в Р-ичной системе больше Р – 1, то к следующему разряду добавляется 1[4].

Вычитание из большего числа меньшего в Р-ичной системе счисления можно производить столбиком аналогично вычитанию в десятичной системе. Для выполнения этой операции используется та же таблица сложения, что и в операции сложения Р-ичной системы счисления. Если вычитаемое число больше уменьшаемого, то из старшего разряда вычитается 1.

Для выполнения умножения двух многозначных чисел в Р-ичной системе надо иметь таблицы умножении и сложения в этой системе. Действия производятся по правилам умножения столбиком, при этом используется соответствующие таблицы умножения и сложения. Возможен также и подход с переводом каждого сомножителя в десятичную систему счисления, вычисление требуемого действия в этой системе и перевод результата в Р-ичную систему. Аналогичным способом можно поступать и при выполнении операций сложения и вычитания[5].

При делении столбиком в Р-ичной системе счисления приходится в качестве промежуточных вычислений выполнять действия умножения и вычитания, следовательно, использовать таблицы умножения и сложения. Тем не менее, результат деления не всегда является конечной Р-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно выделяют непериодическую часть дроби и ее период[6].

Для получения значения числа Р-ичной системы счисления в десятичной необходимо число и его коэффициенты при степенях Р записать в виде десятичных чисел и провести вычисления в десятичной системе. Данный способ можно сформулировать в виде следующего алгоритма.

  1. Каждая цифра Р-ичного числа переводится в десятичную систему счисления.
  2. Полученные числа нумеруются справа налево, начиная с нуля.
  3. Число Р переводится в десятичную систему.
  4. Десятичное число, соответствующее каждой Р-ичной цифре умножается на Pk, где k – номер этого числа.
  5. Результаты складываются в десятичной системе[7].

Для того, чтобы перевести число из двоичной системы счисления в десятичную, надо в десятичной системе счисления сложить все степени двоек, которые соответствуют единицам в записи исходного двоичного числа. Нумерация степеней ведется справа налево, начиная с нулевой[8] [1, 4, 8].

2.3. Представление в двоичном коде

Люди всегда искали способы быстрого обмена сообщениями. Для этого посылали гонцов, использовали почтовых голубей. У народов существовали различные способы оповещения о надвигающейся опасности: барабанный бой, дым костров, флаги и т. д. Однако использование такого представления информации требует предварительной договоренности о понимании принимаемого сообщения.

Знаменитый немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Представление является виртуальной (логической) таблицей, которая представляет собой поименованный запрос (синоним к запросу), подставленный как подзапрос при использовании представления.

В отличие от обычных таблиц реляционных баз данных, представление не является самостоятельной частью набора данных, хранящегося в базе. Содержимое представления динамически вычисляется на основании данных, находящихся в реальных таблицах. Изменение данных в реальной таблице базы данных немедленно отражается в содержимом всех представлений, построенных на основании этой таблицы[9].

Типичным способом создания представлений для СУБД, поддерживающих язык запросов SQL, является связывание представления с определённым SQL-запросом. Соответственно, содержимое представления — это результат выполнения этого запроса, а возможности построения представления ограничиваются только степенью сложности диалекта SQL, поддерживаемого конкретной СУБД. Так, для типичных СУБД, таких как PostgreSQL, Interbase, Firebird, Microsoft SQL Server, Oracle, представление может содержать:

  • подмножество записей из таблицы БД, отвечающее определённым условиям (например, при наличии одной таблицы «Люди» можно создать два представления «Мужчины» и «Женщины», в каждом из которых будут записи только о людях соответствующего пола);
  • подмножество столбцов таблицы БД, требуемое программой (например, из реальной таблицы «Сотрудники» представление может содержать по каждому сотруднику только ФИО и табельный номер);
  • результат обработки данных таблицы определёнными операциями (например, представление может содержать все данные реальной таблицы, но с приведением строк в верхний регистр и обрезанными начальными и концевыми пробелами);
  • результат объединения (join) нескольких таблиц (например, при наличии таблиц «Люди», «Адреса», «Улицы», «Фирмы и организации» возможно построение представления, которое будет выглядеть как таблица, для каждого человека содержащее его личные данные, адрес места жительства, название организации, где он работает, и адрес этой организации);
  • результат слияния нескольких таблиц с одинаковыми именами и типами полей, когда в представлении попадают все записи каждой из сливаемых таблиц (возможно, с исключением дублирования);
  • результат группировки записей в таблице (например, при наличии таблицы «расходы» с записями по каждому платежу можно построить представление, содержащее средства, израсходованные на каждую отдельную статью расходов);
  • практически любую комбинацию вышеперечисленных возможностей[10].

Представления используются в запросах к БД тем же образом, как и обычные таблицы. В случае SQL-СУБД имя представления может находиться в SQL-запросе на месте имени таблицы (в предложении FROM). Запрос из представления обрабатывается СУБД точно так же, как запрос, в котором на месте имени представления находится подзапрос, определяющий это представление. При этом СУБД с развитыми возможностями оптимизации запросов перед выполнением запроса из представления могут проводить совместную оптимизацию запроса верхнего уровня и запроса, определяющего представление, с целью минимизации затрат на выборку данных[11].

Использование представлений не даёт каких-то совершенно новых возможностей в работе с БД, но может быть очень удобно.

Представления скрывают от прикладной программы сложность запросов и саму структуру таблиц БД. Когда прикладной программе требуется таблица с определённым набором данных, она делает простейший запрос из подготовленного представления. При этом даже если для получения этих данных требуется чрезвычайно сложный запрос, сама программа этого запроса не содержит[12].

Использование представлений позволяет отделить прикладную схему представления данных от схемы хранения. С точки зрения прикладной программы структура данных соответствует тем представлениям, из которых программа эти данные извлекает. В действительности данные могут храниться совершенно иным образом, достаточно лишь создать представления, отвечающие потребностям программы. Разделение позволяет независимо модифицировать прикладную программу и схему хранения данных: как при изменении структуры физических таблиц, так и при изменении программы достаточно изменить представления соответствующим образом. Изменение программы не затрагивает физические таблицы, а изменение физической структуры таблиц не требует корректировки программы[13].

С помощью представлений обеспечивается ещё один уровень защиты данных. Пользователю могут предоставляться права только на представление, благодаря чему он не будет иметь доступа к данным, находящимся в тех же таблицах, но не предназначенных для него.

Поскольку SQL-запрос, выбирающий данные представления, зафиксирован на момент его создания, СУБД получает возможность применить к этому запросу оптимизацию или предварительную компиляцию, что положительно сказывается на скорости обращения к представлению, по сравнению с прямым выполнением того же запроса из прикладной программы[14].

Некоторые СУБД имеют расширенные представления для данных, доступных только для чтения. Так, СУБД Oracle реализует концепцию «материализованных представлений» — представлений, содержащих предварительно выбранные невиртуальные наборы данных, совместно используемых в распределённых БД. Эти данные извлекаются из различных удалённых источников (с разных серверов распределённой СУБД). Целостность данных в материализованных представлениях поддерживается за счёт периодических синхронизаций или с использованием триггеров. Аналогичный механизм предусмотрен в Microsoft SQL Server версии 2000[15].

По самой сути представления могут быть доступны только для чтения. Тем не менее, в некоторых СУБД (например, в Oracle) представления могут быть редактируемыми, как и обычные физические таблицы. Редактирование может допускаться для представлений, выбранных из единственной физической таблицы таким образом, чтобы каждой записи в представлении соответствовала строго одна запись в таблице-источнике, а в числе полей представления был первичный ключ физической таблицы. При выполнении команд редактирования, добавления или удаления для такого представления сервер СУБД преобразует эти команды в соответствующие команды для физической таблицы-источника. Разумеется, если в представлении используется группировка записей или преобразование значений в полях, редактирование такого представления невозможно даже теоретически. Но и такие представления могут, тем не менее, редактироваться, посредством написания соответствующих триггеров (хотя осмысленность подобных операций целиком останется на совести программиста). Впрочем, редактируемые представления, как и возможность создания триггеров для представлений, поддерживают лишь немногие СУБД[16] [3, 5, 8].

По итогам данной главы можно сделать вывод, что представление данных зависит от сферы применения. Представление чаще всего является переформированным видом определенной информации.

Заключение

Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.

В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.

Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло - это энергетические сигналы, а вкус и запах - это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков - это информация аналоговая. Если же разным цветам дать номера, а разным звукам - ноты, то аналоговую информацию можно превратить в цифровую.

Кодирование информации. Кодирование информации - это процесс формирования определенного представления информации.

В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например «наложить» друг на друга звуки от разных источников.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – 312 с.
  2. Глик Д. Информация. История. Теория. Поток / Д. Глик. — М.: CORPUS, 2013. — 576 с.
  3. Годин В. Базы данных. Проектирование. Учебник / В. Годин. – М.: Юрайт, 2016. – 478 с.
  4. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – 784 с.
  5. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – 304 с.
  6. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.: Юрайт, 2011. – 224 с.
  7. Исаев Г. Проектирование информационных систем / Г. Исаев. – М.: Омега-Л, 2012. – 432 с.
  8. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – 400 с.
  1. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 152.

  2. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 235.

  3. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 235.

  4. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 162.

  5. Андреева Е. В. Математические основы информатики: математическое пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: Бином. Лаборатория знаний, 2011. – С. 300.

  6. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 556.

  7. Грэхем Р. Конкретная математика. Математические основы информатики / Р. Грэхем, Д. Э. Кнут, О. Паташник. – М.: Вильямс, 2010. – С. 226.

  8. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 146.

  9. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 163.

  10. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 133.

  11. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 211.

  12. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 122.

  13. Илюшечкин В.М. Основы использования и проектирования баз данных / В. М. Илюшечкин. – М.:Юрайт, 2011. – С. 153.

  14. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 125.

  15. Семакин И. Г. Энциклопедия школьной информатики / И. Г. Семакин, Е. В. Андреева, А. А. Дуванова, Е. А. Еремин, И. А. Калинин. – М.: Бином. Лаборатория знаний, 2011. – C. 151.

  16. Гудсон Д. Практическое руководство по доступу к данным / Д. Гудсон, Р. Стюард. – СПб.: БХВ-Петербург, 2013. – С. 135.