Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Методы сбора и обработки первичной маркетинговой информации)

Содержание:

ВВЕДЕНИЕ

Актуальность темы исследования. Информация представляет собой определенный семантический ресурс, включающий в себя ранее неизвестные сведения и обладающий способностью ее передачи. Маркетинговая информация - это систематизированный набор количественных и качественных характеристик в отношении определенного рыночного параметра или группы параметров, описывающих рыночную ситуацию.

Маркетинговая информация по способу ее получения, анализа и передачи разделяется на четыре типа в соответствии с информационными потоками, отражая ее текущее состояние по отношению к отделу маркетинга:

- входящая информация (подлежащая обработке, анализу или хранению);

- анализируемая информация (кодируемая, декодируемая, математически или логически изменяемая для достижения определенного результата);

- выходящая информация (преобразованная в коды диалогового общения пользователя информации);

- хранимая информация (перекодированная для хранения на определенном носителе).

Маркетинговую информацию разделяют также на первичную (собранная впервые для какой-либо цели) и вторичную (уже имеющаяся информация, собранная для других целей).

Целью курсовой работы является исследование методов сбора и обработки первичной маркетинговой информации

Задачи:

1. Рассмотреть теоретические аспекты методов сбора и обработки первичной маркетинговой информации

2. Исследовать особенности сбора маркетинговой информации на предприятии ООО Агрофирма «Труд»

3. Разработать рекомендации по выбору источников маркетинговой информации предприятию ООО Агрофирма «Труд»

1. Теоретические аспекты методов сбора и обработки первичной маркетинговой информации

1.1 Методы сбора информации

Несмотря на огромное количество разнообразных исследовательских методик и техник, общая схема мероприятий, реализуемых в рамках рыночных исследований, достаточно проста и понятна. Основными источниками получения маркетинговой информации являются:

Интервью и опросы;

Регистрация (наблюдение);

Эксперимент;

Панель;

Экспертная оценка.

Интервью (опрос) - выяснение позиции людей или получение от них справки по какому-либо вопросу. Опрос - это наиболее распространенная и важнейшая форма сбора данных в маркетинге. Приблизительно 90% исследований используют этот метод. Опрос может быть устным (личным) или письменным.

При письменном опросе участники получают опросные листы (анкеты), которые они должны заполнить и отдать по назначению. Обычно, в письменных опросах используются закрытые вопросы, ответы на которые заключаются в выборе одного из приведенных. Обычно, при письменных опросах, опросный лист рассылается представителям целевой аудитории, по средствам электронной почты, почтовой рассылки или факсимильной связи. Основным недостатком, ограничивающим использование данного метода, является длительный период и низкий процент (в среднем 3%) возврата заполненных анкет.

Личные (Face-to-face) и телефонные опросы принято называть интервью.

Телефонные интервью - это относительно дешевый метод проведения опросов любого уровня точности с точки зрения построения выборки (географическое расположение респондентов не имеет принципиального значения с точки зрения стоимости проведения интервью). Данный метод применим только в количественных исследованиях. Однако существуют объективные недостатки использования данного метода:

не совсем полный контроль понимания и искренности респондента;

нет возможности предъявлять визуальные материалы (образцы, карточки с вариантами ответов);

нереализуемость длительных интервью (по телефону сложно удержать внимание собеседника более 15 минут);

в городах с недостаточным уровнем телефонизации невозможно получить репрезентативную выборку.[1]

Интервью face-to-face могут быть формализованные и неформализованные.

При формализованном интервью имеется конкретная схема проведения опроса (обычно это опросный лист, содержащий заранее подготовленные четкие формулировки вопросов и продуманные модели ответов на них). Формализованное интервью теряет большую часть своего смысла, если ответы респондентов не анализируются в плоскости их социальных и демографических (отраслевых и географических) характеристик. Поэтому он предполагает обязательно заполнение "паспортички", куда вносятся те данные о каждом респонденте, необходимость которых диктуется опять - таки исследовательской программой. Подобные интервью проводятся на улице, в магазинах, на общественных мероприятиях, по месту жительства респондентов (поквартирные опросы), и т.п. Наибольшее применение формализованные опросы получили при реализации количественных исследований. Основными недостатками данного метода являются: относительно высокая стоимость и незначительный географический охват.

Неформализованные интервью - это специфический метод сбора информации, при котором имеются только тема и цель. Конкретной схемы проведения опроса, нет. Это дает возможность выявления глубинных мотивов действий потребителя, изучения как рациональных, так и иррациональных причин его покупательского поведения. На практике, неформализованные интервью используются при проведении качественных исследований. Неформализованные интервью бывают индивидуальные и групповые.[2]

Индивидуальные неформализованные интервью проводятся с респондентом один на один в форме диалога, при этом респондент имеет возможность высказать развернутые суждения по исследуемой задаче. Можно выделить такие формы проведения индивидуальных неформализованных интервью, как глубинные интервью и холл - тесты.

Глубинные интервью - представляют собой серию индивидуальных интервью по заданной тематике, проводимых согласно путеводителю обсуждения. Интервью проводит специально обученный интервьюер высокой квалификации, который хорошо разбирается в теме, владеет техникой и психологическими приемами ведения беседы. Каждое интервью проходит в течение 15-30 минут и сопровождается активным участием респондента - он раскладывает карточки, рисует, пишет и т.д. Глубинные интервью, в отличие от структурированных, применяемых в количественном опросе, позволяют глубже проникнуть в психологию респондента и лучше понять его точку зрения, поведение, установки, стереотипы и т.д. Глубинные интервью, несмотря на большие (в сравнении с фокус-группами) затраты времени, оказываются весьма полезными в ситуациях, когда атмосфера групповой дискуссии нежелательна. Это бывает необходимым при изучении отдельных проблем и ситуаций, о которых не принято говорить в широком кругу, или когда индивидуальные точки зрения могут резко отличаться от социально одобряемого поведения - например, при обсуждении вопросов взаимоотношения полов, некоторых заболеваний, скрытых политических убеждений и т.п.

Глубинные интервью применяются при тестировании и проработке начальных рекламных разработок (креативных идей), когда требуется получить непосредственные, индивидуальные ассоциации, реакции и восприятие - без оглядки на группу. При этом оптимальным является сочетание метода глубинных интервью и фокус - групп с одними и теми же респондентами. И, наконец, глубинные интервью незаменимы при проведении качественных исследований, когда особенности целевой группы делают невозможным сбор респондентов на фокус-группу - т.е. в одно время в одном месте на 2-3 часа. Например, когда речь идет о занятых бизнесменах, богатых горожанах, узких профессиональных группах и т.п.

Холл - тесты - это личные полуформализованные интервью в специальном помещении. Как правило, используются помещения в библиотеках, магазинах, холлах административных зданий и т.п. Респондент и интервьюер садятся за столик, и интервью проходит в режиме структурированной беседы. Необходимость холл - теста, как правило, вызвана одной из нескольких причин:

тестирование громоздких образцов, которые неудобно носить по квартирам или нет уверенности, что в квартире найдется возможность провести интервью в нормальных условиях;

тестирование ограничено количеством образцов;

использование спец. аппаратуры (например, теле-видео) для демонстрации тестируемого материала;[3]

интервью проводится в местах скопления потенциальных респондентов, но оно сложное и не подходящее для разговора "на ногах".

Холл - тесты формально относится к количественным методам получения информации. С качественными методами холл - тест роднит то, что информация получается на относительно небольшой направленной выборке (от 100 до 400 человек), а также то, что респондента просят прокомментировать (объяснить) свое поведение. Для проведения холл - теста представители целевой группы (потенциальные потребители) приглашаются в помещение ("hall"), оборудованное для дегустации товаров и/или просмотра рекламы, где им предоставляется возможность продемонстрировать свою реакцию на тестируемый материал и объяснить причину своего выбора. В ходе ответов на вопросы анкеты определяются критерии выбора, частота и объем потребления марок изучаемой товарной группы. Метод применяется для оценки потребительских свойств нового товара: вкус, запах, внешний вид и т.п. Метод также используется при тестировании элементов товарной марки, упаковки, аудио - и видеороликов, рекламных обращений (узнаваемость рекламного сообщения, запоминаемость, достоверность, убедительность, понимание первичной и вторичной идеи рекламы, слогана и т.д.) и т.п.

Групповое неформализованное интервью (фокусированное интервью, фокус - группа) - представляет собой групповое обсуждение интересующих вопросов представителями целевой аудитории. "Фокус" в такой группе - на субъективном опыте людей, которые дают свое понимание и объяснение заданной темы, включая все её нюансы. Ход беседы управляется модератором по заранее разработанному плану и фиксируется на видеоплёнку. Как правило, в ходе дискуссии используются различные проективные методики, позволяющие узнать "реальное" отношение потребителей к исследуемому предмету, получив гораздо более глубокую и подробную информацию, чем на уровне "обычного" общения.

Обычно люди не задумываются специально над теми вопросами, которые обсуждаются на группе, или не имеют возможности сопоставить свое мнение с мнениями других людей. В ходе фокус группы респондентов просят не просто оценить что-либо по принципу "нравится - не нравится", но и объяснить свою точку зрения. А последующий квалифицированный анализ полученных результатов позволяет понять психологические механизмы формирования того или иного мнения участников группы.

Основным недостатком данного метода является тенденциальный характер результатов. Иными словами результаты фокусированных интервью нельзя выразить в числовом выражении, для дальнейшей экстраполяции на генеральную совокупность объектов исследований.

Поэтому на практике фокус - групповая методика используется в сочетании с количественными методами исследований.

Наблюдение (регистрация) представляет собой форму маркетинговых исследований, с помощью которых осуществляется систематическое, планомерное изучение поведения того или иного объекта или субъекта. Наблюдение, в отличие от опроса не зависит от готовности наблюдаемого объекта сообщать информацию. Наблюдение - это процесс открытого или скрытого от наблюдаемого сбора и регистрации событий или особых моментов, связанных с поведением изучаемого объекта.

Предметом наблюдений могут быть свойства и поведение индивидуумов; перемещение вещей, товаров и т.п. Недостатком наблюдений является невозможность выявления мнений, представлений, знаний людей. Поэтому на практике наблюдения обычно используются совместно с другими методами исследований.

Эксперимент - это исследование влияния одного фактора на другой при одновременном контроле посторонних факторов. Эксперименты подразделяются на лабораторные, проходящие в искусственной обстановке (тест продукта), и полевые, протекающие в реальных условиях (тест рынка). Основными недостатками, данного метода являются значительная стоимость и длительность проведения, что существенно ограничивает применение этого метода в практических исследованиях.

Панель - это повторяющийся сбор данных у одной группы опрашиваемых через равные промежутки времени. Таким образом, панель - это вид непрерывной выборки. Она позволяет зафиксировать изменения наблюдаемых величин, характеристик. Панельный опрос используют при изучении мнений потребителей определенной группы за какой-либо промежуток времени, когда определяются их потребности, привычки, вкусы, рекламации. Недостатками использования панелей являются: "смертность" панели, проявляющаяся в постепенном отказе участников от сотрудничества или переходе в другую потребительскую категорию, и "эффект панели", заключающийся в сознательном или бессознательном изменении образа поведения участников, находящихся под длительным контролем.

Экспертная оценка - это оценка исследуемых процессов квалифицированными специалистами - экспертами. Подобная оценка особенно необходима, когда невозможно получит неопосредованную информацию о каком-либо процессе или явлении. На практике для проведения экспертных оценок чаще всего применяют дельфи-метод, метод мозговой атаки и метод синектики.

Дельфи-метод - форма опроса экспертов, при которой их анонимные ответы собираются в течении нескольких туров и через ознакомление с промежуточными результатами получают групповую оценку исследуемого процесса.

Метод мозговой атаки заключается в неконтролируемой генерации и спонтанном переплетении идей участниками группового обсуждения проблемы. На этой базе возникают цепочки ассоциаций, которые могут привести к неожиданному решению проблемы.

Синектика считается методом с высоким творческим потенциалом.

Идея метода заключается в постепенном отчуждении исходной проблемы путем построения аналогий с другими областями знаний. После многоступенчатых аналогий производится быстрый возврат к исходной задаче.

1.2 Инструменты анализа. Маркетинговые исследования 

Количественные исследования обычно отождествляют с проведением различных опросов, основанных на использовании структурированных вопросов закрытого типа, на которые отвечает большое число респондентов. Характерными особенностями таких исследований являются: четко определенные формат собираемых данных и источники их получения; обработка собранных данных осуществляется с помощью упорядоченных процедур, в основном количественных по своей природе.[4]

Качественные исследования включают сбор, анализ и интерпретацию данных путем наблюдения за тем, что люди делают и говорят. Наблюдения и выводы носят качественный характер и осуществляются в не стандартизированной форме. Качественные данные могут быть переведены в количественную форму, но этому предшествуют специальные процедуры. Например, мнение нескольких респондентов о рекламе спиртных напитков может быть словесно выражено по-разному, и только в результате дополнительного анализа все мнения разбиваются на три категории: отрицательные, положительные и нейтральные, после чего можно определить, какое число мнений относится к каждой из трех категорий. Такая промежуточная процедура является лишней, если при опросе использовать сразу закрытую форму вопросов.

Ниже будут рассмотрены следующие методы качественных исследований: наблюдение, фокус-группа, глубинное интервью, анализ протоколов, проекционные и физиологические измерения.

Основу качественных исследований составляют методы наблюдений, предполагающие скорее собственно наблюдение, чем коммуникацию с респондентами. Большинство этих методов основано на подходах, разработанных психологами.

Наблюдение в маркетинговых исследованиях представляет собой метод сбора первичной маркетинговой информации об изучаемом объекте путем наблюдения за выбранными группами людей, действиями и ситуациями. Наблюдение в маркетинговом исследовании может быть направлено на достижение различных целей. Оно может быть использовано как источник информации для построения гипотез, служить для проверки данных, полученных другими методами, c его помощью можно получить дополнительные сведения об изучаемом объекте.

Разнообразие способов проведения наблюдений определяется четырьмя подходами к их осуществлению: прямое или непрямое наблюдение, открытое или скрытое, структуризированное или неструктуризированное, осуществляемое с помощью человека или механических средств.

Прямое наблюдение предполагает непосредственное наблюдение за поведением, скажем, покупателей в магазине (например, в какой последовательности они изучают товары, выставленные на прилавке). При применении непрямого наблюдения изучаются результаты определенного поведения, а не само поведение. Здесь часто используются архивные данные — например, данные о динамике запасов определенных товаров по годам могут быть полезными при изучении сдвигов в рыночной ситуации. Кроме того, могут изучаться физические доказательства некоторых событий. Например, по результатам изучения содержимого мусорных баков можно сделать вывод о том, в какой мере упаковка (банки, бутылки, пакеты и т.п.) и каких фирм в наибольшей степени захламляет окружающую среду.[5]

Открытое наблюдение предполагает, что люди знают о том, что за ними наблюдают например, при проведении специальных экспериментов. Однако присутствие наблюдателей влияет на поведение наблюдаемых, поэтому надо стремиться свести его к минимуму.

Этим требованиям удовлетворяет скрытое наблюдение, когда обследуемый не предполагает, что за ним наблюдают. Например, в магазинах могут скрыто наблюдать за тем, насколько продавец вежлив с покупателями и помогает им совершить покупку.

При проведении структуризированного наблюдения наблюдатель заранее определяет, что он будет наблюдать и регистрировать, а все другие виды поведения игнорируются. Часто используется стандартный лист наблюдений, сокращающий до минимума затраты времени наблюдателя.

Когда осуществляется неструктуризированное наблюдение, наблюдатель фиксирует в изучаемом эпизоде все виды поведения. Такой тип поведения часто используется при проведении разведочных исследований. Например, компания, выпускающая строительный инструмент, может послать своих сотрудников для изучения направлений и частоты применения данного инструмента при строительстве домов. Результаты наблюдений используются при совершенствовании данного инструмента.

Недостатки метода наблюдений присущи всем качественным исследованиям. При прямом наблюдении обычно изучается поведение в определенных условиях малой группы людей следовательно, возникает вопрос о репрезентативности. При этом имеет место субъективное их истолкование полученных данных. Человеческое восприятие ограниченно, поэтому исследователь может пропустить, не заметить какие-то важные проявления изучаемой ситуации. Кроме того, надо иметь в виду, что присутствие наблюдателя может оказывать влияние на наблюдаемую ситуацию.

По характеру окружающей обстановки наблюдение может быть полевым, что означает, что оно проводится в естественной обстановке (в магазине, у витрины магазина), или лабораторным, т.е. проводящимся в искусственно созданной ситуации.

Проведение наблюдения начинается с определения цели, постановки задач, установления объекта и предмета наблюдения. В зависимости от целей исследования в качестве предмета наблюдения обычно выбирается какая-то одна или ограниченное число сторон деятельности объекта — например, изучается маршрут движения покупателя в торговом зале магазина.

Далее обеспечивается доступ к среде, получение соответствующих разрешений, осуществляются выбор способа наблюдения и разработка его процедуры на основе предварительно собранных материалов.

Прежде чем приступить к наблюдению, нужно заранее выбрать признаки, единицы наблюдения, по которым можно будет судить о той ситуации, которая интересует исследователя. В качестве единицы наблюдения (а со стороны наблюдаемого — это единица поведения) можно выделить и фиксировать любой сложный набор действий различного характера — например, покупатель может просто посмотреть на определенный товар, а может и взять его в руки.

После разработки плана осуществляются проведение наблюдений, сбор данных, накопление информации.

Необходимо помнить, что в каждый определенный момент человек способен одновременно воспринимать от пяти до десяти дискретных единиц. Если речь идет о достаточно широкой сфере наблюдений, целесообразно поручить работу нескольким наблюдателям, строго распределив при этом между ними функции.

Метод фокус-группы предназначен для получения различной маркетинговой информации от группы, как правило, существующих или потенциальных потребителей, которые на основе свободной дискуссии под руководством ведущего (модератора) обсуждают поставленные перед ними вопросы. Можно выделить пять главных целей применения данного метода:

1. Генерация идей, например, относительно направлений усовершенствования выпускаемых продуктов, их дизайна, упаковки или разработки новых продуктов.

2. Изучение разговорного словаря потребителей, что может оказаться полезным, скажем, при проведении рекламной кампании, составлении вопросников и т.п.

3. Ознакомление с запросами потребителей, их восприятием, мотивами и с их отношением к изучаемому продукту, его марке, методам его продвижения, что является весьма важным при определении целей маркетингового исследования.

4. Лучшее понимание данных, собранных при проведении количественных исследований. Иногда члены фокус-группы помогают лучше разобраться в результатах проведенного опроса.

5. Изучение эмоциональной и поведенческой реакций на определенные виды рекламы.

Обычно работу группы записывают с помощью аудио- и видео-технических средств, а ее результаты могут явиться основанием для проведения количественных исследований, например, путем опроса.

Очевидно, что на возможности и эффективность использования данного метода сильное влияние оказывают культура, традиции общения и т.п. жителей разных регионов и стран. Это учитывается при формировании фокус-группы — например, при определении ее численности, роли и степени активности ведущего.[6]

Оптимальный размер фокус-группы колеблется от 8 до 12 человек. При меньшем числе участников не создается необходимый динамизм для продуктивной работы группы, и ведущему приходится прилагать массу усилий для активизации работы группы. При численности группы, превышающей 12 человек, трудно завязать продуктивные дискуссии, группа при этом может разбиться на подгруппы, в которых могут вестись разговоры на отвлеченные темы, а в самой дискуссии — принимать участие только несколько человек.

К сожалению, заранее трудно определить состав группы. Например, изъявляют желание принять участие в дискуссии 12 человек, а фактически присутствуют только 6.

Что касается состава группы, то рекомендуется ее формировать, исходя из принципа гомогенности состава ее участников (по возрасту, виду деятельности, семейному положению и т.п.). В этом случае, считается, создаются лучшие условия для раскованной дискуссии.

Успешность работы фокус-группы во многом зависит от эффективности деятельности ведущего, который на основе глубокого понимания целей и задач дискуссии без прямого вмешательства в ее ход управляет ее проведением. Он должен стремиться к балансу между естественной дискуссией среди участников и уходом от обсуждаемой темы. Ведущий должен быть высококоммуникабельным человеком, проявляющим глубокий интерес к позициям и комментариям участников группы. Обычно еще до начала дискуссии в фокус-группе ведущий готовит детальный план ее работы, стремится повысить уровень своих знаний по обсуждаемой проблематике.

Использование современных коммуникационных технологий расширяет диапазон применения фокус-групп — например, возможна организация взаимодействия двух групп, проводящих сессию в различных городах.

Ниже кратко будут охарактеризованы следующие методы качественных исследований: глубинное интервью, анализ протокола, проекционные методы и физиологические измерения.

Глубинное интервью заключается в последовательном задании квалифицированным интервьюером респонденту группы зондирующих вопросов в целях понимания, почему он ведет себя определенным образом или что думает об определенной проблеме. Респонденту задаются вопросы по исследуемой теме, на которые он отвечает в произвольной форме. При этом интервьюер задает вопросы типа: «Почему вы ответили подобным образом?», «Можете ли вы обосновать вашу точку зрения?», «Можете ли вы привести какие-то конкретные аргументы?». Ответы на подобные вопросы помогают интервьюеру лучше разобраться в процессах, происходящих в голове респондента.

Данный метод применяется для сбора информации о новых концепциях, дизайне, рекламе и других методах продвижения продукта; он помогает лучше разобраться в поведении потребителей, в эмоциональных и личностных аспектах их жизни, а также в принятии решений на индивидуальном уровне, получить данные об использовании определенных продуктов.

Анализ протокола заключается в помещении респондента в определенную ситуацию, в которой необходимо принятие решения, при этом он должен словесно описать все факторы и аргументы, которыми он руководствовался при этом. Иногда при применении данного метода используется магнитофон. Затем исследователь анализирует протоколы, представленные респондентами.

Метод анализа протокола используется при анализе решений, принятие которых распределено по времени, — например, при решении о покупке дома. В этом случае исследователь собирает в единое целое отдельные решения, принимаемые на отдельных этапах.

Кроме того, данный метод используется при анализе решений, процесс принятия которых очень короток. В этом случае метод анализа протокола как бы замедляет скорость принятия решения. Например, покупая жевательную резинку, люди обычно не задумываются относительно этой покупки, и анализ протокола дает возможность разобраться в некоторых внутренних аспектах подобных покупок.

При использовании проекционных методов респонденты помещаются в определенные имитируемые ситуации в надежде на то, что они выскажут такую информацию о себе, которую невозможно получить при проведении прямого опроса, — например, относительно потребления наркотиков, алкоголя, получения чаевых и т.п. Можно выделить следующие конкретные проекционные методы: ассоциативные методы, испытание при помощи завершения предложений, тестирование иллюстраций, разыгрывание ролей, ретроспективные беседы и беседы с опорой на творческое воображение.

Ассоциативные методы включают ассоциативные беседы и ассоциативное испытание слов, или словесную ассоциацию. В процессе ассоциативной беседы респондента ориентируют вопросами такого рода: «О чем вас заставляет думать то или это...?», «Какие мысли у вас возникают теперь в связи с...?» и т.д. Этот метод позволяет опрашиваемому говорить все, что ему приходит в голову. В том случае, когда некоторые респонденты испытывают трудности, желая уточнить уровень своих предпочтений, хотя бы из-за недостаточного запаса слов, их ограничивают несколькими вариантами ответов.[7]

Ассоциативное испытание слов заключается в прочтении респонденту слов, который в ответ должен произнести первое пришедшее ему на ум слово, — например, испытываются слова, используемые в рекламе, в названиях и марках продуктов. Таким образом пытаются раскрыть истинные чувства респондентов по отношению к объекту испытания. При этом также фиксируется время задержки ответа, имея в виду, что большая задержка означает отсутствие четко выраженной ассоциации испытываемого слова с какими-то другими словами («приятный», «красивый», «безобразный», «неэстетичный» и др.).

Испытание при помощи завершения предложения заключается в предоставлении респондентам незаконченного предложения, которое они должны завершить сами. Предполагается, что при выполнении данного задания респондент предоставит некую информацию о себе. Предположим, что компания—поставщик чая решила расширить свой рынок на подростков. Исследователь предложил ученикам одной из школ закончить следующие предложения:

«Тот, кто пьет чай, является...»;

«Чай хорошо пить, когда...»;

«Мои друзья думают, что чай — это...»

Далее анализируются окончания предложений. Скажем, в окончаниях первого предложения преобладают такие слова, как «здоровым», «бодрым». Подобным образом поступают и с остальными предложениями. Результатом такого исследования может явиться стремление продвигать чай на изучаемый рыночный сегмент.

Тестирование иллюстрации заключается в том, что участникам исследования демонстрируется определенная иллюстрация (рисунок или фотография), изображающая людей, поставленных в типичную ситуацию и решающих какие-то проблемы, и просят описать на нее их реакцию. Исследователь анализирует содержание этих описаний с целью определения чувств, реакций, вызываемых данной иллюстрацией. Этот метод используется при выборе наилучших вариантов рекламы, иллюстраций для брошюр, изображений на упаковке и т.п., а также сопутствующих им заголовков.

При разыгрывании ролей участникам предлагают войти в роль одного из персонажей определенной ситуации (друг, сосед, сослуживец) и описать его действия в изучаемой ситуации. Таким путем исследуются позитивные или отрицательные скрытые реакции, чувства, системы ценностей. Например, участника вводят в ситуацию, когда его друг купил дорогой автомобиль определенной марки, и просят прокомментировать эту покупку.

В ходе ретроспективной беседы интервьюируемого просят вспомнить некоторые сцены и действия, характерные для области, которую хотят изучить. Исследователь помогает интервьюируемому вызвать в памяти, подробно описать то, что он вспоминает, — например, в ходе беседы опрашиваемый описывает, как он выкуривает свою первую сигарету в день.

При проведении беседы с опорой на творческое воображение интервьюируемого ставят в некую гипотетическую ситуацию. Методика проведения беседы состоит в том, чтобы энергично побуждать человека выражать свои реакции, чувства, демонстрировать поведение, которые были бы ему присущи, если бы он находился в подобной ситуации. Он проецирует на будущее свои отношения, чувства, представления по изучаемой теме.

Реализация всех вышеописанных методов основана на высоком профессионализме лиц, их осуществляющих, что приводит к их высокой стоимости. Особенно это касается интерпретации полученных результатов. Поэтому данные методы не находят широкого применения при проведении коммерческих маркетинговых исследований.

Обычно эти методы используются после того, как исследователь на основе проведенного анкетирования уже получил информацию, дающую ему возможность сформулировать несколько гипотез, которые и будут либо подтверждены, либо опровергнуты.

К числу качественных методов относятся, кроме того, физиологические измерения, основанные на изучении непроизвольных реакций респондентов на маркетинговые стимулы. При проведении подобных измерений используется специальное оборудование — например, фиксируется расширение и перемещение зрачков при изучении определенных товаров, картинок и т.п. Однако данная техника является необычной по своей природе, поэтому она может вызывать у респондентов нервозность, и ее применение не дает возможности отделить положительные реакции от отрицательных.

Физиологические измерения в силу указанных причин довольно редко используются при проведении маркетинговых исследований.

Охарактеризуем более детально количественные методы сбора первичных данных, или методы опроса.

Опрос заключается в сборе первичной информации путем прямого задавания людям вопросов, касающихся уровня их знаний, отношения к продукту, предпочтений и покупательского поведения. Опрос может носить структуризированный и неструктуризированный характер; в первом случае все опрашиваемые отвечают на одни и те же вопросы, во втором — интервьюер задает вопросы в зависимости от полученных ответов.

При проведении опроса группа опрашиваемых может подвергаться или однократному, или многократным обследованиям. В первом случае выбранная группа подвергается однократному изучению по многим параметрам для фиксированного момента времени — например, редакции журналов и газет проводят одноразовые выборочные исследования своих читателей по таким параметрам, как возраст, пол, уровень образования, род занятий и т.п. Поскольку, как правило, при проведении данных исследований используются выборки больших размеров, то эти исследования обычно называются выборочными опросами.

Во втором случае одна и та же группа опрашиваемых, называемая панелью, неоднократно изучается в течение определенного периода времени. Различные типы панелей используют при проведении многих маркетинговых исследований. В этом случае часто говорят, что применяется панельный метод опроса. Базовым понятием панельного метода обследования является понятие панели.[8]

Панель — выборочная совокупность опрашиваемых единиц, подвергаемых повторяющимся исследованиям, причем предмет исследования остается постоянным. Членами панели могут быть отдельные потребители, семьи, организации торговли и промышленности, эксперты, которые, с определенными оговорками, остаются постоянными. Панельный метод опроса имеет преимущества по сравнению с обычными одноразовыми опросами: он дает возможность сравнивать результаты последующих опросов с итогами предыдущих и устанавливать тенденции и закономерности развития изучаемых явлений; обеспечивает более высокую ре-презентативность выборки по отношению к генеральной совокупности.

Все виды панелей подразделяются по: времени существования; характеру изучаемых единиц (субъектов); характеру изучаемых проблем (предметов изучения); методам получения информации.

По времени существования панели делятся на краткосрочные (существуют не более года) и долгосрочные (не более пяти лет). Долгосрочные панели могут давать непрерывную либо периодическую информацию. Непрерывная информация фиксируется в дневниках ежедневно, а сами дневники высылаются организаторам исследования через определенные промежутки времени. Периодическая информация поступает по мере проведения опросов в виде заполненных анкет.

По характеру изучаемых единиц панели делятся на:

потребительские, членами которых выступают индивидуальные потребители, семьи или домашние хозяйства;

торговые, членами которых являются торговые организации и отдельные лица, занимающиеся торговлей;

промышленных предприятий, выпускающих исследуемые товары;

экспертов — специалистов по изучаемой проблеме.

По характеру изучаемых проблем панели делятся на общие и специализированные. Специализированные панели могут быть созданы для изучения отдельных товаров или товарных групп.

По методу получения информации возможны четыре вида панелей:

1) члены панели высылают требуемую информацию (заполненные дневники, опросные листы) почтой;

2) члены панели интервьюируются;

3) члены панели заполняют дневники или опросные листы, но собирают информацию специальные работники;

4) члены панели интервьюируются через определенные промежутки времени, а внутри временного интервала высылают информацию по почте.

Методам опроса присущи следующие достоинства.

1. Высокий уровень стандартизации, обусловленный тем, что всем респондентам задаются одни и те же вопросы с одинаковыми вариантами ответов на них.

2. Легкость реализации, заключающаяся в том, что респондентов посещать необязательно, передавая им вопросники по почте или по телефону; не нужно использовать технические средства и привлекать высококвалифицированных профессионалов, как в случае использования метода фокус-группы, глубинного интервью и т.п.

3. Возможность проведения глубокого анализа, обеспечиваемая тем, что респондентам последовательно задаются уточняющие вопросы. Например, работающих матерей спрашивают, насколько важным был учет месторасположения школы при ее выборе для их детей. Далее задается вопрос относительно того, сколько школ рассматривалось в качестве возможных вариантов. Затем задаются вопросы, касающиеся рода занятий, особенностей работы, дохода, размера семьи.

4. Возможность табулирования и проведения статистического анализа, заключающаяся в использовании методов математической статистики и соответствующих пакетов прикладных программ для персональных компьютеров.

5. Применимость полученных результатов анализа к конкретным рыночным сегментам. Это обусловлено возможностью подразделить общую выборку на отдельные подвыборки в соответствии с демографическими и другими критериями.

Интернет может быть использован в следующих направлениях маркетинговой деятельности: реклама (размещение информации о товаре, рассылка электронных писем, участие в телеконференциях); стимулирование сбыта; продажа товаров через Интернет; связи с общественностью (публикация в сети пресс-релизов, предоставление текущей информации для акционеров, для общественности и др.); проведение маркетинговых исследований. Что касается последнего направления использования Интернета, то здесь прежде всего имеется в виду мониторинг рынков и анализ деятельности конкурентов, проведение опросов посетителей собственного сервера, тестирование нового продукта, исследование результатов телеконференций, использование данных опросов, проводимых на других серверах, поиск клиентов и партнеров.

Изучение конкурентов может осуществляться путем посещения их серверов, получения информации об их связях с партнерами. При исследовании рынка можно узнать, кто посещает сервер компании, использовать разнообразную вторичную информацию из сети Интернета.

Данная глобальная сеть будет иметь все возрастающее значение как при проведении маркетинговых исследований, так и при реализации других направлений маркетинговой деятельности. Безусловно, в ближайшие годы будет усиливаться тенденция расширения использования ресурсов Интернет-маркетинга в России.

Пользуясь Интернетом, сотрудники маркетинговых служб имеют возможность:

быстро менять ассортимент, описание продуктов и их цены;

экономить на затратах (отсутствуют затраты на создание и обеспечение функционирования магазина, на использование обычных методов почтовой рассылки, издание каталогов и т.п.);

легче осуществлять контакты с потенциальными потребителями, посылая им информацию (например, разъяснительного или рекламного характера) и получая от них ответы;

подсчитывать число людей, посетивших сайт организации и отдельные его части.

1.3 Основные методы получения первичных данных

Основными методами получения первичных данных являются опрос, наблюдение, эксперимент и панель. Наибольшее распространение получил метод опроса и интервью. В последнее время, в связи с информатизацией маркетинговой деятельности стали применяться интерактивные методы моделирования маркетинговой информации. Методы опроса, наблюдения, эксперимента, панели и моделирование применяются для решения исследовательских задач разного уровня. В то же время каждый из методов может использоваться в сочетании с другими, полевые исследования почти всегда дороже кабинетных. Поэтому они применяются в случаях, когда:

- в результате вторичного исследования не достигнут требуемый результат и не возможно проведение соответствующего маркетингового мероприятия;

- высокие затраты на полевые исследования могут быть компенсированы значением и необходимостью решения соответствующей задачи.

Полевое исследование может быть полным или сплошным, если им охвачена вся группа интересующих исследователя респондентов и частичным, если им охвачен определенный процент респондентов.

Сплошные исследования обычно используются для исследования относительно небольшого числа респондентов, например, крупные потребители, крупные фирмы. Вообще сплошные исследования отличаются своей точностью, а с другой стороны высокими затратами ресурсов и времени.

Частичные исследования наиболее часто используются для получения информации при полевых исследованиях. На практике применяются следующие методы частичного исследования: случайной выборки, нормированной (по квоте) выборки, концентрированной выборки.

В общем случае проведения кабинетных или полевых исследований следует иметь ввиду, что сбор и обработка данных в процессе исследования осуществляется методами, которые теория маркетинга заимствовала из математики, статистики, психологии, социологии социальной экономики. Процесс формирования методов маркетинговых исследований имеет свою историю. Котлер Ф. в 1974 г. описал развитие новых методов, применяемых в маркетинговых исследованиях (табл.1.). Характеристика методов, применяемых при полевых исследованиях приведена в табл.2.

Таблица 1

Развитие методов маркетинговых исследований

Этап времени

Методы

до 1910

Непосредственные наблюдения

Простые опросы

1910 - 1920

Анализ продаж

Анализ затрат на производство продукции

1920 - 1930

Анкеты

Техника инспектирования и обзоров

1930 - 1940

Метод частичного наблюдения

Методы простого корреляционного анализа

Дистрибутивный стоимостной анализ

Методы оценки торговых точек

1940 - 1950

Методы теории вероятности

Регрессионные методы

Потребительские и торговые панели

1950 - 1960

Исследование мотивов

Исследование операций

Многофакторная регрессия и корреляция

Экспериментальные исследования

Инструменты записи изменений

1960 - 1970

Факторный и дискриминантный анализ

Математические модели

Теория принятия решений

Байесовский статистический анализ

Теория масштабирования

Компьютеризация анализа и обработки данных

Маркетинговое моделирование

с 1970

Экометрические модели

Модели планирования маркетинга

Лабораторное тестирование

Численное мультидименсиональное шкалирование

Таблица 2

Методы полевых исследований

Метод

Характеристика

Опрос, интервью

Личная беседа (стандартизированная, не стандартизированная, свободная)

По телефону

В письменном виде

По комплексным темам

Групповое интервью

Наблюдение

С участием респондента

Без участия респондента

Методом моментных наблюдений (с помощью наблюдателя или аппарата)

Полевое или лабораторное

Другие формы

Эксперимент

Панель

Торговая панель, панель владельцев

Тестирование рынка

По сравнению с наблюдениями и экспериментом опросы позволяют исследовать относительно широкую область проблем, относящихся к маркетингу. Главная проблема метода опроса состоит в том, как ограничить цели опроса, которые определяют стратегию и интерпретацию полученной информации. С целью опроса связана проблема круга лиц, которые участвуют в опросе (эксперт, торговец, потребитель и др.)

При организации опроса уделяют внимание тактике опроса (особенно формулировке вопросов), формам опроса и методам подбора опрашиваемых лиц.

Можно рекомендовать следующий порядок проведения опроса:

1. Подготовительные мероприятия:

Полезность парных сравнений. Прокоп О.М. Научный руководитель проф. На множестве элементов Х={х1,...,хт} определена семья отношений преобладания ={,,,,}, первым из которых является отношение «не хуже» (). Функция полезности удовлетворяет условию:). Это означает, что элемент x1X не хуже элемента x2X, если полезность f(x1) элемента х1 не меньше полезности f(x2) элемента х2. Таким образом, функция полезности f отображает отношение преобладания  на множестве X. Можно убедиться, что она отображает и все другие отношения семьи . В частности, отображение основных отношений «равноценно» () и «лучшее» ():),). Всегда ли бинарное отношение преобладания можно отобразить функцией? Утвердительный ответ для счетного множества дал Кантор, а для несчетного – Милграм и Биркгоф. Очень важную теорему доказал Дебре: отношение преобладания «не хуже»  на компактном множестве XRn можно отобразить функцией полезности, если оно непрерывно на X. Если множество допустимых элементов X представляет собой компакт в Rn, то непрерывная на этом множестве функция достигает наибольшего значения (теорема Вейєрштрасса). Множество элементов, доставляющих максимум функции f на множестве X, не пусто. Поскольку эти элементы являются максимальными по отношению преобладания , что отображается функцией полезности f, то множество преобладающих элементов не пусто. Вместе с функцией ценности f все отношения преобладания семьи  отображает другая функция, полученная возрастающим преобразованием. Если u=f(х), хX – функция полезности, а v=g(и) – возрастающая функция переменной u, то сложная функция v=g(f(x)), хX также является функцией полезности. Функция полезности, заданная с точностью до произвольного монотонно возрастающего преобразования, называется порядковой. Если же функция полезности задана с точностью до произвольного положительного линейного преобразования v=f(x)+, где ,>0, ее называют интервальной. Особенность интервальной функции полезности состоит в том, что она (в отличие от порядковой) позволяет не только определять, что один элемент преобладает над другим, а и то, как различаются элементы по преобладанию. Если функция полезности f положительна и задана с точностью до любого множителя , то есть w=f(x), >0, то ее называют относительной. Она показывает, в сколько раз один элемент преобладает над другим. При сравнении двух элементов xі и xj множества важно знать, в какой степени один элемент преобладает над другим. Если при сравнении элемента xі с элементом xj первый элемент получил указанный в таблице 1 ранг, то другой элемент получает ранг, обратный к рангу первого элемента. Таблица 1. Шкала относительной важности объектов Степень важности Определение 1 Объекты равноценны 3 Объект немного лучше другого 5 Объект лучше другого 7 Объект намного лучше другого 9 Объект гораздо лучше другого 2,4,6,8 Промежуточные суждения По результатам парных сравнений образуем mm-матрицу A=(aij), элемент которой aij дает оценку преобладания элемента хi в сравнении с элементом xj (i,j=1,…,т). Пусть (w1,...,wт) – набор истинных полезностей элементов множества X. Если парные сравнения будут взаимно согласованы, должны выполняться соотношения aij=wi/wj для i,j=1,…,т. Это означает, что аii=1 и аji=1/aij для i,j=1,…,т. Последнее соотношение означает, что если элемент xі лучше элемента xj в >1 раз, то полезность xj составит 1/ часть от ценности xj. Взаимная согласованность парных сравнений означает также, что должны выполняться соотношения аij=akj/aki для i,j,k=1,…,m. Если хk лучше хi в  раз, а хi лучше xj в  раз, то хk лучше xj в  раз. Для заполнения матрицы A достаточно задать одну строку (один столбец). В самом деле, если заполнена первая строка этой матрицы (а11,...,а1i,...,а1т), то ее i-ая строка (i=2,…,т) заполняется по правилу aij=a1j/a1i (j=1,…,n). При полной согласованности элементов выполняется соотношение: Вектор относительной полезности (w1,…,wm)T – собственный вектор матрицы А для ее собственного значения =т. Для согласованной матрицы – это наибольшее собственное значение (спектральный радиус матрицы), а другие собственные значения равны нулю. Это свойство согласованных парных сравнений можно использовать в случае, если допущены ошибки. После построения матрицы парных сравнений относительные полезности элементов можно получить как компоненты собственного вектора w для собственного значения max. Чем ближе max к т, тем лучше согласованы парные сравнения элементов. Индекс согласованности (индекс Саати). Если значение индекса меньше 10 % от эталонных значений таблицы 2, то результаты парного сравнения считают удовлетворительными. Если значение индекса больше 10 %, то результаты считают неудовлетворительными, и тогда нужно уточнить оценки относительной важности элементов в парных сравнениях. Таблица 2. Эталонные значения индекса согласованности. Способ приближенного вычисления относительной полезности элементов состоит в использовании среднего геометрического элементов каждой строки матрицы:, i=1,…,m. Предположим, что вы решаете, в каком кафе провести свободное время. Выбор ограничен тремя кафе 1, 2 и 3. Они обеспечивают качественное обслуживание клиентов. В кафе 1 свободен доступ в «Интернет», а в кафе 3 много посетителей. Кафе 2 находится ближе к вашему дому. Результаты парного сравнения кафе: <1:2>=3 – есть некоторые основания считать кафе 1 лучше кафе 2; <1:3>=7 – уровень обслуживания в кафе 1 значительно лучше, чем в кафе 3; <2:3>=3 – уровень обслуживания в кафе 2 и 3 почти одинаков, но число посетителей в кафе 2 меньше, и оно расположено ближе к дому. По этим результатам составляем матрицу парных сравнений:. По методу среднего геометрического, находим,,. Оценим собственное значение, которому отвечает этот вектор полезностей. Для этого вычислим произведение. Чтобы оценить max, делим покомпонентно вектор Аw=(2,013;0,73;0,264)T на вектор относительных полезностей w=(0,669;0,243;0,088)T. Получим вектор (3,007;3,007;3,007)T. Собственное значение:. Индекс согласованности. составляет 0,6 % от эталонного значения показателя согласованности:. Уровень согласованности достаточно высок, а относительными полезностями кафе 1, 2 и 3 можно считать: w1=0,669; w2=0,243; w3=0,088. Если принять <1:2>=3 – есть основания считать кафе 1 лучше кафе 2; <1:3>=9 – уровень обслуживания в кафе 1 гораздо лучше, чем в кафе 3; <2:3>=3 – есть основания считать кафе 2 лучше кафе 3, то согласие парных сравнений полное max=3 и J=0: w1=0,692; w2=0,231; w3=0,077. При большом числе объектов этот метод слишком громоздок, что присуще всем методам, основанным на парном сравнении элементов. 2. Потоки и запасы В экономике три категории агентов: предприятия E, домохозяйства H и все другие агенты V. Агенты E производят товары и услуги. Агенты H их потребляют. Агенты V оказывают услуги по распределению созданных благ. Стоимость произведенной в стране конечной продукции равна расходам по ее приобретению, а валовой внутренний продукт (ВВП) можно получить как сумму конечных расходов Y=C+I (C – потребление, I – инвестиции). Добавленная стоимость – доходы агентов, а ВВП равен сумме факторных доходов Y=L+K (L и K – оплата труда и капитала). Плата за капитал включает амортизационные расходы, арендную плату, проценты, страховку и прибыль. Потоки Y, C и I связывают агентов с рынком товаров и услуг MP. Другие потоки связывают их с рынком ресурсов MR и другими рынками M. Отобразим агентов и рынки вершинами графа, потоки – дугами. Модель взаимодействия агентов E, H и V на рынках MP, MR и M дана на рис.1. Доход MP|E=Y предприятия E получают на рынке товаров и услуг MP, где H и V несут расходы C(MP|H) и I(MP|F). Домохозяйства получают доход R(MR|H) на рынке ресурсов MR, где предприятия несут расходы L(E|MR). Другие агенты V получают доход W(M|V) на рынках M, где несут расходы предприятия K(E|M) и домохозяйства S(H|M). Условия баланса рынков, и. Условия баланса агентов, и. Здесь I – инвестиции в товары и услуги, Q – инвестиции в ресурсы. Рис.1. Потоки доходов и расходов. Направленный граф рис.1 на шести вершинах содержит девять дуг потоков. Если удалить вершину графа V и инцидентные ей дуги, оставшаяся часть графа не сбалансирована. Удаленная часть графа становится деревом графа, если ее дополнить дугами V|E и V|H с нулевыми потоками. На рис.2 ветви дерева изображены пунктирными линиями, а хорды дополнения дерева – сплошными линиями. Множество дуг замкнутого графа – объединение его ветвей и хорд. Для графа рис.2 вектор потоков ветвей Ib=(I,Q,–W,0,0), а запасы ветвей Vb=(I,Q,W,0,0). Потоки хорд Ic=(Y,R,L,C,K,S). Матрица потоков хорд Icc=diag(Ic). Рис.2. Дерево графа и его дополнение. Топологические свойства дополнения дерева описывают матрицы инцидентности таблиц 1. Элемент матрицы Dbc равен 1, если i-ая вершина начальная для j-ой хорды, и 0 в противном случае. Элемент матрицы Cbc равен 1, если i-ая вершина конечная для j-ой хорды, и 0 в противном случае. Унимодулярная матрица инцидентности Abc=Cbc–Dbc. Таблица 1. Матрицы инцидентности дополнения дерева. Dbc MP|E MR|H E|MR H|MP E|M H|M Cbc MP|E MR|H E|MR H|MP E|M H|M MP 1 0 0 0 0 0 MP 0 0 0 1 0 0 MR 0 1 0 0 0 0 MR 0 0 1 0 0 0 MF 0 0 0 0 0 0 MF 0 0 0 0 1 1 E 0 0 1 0 1 0 E 1 0 0 0 0 0 H 0 0 0 1 0 1 H 0 1 0 0 0 0 Потоки ветвей и запасы хорд и выражают законы Кирхгофа: алгебраическая сумма потоков в вершине графа и запасов в контуре графа равна нулю. Потоки и запасы дуг даны на рис.2. Мощность дуги – произведение ее потока на запас. Дуги с положительной мощностью – ресурсы, дуги с отрицательной мощностью – использования. Мощность ветвей и хорд и. Сравнение дает теорему Тевенина: Mb+Mc=0 – мощность замкнутого графа равна нулю. В таблице 2 представлена матрица потоков и матрица сальдо и. Таблица 2. Матрица проводок и матрица сальдо. Pbb MP MR M E H Sbb MP MR M E H Ib MP 0 0 0 Y 0 MP 0 0 0 Y –C I MR 0 00 0 R MR 0 0 0 –L R Q M 0 0 0 0 0 M 0 0 0 –K –S –W E 0 L K 0 0 E –Y LK 0 0 0 H C0 S 0 0 H C –R S 0 0 0 –Ib –I –Q W 0 0 0 Если I=Y–C>0, то рынок товаров и услуг MP находится в активном состоянии (I – инвестиции в товары и услуги). Если Q=R–L>0, то рынок ресурсов MR находится в активном состоянии (Q – инвестиции в ресурсы). Поскольку W+I+Q=0 и W<0, то рынки M находятся в пассивном состоянии. Агенты E и H сбалансированы. Потоки ресурсов направлены от агентов к рынкам, а потоки использования – от рынков к агентам. Выделяя в матрице потоков Icc потоки использования Ucc и потоки ресурсов Rcc, можно получить матрицу использования и ресурсов. Эта матрица сбалансирована по столбцам, но не сбалансирована по строкам. Чтобы построить граф использования ресурсов, нужно дуги положительных элементов матрицы Qbb направить от рынков к агентам, а отрицательных – от агентов к рынкам. Таблица 3. Матрица использования и ресурсов. Балансовые модели описывают взаимосвязи выходных и входных переменных (потоки или запасы). Сложение добавленной стоимости ячеек производства дает валовой внутренний продукт Y. В системе национальных счетов (СНС) доход предприятий Y=C+I+G равен сумме потребления C, инвестиции I, государственных расходов G (закрытая система) и чистого экспорта NX= EX–IM (открытая система). Если Y – валовой внутренний продукт (GDP), то NX включает только товары и услуги. Если Y – валовой национальный продукт (GNP), то NX включает доход из-за рубежа (YF): GNP=C+I+G+(EX–IM+YF). Валовой национальный доход (доход резидентов, идущий на потребление и накопление) учитывает трансферты из-за рубежа (TRF): GNDI=C+I+G+(EX–IM+YF+TRF). В круглых скобках счет текущих операций NX. Если T – выплачиваемые налоги, то частные сбережения Sp=GNDI–C–T, излишек государственного бюджета BS=T–G, сбережения S=Y–C–G. Макромодель IS-LM связывает Y со ставкой процента R. Кривая IS описывает зависимость дохода от ставки процента при равновесии на рынке товаров и услуг Y=C(Y,T)+I(R)+G+NX(Y,RER). Здесь потребление C зависит от дохода Y и налога T, инвестиция I – от ставки процента, а чистый экспорт NX – от Y и обменного курса RER. Кривая IS имеет отрицательный наклон, так как увеличение ставки R уменьшает инвестиции и снижает доходы. Кривая LM описывает связь Y и R при равновесии на денежном рынке M/P=L(R,Y). Здесь M/P – отношение денежной массы M к уровню цен P (предложение денег), а L(R,Y) – спрос на деньги. Кривая LM имеет положительный наклон, поскольку R и Y оказывают противоположное влияние на денежный спрос. Пересечение кривых IS и LM дает величины Y* и R* при равновесии на товарном и денежном рынке. Кривая BP описывает взаимосвязь Y и R при внешнем равновесии (баланс официальных расчетов). Платежный баланс включает счет текущих операций и счет операций с активами KA: NX=EX(RER)–IM(Y,RER) и KA(ΔR)=IM(Y,RER)–EX(RER), где ΔR=R–R* – разность внутренней и мировой ставки процента. Внутренняя ставка R зависит от мировой ставки R*: можно получать любые кредиты на международных рынках, не влияя на R* (малая открытая экономика). Если сальдо платежного баланса не равно нулю, точка пересечения кривых IS и LM не лежит на кривой BP. Кривая BP имеет положительный наклон: увеличение Y приводит к росту импорта и к дефициту по текущему счету NX. Равновесие восстановит положительное сальдо счета KA: для привлечения иностранного капитала нужен рост внутренней ставки процента. Наклон кривой BP зависит от склонности к импортированию и мобильности капитала: при низкой мобильности она круче, чем кривая LM. На потоки капитала между странами влияют многие факторы, но самым важным является доход резидентов. Ставки дохода на активы в стране равны номинальной ставке R. Разность номинальной и мировой ставок – это причина оттока (или притока) капитала из страны. Если внутренняя ставка процента выше мировой, иностранные инвесторы найдут привлекательными внутренние активы и приобретут их, резиденты же воздержатся от покупки иностранных активов и станут заимствовать кредиты за границей (приток капитала). Неравновесное состояние баланса текущих операций и платежного баланса, внешние долги неблагоприятно повлияют на состоянии экономики, вызывая экономические спады и финансовые кризисы. Равновесный рост предприятия – движение с оптимизацией цены, выпуска и ресурсов для роста прибыли. Экономика находится в равновесии, если достигается всеми субъектами одновременно, если спрос на товары и услуги равен предложению, если все секторы сбалансированы. Потребитель находится в равновесии, если его доходы и расходы приносят максимальное удовлетворение. Предприятие находится в равновесии, если цена продуктов, выпуск и количество используемых им ресурсов сбалансировано. Владелец ресурсов в равновесии, если использует ресурсы с максимальной выгодой. 14. Потоки Эрланга. Интервалы времени между 1-ым и 2-ым, 2-ым и 3-им,…, n-ым и n+1-ым событием,…T1,T2,…,Tn,… в потоках с ограниченным последействием независимы. Стационарный поток с ограниченным последействием называют потоком Пальма. Случайные интервалы времени T1,T2,…,Tn,… в потоках Пальма имеют один закон распределения. Простейший поток – это поток Пальма. Нестационарный пуассоновский поток не является потоком Пальма. Поток Эрланга k-го порядка получают из простейшего потока путем сохранения каждого k-го события. Промежуток времени T(k) между двумя событиями в потоке Эрланга имеет плотность распределения , t>0, k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение , и, k=1,2,3,… При k=1 закон Эрланга k-го порядка превращается в экспоненциальный закон f(t)=exp(–t) с параметром . Интенсивность потока Эрланга k-го порядка, k=1,2,3,… определяет его основные характеристики, t>0, k=1,2,3,…, и, k=1,2,3,… Интенсивность нормированного потока Эрланга, k=1,2,3,… Промежуток времени между соседними состояниями k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение, , , k=1,2,3,… Плотность распределения нормированного потока Эрланга, t>0, k=1,2,3,… Случайная величина промежутка времени – это среднее арифметическое k независимых случайных величин Ti, i=1,…,k, распределенных по одному и тому же закону распределения (экспоненциальному с параметром ). В силу центральной предельной теоремы она будет иметь распределение, близкое к нормальному с математическим ожиданием 1/ и дисперсией 1/k2. Поскольку дисперсия уменьшается с ростом k, промежуток времени между соседними событиями нормированного потока Эрланга становится все менее случайным и по закону больших чисел приближается по вероятности к математическому ожиданию 1/. Поток Эрланга приближается с ростом k к регулярному потоку с промежутком времени 1/ между событиями. Это свойство потоков Эрланга выявляет роль k как меры «последействия»: от полного отсутствия последействия при k=1 (простейший поток) до жесткого последействия при k (регулярный поток). Для моделирования реального потока с последействием применяется нормированный поток Эрланга с почти тем же математическим ожиданием и дисперсией интервала времени между соседними событиями. С помощью потоков Эрланга немарковские процессы можно сводить к марковским процессам. Пример 7. Наблюдения за работой рекламного агентства показали, что среднее значение интервала времени T между соседними поступлениями заказов M[T]=1 неделя и стандартное отклонение T=4 дня. Интенсивность и стандартное отклонение нормированного потока Эрланга (заказ в неделю) и. Отсюда k=(7/4)2=3,067. Ближайшее целое число – порядок k=3. Плотность распределения вероятностей случайного интервала времени, t>0. Вероятность, что интервал времени между двумя заказами больше 3 и меньше 5 дней. Интегрируя по частям, получим, и. Интегрируя по частям, получим. Таким образом, p=0,189. Пуассоновские потоки событий и дискретные марковские процессы с непрерывным временем тесно связаны. Случайный процесс с непрерывным временем в системе с дискретными состояниями будет марковским, если все потоки событий, переводящие систему из состояния в состояние, являются пуассоновскими (стационарными или нестационарными). Такие системы с непрерывным временем называются пуассоновскими. Исследование случайного процесса проводится по алгоритму: (1) Описать каждое состояние системы; (2) Составить граф состояний, указать возможные переходы из состояния в состояние; (3) Задать интенсивности потоков событий, под влиянием которых осуществляются эти переходы; (4) Указать начальное состояние системы (при t=0). Пример 8. Банкоматы B1 и B2 могут «отказывать» независимо друг от друга (выходить из строя). Потоки отказов B1 и B2 с интенсивностями 1=4 и 2=3 (отказа в неделю) – пуассоновские. После отказа каждый банкомат сразу ремонтируется (восстанавливается). Потоки восстановлений B1 и B2 с интенсивностями 1=5 и 2=2 (восстановлений в неделю) – пуассоновские. Потоки с постоянными интенсивностями являются простейшими. Система S может находиться в четырех состояниях: s11 – оба банкомата исправны; s12 – банкомат B1 исправен, а B2 ремонтируется; s21 – банкомат B1 ремонтируется, а B2 исправен; s22 – банкоматы ремонтируются. Размеченный граф состояний системы изображен на рис.10, а матрица плотностей вероятностей переходов дана в таблице 5. Рис.10. Граф состояний системы двух банкоматов. Таблица 5. Матрица плотности вероятностей. Составим систему уравнений Колмогорова: В начальный момент времени t=0 система находилась в состоянии s12:, , ,. Условие нормировки p11(t)+p12(t)+p21(t)+p22(t)=1 (t0). С учетом условия нормировки получаем неоднородную систему трех линейных дифференциальных уравнений первого порядка:, ,. Общее решение однородной системы, ,. Для нахождения решений неоднородной системы применим метод вариации постоянных, рассматривая c1,c2,c3 как неизвестные функции от t. Подставляя решение однородной системы, получим систему линейных уравнений для dc1/dt, dc2/dt и dc3/dt. После ее решения и интегрирования найдем функции,, , где b1, b2 и b3 – постоянные интегрирования. Для их определения используем начальные условия:, ,. Решение этой системы уравнений методом Крамера дает, ,. Подставив эти значения, получим общее решение неоднородной системы:, ,. Функцию p22(t) находят из условия нормировки:. При t=2 будем иметь, , ,. Во втором квартале система S будет находиться вероятнее всего в состоянии s12: банкомат B1 будет работать, а B2 – ремонтироваться. Дискретный процесс с непрерывным временем является марковским, если каждый из потоков, переводящих систему из состояния в состояние, является пуассоновским потоком. Преобразование Лапласа Спектральная плотность сигнала v(t). Это преобразование Фурье сигнала v(t). Обратное преобразование Фурье. Сигналу v(t) можно сопоставить спектральную плотность V() в том случае, если сигнал абсолютно интегрируем:. Если экономическую систему возбуждают источники потока y(t), а искомые переменные x(t) являются запасами, то ее поведение описывается уравнением, где квадратная матрица T(p)=G+pC, а G и C не зависят от комплексной частоты p. Допустим, что система уравнений решена, а выходная функция F(p)=cTX(p). Формальное решение, где T+(p) – присоединенная матрица. Линейные выходные функции имеют общий знаменатель, равный определителю матрицы T(p). Определитель и любой элемент присоединенной матрицы T+ – это полиномы от p, а F(p) – рациональная функция комплексной переменной p вида F(p)=N(p)/D(p). Знаменатель функции системы D(p)=|T|, а числитель N(p)=|Tcy|. Если изображение есть дробь F(p)=K1/(p–p1) с полюсом p1 и вычетом K1, то. Обращение преобразования Лапласа заключается в вычислении для. Нужно найти условие, при котором интеграл можно представить в виде. Замкнем контур интегрирования в левой полуплоскости полуокружностью с радиусом, которой растет с пределами интегрирования. Если выполнить условие равенства нулю интеграла вдоль этой бесконечной полуокружности, то интеграл равен сумме вычетов. Введем p=Rexp(i) с dp=iRexp(i)d:. На полуокружности в левой полуплоскости, ограниченной точками iR и –iR, величина R постоянна. При больших R преобладают члены старших степеней и выражение для интеграла можно упростить. Интеграл конечный. Чтобы обеспечить равенство нулю выражения при R, нужно выбрать M и N, чтобы R в знаменателе имел положительную степень. Интеграл от рациональной функции I(p) по бесконечной полуокружности равен нулю, если число полюсов MN+2 функции на два больше, чем число ее нулей. Интегрирование рациональной функции при MN+2 вдоль линии, параллельной мнимой оси, дает 2i{сумма вычетов для полюсов слева от линии}, если контур интегрирования замкнуть через левую полуплоскость. Если замкнуть контур через правую полуплоскость, то следует взять сумму вычетов для полюсов справа от линии, а умножить на (–2i). Если f(z) определена в точке ветвления, то значение f(a) является общим для ветвей, полученных при обходе. Если, описывая кривую вокруг точки z=a сколь угодно раз в том же направлении, мы каждый раз будем получать новые ветви, то точка a называется точкой ветвления бесконечного порядка (логарифмическая точка ветвления). Определение коэффициентов полиномов N(p) и D(p) по ряду чисел (pi,N(pi)) и (pi,D(pi)) составляет интерполяционную задачу. Пусть известны значения qi в n+1 точке pi. Нужно найти коэффициенты полинома, проходящего через эти точки. Подставив pi, получим систему уравнений. Наилучшим выбором pj являются равноотстоящие точки, лежащие на единичной окружности комплексной плоскости. Обозначим P=(pij), где i и j принимают значения от 0 до n. Если обозначить, то pk=wk и P=(wij), а решение принимает вид. Исходный полином, определенный в точках pk, представлен в виде,. Это дискретное преобразование Фурье. Оно эффективно при выборе n+1=2m и целом числе m (быстрое преобразование). Дисконтирование достигается преобразованием Лапласа, которое переводит функцию f(t) действительной переменной t в функцию f(p) комплексной переменной p=r+is (r=Rep, s=Imp, i – мнимая единица). При ограниченном росте |f(t)|<exp(r0t) с абсциссой абсолютной сходимости r0>0 этот интеграл сходится при Rep<r0: область определения функции f(p) лежит слева от r=r0. Изображение запаздывающего импульса Хевисайда h(t–) с амплитудой h=1:. Изображение импульса g(t)=[h(t)–h(t–)]/ длительностью :. В пределе 0 получается изображение импульса Дирака (p)=1. Таблица оригиналов f(t) и изображений f(p). (для преобразования Карсона p используется интеграл Бромвича) Изображения являются рациональными функциями p:, и, где pl – нули, а pk – полюса функции f(p). На комплексной плоскости они изображаются соответственно кружками и крестиками. Функцию можно представить суммой простых множителей с вычетами, , ,. Функцию можно представить суммой. При k=1 имеем pk=1 и nk=2, а [(p–pk)f(p)]=p-3:, и,. При k=2 имеем pk=0 и nk=3, а [(p–pk)f(p)]=(p–1)-2:, , , и,. Если f(p)=c(p)/d(p), а c(p) и d(p) – аналитические функции в простом полюсе p1, то resf(p1)=c(p1)/d(p1). Формула Хевисайда применима, если m различных полюсов pk имеют кратности mk:, Если все полюсы простые, то Через компоненты матрицы Прибыль в рыночном сегменте Экономические рынки удобно рассматривать в виде множества секторов, элементы которых имеют общие признаки. Хозяйствующие субъекты сектора более однородны по своему поведению, чем субъекты всего рынка. Устойчивость сегменту придают прибыльные субъекты. Рыночный сегмент характеризуется какими-то свойствами и параметрами. Экстенсивные свойства пропорциональны размеру сегмента (совокупный доход, энтропия, число субъектов). Интенсивные свойства не зависят от размеров сегмента: скорость обращения полезности V определяет условия обмена между сектором и рынком, а уровень цен p отражает издержки рыночного сегмента. Если экономические параметры изменяются во времени, то в секторе протекает экономический процесс. Самопроизвольный процесс приводит рыночный сегмент в такое состояние, когда его экономические свойства больше не изменяются: в секторе установится полное равновесие. Равновесные рыночные сегменты характеризуются распределением Гиббса [3]. Сейчас кажется тривиальным, что при нехватке некоторого блага его цена растет. Однако между эмпирическим фактом и математическим доказательством дистанция огромного размера [1]. В основе доказательства лежит предположение о детерминированности процессов производства товаров и услуг. Оно попросту не учитывает неопределенность будущего, тем самым не затрагивая финансовую сторону экономической деятельности. Такие явления, как денежная инфляция и спекуляция, нельзя объяснить в рамках детерминированного подхода [2]. Предметом нашего исследования является экономическая система ячеек, которые находятся в состояниях полезности. При этом ячейка «погружена» во внешнюю среду, формируемую другими ячейками. Основное занятие ячейки – это распределение товаров и услуг. Совокупность ячеек и среды образует замкнутую экономическую систему. Нас интересует товарные отношение в этой системе. Пусть индекс n нумерует товары полезностями un. Согласно основному принципу статистической механики, если известна вероятность и статистическая сумма то можно найти внутреннюю полезность системы U, накопление W и свободную полезность F как функции скорости обращения полезности V: Эти функции связаны условием баланса U=F+W. Энтропия n-го состояния Энтропия закрытого региона. Экстенсивная переменная S – мера накопления VS, а интенсивная переменная V – ее оценка. И V и S неотрицательны. Изменения Q и Pn с V описываются производными где U зависит от V. Производные энтропии по V зависят от дисперсии и асимметрии дохода: Поскольку 2>0, то S увеличивается со скоростью V, достигая насыщения при V=V3μ3/3μ2, если μ3>0. При 3<0 энтропия ограничена. Производные по V:, и, Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом V. Производные по S:, и Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом S. Скорость обращения полезности V и энтропия S сопряжены на внутренней и свободной полезности: U(S) является потенциалом для скорости обращения полезности V, а F(V) – потенциалом для энтропии S. Накопление W не является потенциалом ни для скорости обращения, ни энтропии. Для учета доходов используем экстенсивную переменную благосостояния Y. Полезность товара un уменьшается с ростом Y, а производные pn(Y)=–dun/dY>0 определяют уровень цен, где вероятность Pn(V,Y) зависит от Y, так как un зависит от Y. Рыночный сегмент имеет две пары сопряженных переменных (S,V), (Y,p) и четыре потенциала F(V,Y), G(V,p), H(S,p) и U(S,Y) с дифференциалами, , и. Свободная полезность F вычисляется по статистической сумме Q(V,Y). Внутренняя полезность U=F+W включает F и W. Свободная полезность G=F+pY включает F и pY, а внутренняя полезность H=F+VS+pY. Переменные S и Y являются экстенсивными факторами, а V и p – интенсивные факторы. Частные производные статистической суммы выражаются в виде: Свободная полезность F(V,Y) является функцией V и Y: Свободная полезность G(V,p)=F+pY является функцией V и p: Внутреняя полезность H(S,p)=G+VS является функцией S и p: Внутреняя полезность U(S,Y)=H–pY является функцией S и Y: Внутрення полезность U растет с энтропией S и уменьшается с доходом Y. Потенциалы полезности F(V,Y), G(V,p), H(S,p) и U(S,Y) аддитивны, а V и p одинаковы для всех всех субъектов сегмента. Поэтому потенциалы должны быть однородными функциями первого порядка по переменным S и Y: где ψ, μ, ν и φ – некоторые функции. Будем рассматривать N как независимую переменную. Тогда в дифференциалы нужно добавить μdN с потенциалом. Оценка μ(V,p) резидентов в открытой экономической зоне оказывается функцией скорости обращения полезности V и уровня цен p. Дифференцируя G по N, получаем (V,p) – оценка μ числа субъектов в сегменте оказывается функцией V и p. Большой потенциал открытой зоны Ω=F–G является функцией V, Y и μ: dΩ=–SdV–pdY–Ndμ. Если полезность n-го резидента в зоне обозначить unN, то вероятность. Накопление полезности в открытой экономической зоне:, , и. Открытая экономическая зона является большим каноническим ансамблем. При описании экономических явлений используют понятие эластичности фактора и показателя [4]. Пусть взаимозависимые переменные x, y и z отвечают любой тройке неповторяющихся факторов S, V, Y и p. Тогда y-ой эластичностью фактора x при неизменном факторе z называется величина xyz=y(x/y)z. Только 16 эластичностей независимы в закрытой системы. Свободная полезность F(V,Y) вычисляется с помощью статистической суммы Q, а другие потенциалы в переменных V и Y – из выражений: Дифференцирование дает Потенциалы в переменных V и p выражаются через G(V,p): Дифференцирование дает Потенциалы в переменных S и p выражаются через H(S,p): Дифференцирование дает Потенциалы в переменных S и Y выражаются через U(S,Y): Дифференцирование дает Эти производные легко вычисляются, если учесть свойства якобианов: Доход Y(F,V) как функция свободной полезности F и скорости обращения имеет частные производные: Скорость обращения полезности V(G,p) как функция свободной полезности G и уровня цен имеет частные производные: Уровень цен p(H,S) как функция внутренней полезности H и энтропии имеет частные производные: Энтропия S(U,Y) как функция внутренней полезности U и благосостояния имеет частные производные: Статистическая оценки важных эластичностей дает: где означает усреднение с учетом вероятности Pn. Экономические процессы в закрытом сегменте сопровождаются ростом энтропии, пока она не достигнет наибольшего значения при полном равновеси. С ростом числа субъектов энтропия растет при фиксированной скорости V и уровне цен p. Это означает, что норма накопления увеличивается с числом субъектов, т.е. с переходом от большого к малому бизнесу. Субъекты малого бизнеса слабо взаимодействуют друг с другом в идеальном сегменте и представляют собой однородную массу, а их прибыль линейно зависит от конъюнктуры. Замечательным достижением статистической экономики является точная формулировка условий равновесия с внешней средой. Процессы, протекающие в замкнутой неравновесной системе, идут таким образом, что система переходит из состояний с меньшей энтропией в состояния с большей энтропией, пока она не достигнет своего наибольшего значения, соответствующего полному равновесию. Энтропия замкнутой системы – сумма энтропий резидентов и внешней среды. Равенство нулю первых производных суммарной энтропии является только необходимым условием экстремума и не дает того, чтобы энтропия имела именно максимум. Для выяснения достаточных условий необходимо вычислить второй дифференциал суммарной энтропии. Это исследование удобнее провести, исходя не из условия максимума суммарной энтропии, а из эквивалентного ему условия. Выделим из системы некоторую малую часть, а остаток будем рассматривать как внешнюю среду со скоростью обращения V0 и уровнем цен p0. Тогда в равновесии имеет минимум величина U–V0S+p0Y с внутренней полезностью U, энтропией S и доходом Y. При всяком малом отклонении от равновесия ее изменение должно быть положительным: Разлагая δU в ряд, получаем с точностью до членов второго порядка: где производные взяты в состоянии равновесия. Но поскольку то члены первого порядка сокращаются. Это необходимые условия равновесия: скорость обращения полезности V и уровень цен p для резидентов равны этим же величинам внешней среды. Достаточное условие равновесия имеет вид: Для того, чтобы такое неравенство имело место при произвольных δS и δY, нужно удовлетворить два неравенства: Поскольку то первое неравенство удовлетворяется при Второе неравенство можно записать в виде якобиана Переходя к переменным V и Y, имеем Поскольку p=p0>0 и SV0,Y>0, то это равносильно условию Уровень цен должен уменьшаться с ростом благосостояния при постоянной скорости обращения полезности. Эти экономические неравенства гарантируют устойчивость равновесной системы. Для SV0,Y>0 нужно, чтобы средний квадрат внутренней полезности u2 превышал квадрат среднего U2, а дисперсия была положительной. Поскольку для устойчивости равновесия необходимо, чтобы dp/dY было отрицательным и по модулю превышало отношение дисперсии уровня цен к скорости обращения. При любом начальном состоянии закрытой системы с течением времени в ней установится единственное состояние – равновесие. Эта тенденция означает монопольное возрастание энтропии во времени и увеличение разности энтропий S=S–S0 от отрицательных значений до нуля. Эти утверждения эквивалентны, и они отражают тот факт, что равновесие является глобальным асимптотически устойчивым состоянием, энтропия – функцией Ляпунова. Если только свободная полезность F(V,Y) будет иметь несколько минимумов при неизменных V, Y и различных значениях N, то стабильному состоянию будет отвечать наименьшее значение F, а метастабильному – самый мелкий минимум с наибольшим F. Такие состояния легко разрушаются переходом системы в устойчивое состояние с наименьшей свободной полезностью. Если системы переходит из одного состояния в другое с изменением ее внутренней полезности при неизменном накоплении, то обратный переход нельзя осуществить без воображаемого внешнего источника R. Прямому переходу с совершением максимальной работы |Rmax| отвечает обратный переход c работой Rmin внешнего источника. Изменение внешней полезности ΔU при изменении состояния состоит из трех частей: из произведенной работы внешнего источника R, из работы внешней среды p0ΔY0 и из полученной из нее V0ΔS0: где индекс 0 относится к внешней среде. Поскольку затраты среды равны доходу ΔY0=–ΔY, а в силу закона возрастания энтропии S0–S, то где знак равенства достигается при обратимом процессе. Переход совершается с минимальной работой, если он происходит обратимо: Обратный переход также совершается с минимальной работы, если происходит обратимо: Пусть SΣ есть полная энтропия. Если резиденты находятся в равновесии с внешней средой, то SΣ является функция их внутренней полезности UΣ.. Если же резиденты не находятся в равновесии с внешней средой, то суммарная энтропия отличается от SΣ(UΣ) на величину Но dU/dS является равновесной скоростью обращения полезности V0. Таким образом, получаем Эта формула определяет, как отличается энтропия замкнутой системы от своего возможного значения, если резиденты не находятся в равновесии со средой. Рассмотрим закрытую систему с энтропией SΣ. Пусть β – некоторый фактор, обеспечивающий ее внутреннее равновесие, т.е. S/=0. Пусть α – другой фактор, обеспечивающий при внутреннем равновесии системы и ее равновесие с внешней средой, т.е. S/=0. Введем обозначения Энтропия SΣ замкнутой системы максимальна при полном равновесии. Чтобы энтропия была максимальной, кроме необходимых условий А=0 и В=0, должны выполняться неравенства Уже незначительные изменения фактора α при некотором воздействии на закрытую систему приводят к изменению A на величину Изменение α при постоянном β приводит к нарушению условия внутреннего равновесия системы B=0. После того, как это равновесие восстановится, величина ΔA будет иметь значение Используя свойства якобиана, находим С учетом неравенств получаем новое неравенство Это неравенство выражает принцип Ла Шателье [6]. Рассмотрим изменение Δα фактора α как меру внешнего воздействия на систему, а ΔΑ – κак меру изменения системы под его влиянием. Тогда Значение ΔΑ уменьшается при восстановлении внутреннего равновесия системы после внешнего воздействия, выводящего ее из равновесия. Другими словами, внешнее воздействие, выводящее систему из равновесия, стимулирует в системе процессы, стремящиеся ослабить его влияние. Изменение энтропии системы –Rmin/V0 зависит от скорости обращения полезности во внешней среде V0 и минимальной работы Rmin, необходимой для приведения системы из состояния равновесия с внешней средой в данное состояние. Поэтому можно написать где для бесконечно малого изменения состояния системы резидентов Все величины без индекса относятся к резидентам, а с индексом 0 – к среде. Пусть α есть энтропия S. Тогда A=V/V0–1 и в равновесии V=V0, неравенства принимают вид Рост энтропии означает, что в систему инвестируется оборотный капитал. В итоге нарушается равновесие резидентов и, в частности, увеличивается скорость обращения полезности на величину (V). Восстановление равновесия резидентов приводит к тому, что изменение скорости обращения уменьшится до (V)B=0. т.е. как бы ослабляется результат воздействия, выводящего резидентов из равновесия. Если в неравенстве в качестве фактора β взять доход Y, то будем иметь поскольку условие В=0 означает, что случае p=p0. Подстановка дает неравенство Используя свойства якобиана, можно получить Пусть α есть налог Y. Тогда A=1–V/V0 и в равновесии V=V0, а неравенства принимают вид Если в неравенстве в качестве фактора β взять энтропию S, то условие В=0 означает, что V=V0 и В устойчивой системе величина (p/Y)V должна быть отрицательной. Используя свойства якобиана, можно получить В устойчивой системе величина (S/V)p должна быть положительной. Основной недостаток идеального сегмента состоит в том, что полезность расходится при Y=0. Этот коллапс не должен допускаться государством, которое может установить минимальный предел Y0. Рассмотрим процесс L в экономической системе, которая не находится в равновесии с внешней средой. Пусть B – накопление, полученное системой из внешней среды со скоростью обращения полезности V0. Процесс L перехода из состояния 1 в состояние 2 нельзя реализовать, если нарушается неравенство где S1 и S2 – энтропии состояний, а интегрирование проводится по траектории процесса. Равенство применимо только при обратимом процессе. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы и не зависит от ее промежуточных состояний Дифференциал внутренней полезности в замкнутой системе содержит малое накопление B и малое потребление A, которые не являются дифференциалами в общем случае. Переведем идеальную систему из начального состояния 1 в промежуточное состояние 2 при неизменной энтропии: где. Выпуск и потребление положительны, если. Переведем теперь систему из состояния 2 в промежуточное состояние 3 при неизменной ренте: Переведем далее систему из состояния 3 в промежуточное состояние 4 при неизменной конъюнктуре: Наконец, переведем систему из состояния 4 в начальное состояние 1 при неизменной ренте: При этот цикл оказывается замкнутым. В начальном состоянии 1 идеальная система имеет низкую конъюнктуру и низкую ренту. Переход в состояние 2 при низкой конъюнктуре сопровождается увеличением ренты и цены, а капитал убывает потому, что выпуск равен потреблению (накопление не меняется). Переход в состояние 3 при высокой ренте сопровождается увеличением конъюнктуры и капитала, а цена уменьшается, потому что выпуск отсутствует (инвестиция накоплений в производство повышает его конъюнктуру). Переход в состояние 4 при высокой конъюнктуре сопровождается уменьшением ренты и цены, а капитал увеличивается, потому что потребление равно выпуску (накопление не изменяется). Переход в начальное состояние 1 при низкой ренте сопровождается уменьшением конъюнктуры и капитала, а цена увеличивается, потому что выпуск отсутствует (конфискация накопления из производства понижает его конъюнктуру). Коэффициент полезного действия этого замкнутого экономического цикла определяется следующим образом: Инвестиция S2=S23>0 и конфискация S1=S41<0 удовлетворяют соотношению Это соотношение справедливо только для замкнутого цикла. Макроскопическая теория выпусков и затрат использована для описания экономических циклов системы многих резидентов на основе модели В.В.Леонтьева. Основные понятия макроэкономики развиты в русле детерминированного подхода, дополненного соображениями оптимальности и полезности [1,2]. Может быть поэтому нет строгого определения конъюнктуры как меры эффективной деятельности экономической системы. Вместе с тем, этот термин используется [3]. Эвристические соображения известных экономистов о конъюнктуре близки к определению температуры как производной внутренней энергии системы по ее энтропии [4,5]. Аналогом внутренней энергии в экономике является внутренняя полезность, но она должна быть определена в рамках вероятностного подхода. Необходимость такого подхода отмечалась в связи с инфляционными процессами современной экономической жизни [6]. Полезность un зависит от индекса благосостояния Y, причем при Y=1 она равна нулю, а цена благосостояния pn(Y)–dun/dY не может быть отрицательной, так как un уменьшается с ростом Y. Согласно основного принципа статистической экономики, если известны статистическая сумма Q, вероятность Pn, энтропия S и уровень цен p, , и, то можно найти макроскопические показатели закрытой системы при скорости обращения полезности V и индексе благосостояния Y. Показателями закрытой системы являются внутренняя полезность U=F+W, свободная полезность F и накопление W, и, а ее факторами являются скорость обращения полезности V, энтропия S, индекс благосостояния Y и уровень цен p. Для простой закрытой системы, а свободная полезность (потребление) выражается в виде, где f(V)=VlnL(V). Энтропия и уровень цен простой системы даются уравнениями состояния и. Полуэластичности этих двух факторов и. Для устойчивости закрытой системы необходимо и достаточно иметь =const, =const и SV,Y>0, pY,V<0. Простая система устойчива, если d2f/dV2<0. Свободная полезность G=F+pY в простой системе определяется с учетом уравнения состояния:, а энтропия и индекс благосостояния выражаются в виде и. Полуэластичности этих факторов и. Идеальной называется простая система с SV,Y=N0>0 и, где f0 и  – постоянные интегрирования. Внутренняя полезность U=F+W такой системы определяется с учетом уравнения состояния:, где =1+N/N0>1. Удобно выбрать f0=–S0 и, чтобы внутренняя полезность исчезала при энтропии S11=S(V=1,Y=1) и индексе Y=1:. В этом случае и, а внутренняя полезность являются линейной функцией скорости обращения полезности U=N0(V–1). Свободная полезность идеальной системы и ее энтропия – нелинейные функции скорости обращения полезности и индекса благосостояния и. Зависимость энтропии идеальной системы S(V,Y) от конъюнктуры V приводится на рис.1 для двух значений индекса благосостояния Y. Рис.1. Зависимость энтропии от конъюнктуры. Используются данные для высокоэластичной экономики с небольшим числом резидентов, представляющих отрасли народного хозяйства [3] (N0=10, S11=3 и N=10). Рост энтропии с конъюнктурой свидетельствует о структурных изменениях системы, сопровождаемых линейным увеличением внутренней полезности. Этот рост замедляется с уменьшением индекса благосостояния. Уравнение состояния pY=NV связывает большую полезность pY с числом резидентов N и конъюнктурой V идеальной системы. При неизменной конъюнктуре уровень цен уменьшается с ростом индекса благосостояния (деинфляция). Рассмотрим квазистатический процесс L в системе резидентов, которые не находятся в равновесии с внешней средой. Малое накопление B система резидентов получит из окружающей среды с равновесной конъюнктурой V0. Переход системы резидентов из состояния 1 с энтропией S1 в состояние 2 с энтропией S2 нельзя реализовать, если нарушается неравенство, где интегрирование проводится по траектории процесса L. Равенство применимо при обратимых процессах. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы. Дифференциал внутренней полезности закрытой системы dU=B+A=VdS–pdY содержит малое накопление B и малое потребление А, которые не являются дифференциалами. В состоянии 1 система имеет энтропию S1 и конъюнктуру V1. Переведем систему из начального состояния 1 в состояние 2 при неизменной энтропии: и. Переход в состояние 2 с конъюнктурой V2>V1 сопровождается уменьшением индекса благосостояния Y и увеличением уровня цен p, потому что прирост полезности потребляется (рис.1). Переведем систему из состояния 2 в состояние 3 при неизменной конъюнктуре:, и. Переход в состояние 3 с энтропией S3>S1 сопровождается увеличением Y и уменьшением p, потому что внутренняя полезность не изменяется (инвестиция накоплений в систему повышает энтропию). Зависимость индекса благосостояния Y от уровня цен p приводится на рис.2 для той же высокоэластичной системы при S1=1, V1=1, V2=3 и S3=3. Рис.2. Зависимость индекса от ставки затрат. Переведем систему из состояния 3 в состояние 4 при неизменной энтропии: и. Переход в состояние 4 с конъюнктурой V4<V2 сопровождается увеличением Y и уменьшением p. Переведем систему из состояния 4 в состояние 1 при неизменной конъюнктуре:, и. Переход в состояние 1 с энтропией S1 и конъюнктурой V4=V1 сопровождается уменьшением Y и увеличением p из-за конфискации накоплений окружающей средой. Коэффициент полезного действия экономического цикла. Инвестиция B2=B23>0 и конфискация B1=B41<0 удовлетворяют соотношению. Это соотношение справедливо только для замкнутого цикла. Современному состоянию экономики Украины отвечает одна из нижних точек на траектории L12 c энтропией S1 и конъюнктурой VV2. Движение по этой траектории с падением индекса благосостояния Y и увеличением уровня цен p разогревает экономику до такой конъюнктуры V2, при которой возможны структурные изменения отношений резидентов на траектории L23. Движение по траектории с ростом Y и уменьшением p хаотизирует экономику до значения энтропии S3, которое зависит от инвестиции накоплений. Определению кризисной точки более отвечает состояние экономики с энтропией S1 и конъюнктурой V1, а квазистатический процесс L41 имеет периода застоя. Ему предшествует движение по траектории L34, которое ведет к охлаждению экономических отношений.

- определение объема информации;

- предварительное исследование;

- разработка плана опроса.

2. Разработка проекта анкеты:

- развитие тест-вопросов

- проведение тест-исследования.

Полезность парных сравнений. Прокоп О.М. Научный руководитель проф. На множестве элементов Х={х1,...,хт} определена семья отношений преобладания ={,,,,}, первым из которых является отношение «не хуже» (). Функция полезности удовлетворяет условию:). Это означает, что элемент x1X не хуже элемента x2X, если полезность f(x1) элемента х1 не меньше полезности f(x2) элемента х2. Таким образом, функция полезности f отображает отношение преобладания  на множестве X. Можно убедиться, что она отображает и все другие отношения семьи . В частности, отображение основных отношений «равноценно» () и «лучшее» ():),). Всегда ли бинарное отношение преобладания можно отобразить функцией? Утвердительный ответ для счетного множества дал Кантор, а для несчетного – Милграм и Биркгоф. Очень важную теорему доказал Дебре: отношение преобладания «не хуже»  на компактном множестве XRn можно отобразить функцией полезности, если оно непрерывно на X. Если множество допустимых элементов X представляет собой компакт в Rn, то непрерывная на этом множестве функция достигает наибольшего значения (теорема Вейєрштрасса). Множество элементов, доставляющих максимум функции f на множестве X, не пусто. Поскольку эти элементы являются максимальными по отношению преобладания , что отображается функцией полезности f, то множество преобладающих элементов не пусто. Вместе с функцией ценности f все отношения преобладания семьи  отображает другая функция, полученная возрастающим преобразованием. Если u=f(х), хX – функция полезности, а v=g(и) – возрастающая функция переменной u, то сложная функция v=g(f(x)), хX также является функцией полезности. Функция полезности, заданная с точностью до произвольного монотонно возрастающего преобразования, называется порядковой. Если же функция полезности задана с точностью до произвольного положительного линейного преобразования v=f(x)+, где ,>0, ее называют интервальной. Особенность интервальной функции полезности состоит в том, что она (в отличие от порядковой) позволяет не только определять, что один элемент преобладает над другим, а и то, как различаются элементы по преобладанию. Если функция полезности f положительна и задана с точностью до любого множителя , то есть w=f(x), >0, то ее называют относительной. Она показывает, в сколько раз один элемент преобладает над другим. При сравнении двух элементов xі и xj множества важно знать, в какой степени один элемент преобладает над другим. Если при сравнении элемента xі с элементом xj первый элемент получил указанный в таблице 1 ранг, то другой элемент получает ранг, обратный к рангу первого элемента. Таблица 1. Шкала относительной важности объектов Степень важности Определение 1 Объекты равноценны 3 Объект немного лучше другого 5 Объект лучше другого 7 Объект намного лучше другого 9 Объект гораздо лучше другого 2,4,6,8 Промежуточные суждения По результатам парных сравнений образуем mm-матрицу A=(aij), элемент которой aij дает оценку преобладания элемента хi в сравнении с элементом xj (i,j=1,…,т). Пусть (w1,...,wт) – набор истинных полезностей элементов множества X. Если парные сравнения будут взаимно согласованы, должны выполняться соотношения aij=wi/wj для i,j=1,…,т. Это означает, что аii=1 и аji=1/aij для i,j=1,…,т. Последнее соотношение означает, что если элемент xі лучше элемента xj в >1 раз, то полезность xj составит 1/ часть от ценности xj. Взаимная согласованность парных сравнений означает также, что должны выполняться соотношения аij=akj/aki для i,j,k=1,…,m. Если хk лучше хi в  раз, а хi лучше xj в  раз, то хk лучше xj в  раз. Для заполнения матрицы A достаточно задать одну строку (один столбец). В самом деле, если заполнена первая строка этой матрицы (а11,...,а1i,...,а1т), то ее i-ая строка (i=2,…,т) заполняется по правилу aij=a1j/a1i (j=1,…,n). При полной согласованности элементов выполняется соотношение: Вектор относительной полезности (w1,…,wm)T – собственный вектор матрицы А для ее собственного значения =т. Для согласованной матрицы – это наибольшее собственное значение (спектральный радиус матрицы), а другие собственные значения равны нулю. Это свойство согласованных парных сравнений можно использовать в случае, если допущены ошибки. После построения матрицы парных сравнений относительные полезности элементов можно получить как компоненты собственного вектора w для собственного значения max. Чем ближе max к т, тем лучше согласованы парные сравнения элементов. Индекс согласованности (индекс Саати). Если значение индекса меньше 10 % от эталонных значений таблицы 2, то результаты парного сравнения считают удовлетворительными. Если значение индекса больше 10 %, то результаты считают неудовлетворительными, и тогда нужно уточнить оценки относительной важности элементов в парных сравнениях. Таблица 2. Эталонные значения индекса согласованности. Способ приближенного вычисления относительной полезности элементов состоит в использовании среднего геометрического элементов каждой строки матрицы:, i=1,…,m. Предположим, что вы решаете, в каком кафе провести свободное время. Выбор ограничен тремя кафе 1, 2 и 3. Они обеспечивают качественное обслуживание клиентов. В кафе 1 свободен доступ в «Интернет», а в кафе 3 много посетителей. Кафе 2 находится ближе к вашему дому. Результаты парного сравнения кафе: <1:2>=3 – есть некоторые основания считать кафе 1 лучше кафе 2; <1:3>=7 – уровень обслуживания в кафе 1 значительно лучше, чем в кафе 3; <2:3>=3 – уровень обслуживания в кафе 2 и 3 почти одинаков, но число посетителей в кафе 2 меньше, и оно расположено ближе к дому. По этим результатам составляем матрицу парных сравнений:. По методу среднего геометрического, находим,,. Оценим собственное значение, которому отвечает этот вектор полезностей. Для этого вычислим произведение. Чтобы оценить max, делим покомпонентно вектор Аw=(2,013;0,73;0,264)T на вектор относительных полезностей w=(0,669;0,243;0,088)T. Получим вектор (3,007;3,007;3,007)T. Собственное значение:. Индекс согласованности. составляет 0,6 % от эталонного значения показателя согласованности:. Уровень согласованности достаточно высок, а относительными полезностями кафе 1, 2 и 3 можно считать: w1=0,669; w2=0,243; w3=0,088. Если принять <1:2>=3 – есть основания считать кафе 1 лучше кафе 2; <1:3>=9 – уровень обслуживания в кафе 1 гораздо лучше, чем в кафе 3; <2:3>=3 – есть основания считать кафе 2 лучше кафе 3, то согласие парных сравнений полное max=3 и J=0: w1=0,692; w2=0,231; w3=0,077. При большом числе объектов этот метод слишком громоздок, что присуще всем методам, основанным на парном сравнении элементов. 2. Потоки и запасы В экономике три категории агентов: предприятия E, домохозяйства H и все другие агенты V. Агенты E производят товары и услуги. Агенты H их потребляют. Агенты V оказывают услуги по распределению созданных благ. Стоимость произведенной в стране конечной продукции равна расходам по ее приобретению, а валовой внутренний продукт (ВВП) можно получить как сумму конечных расходов Y=C+I (C – потребление, I – инвестиции). Добавленная стоимость – доходы агентов, а ВВП равен сумме факторных доходов Y=L+K (L и K – оплата труда и капитала). Плата за капитал включает амортизационные расходы, арендную плату, проценты, страховку и прибыль. Потоки Y, C и I связывают агентов с рынком товаров и услуг MP. Другие потоки связывают их с рынком ресурсов MR и другими рынками M. Отобразим агентов и рынки вершинами графа, потоки – дугами. Модель взаимодействия агентов E, H и V на рынках MP, MR и M дана на рис.1. Доход MP|E=Y предприятия E получают на рынке товаров и услуг MP, где H и V несут расходы C(MP|H) и I(MP|F). Домохозяйства получают доход R(MR|H) на рынке ресурсов MR, где предприятия несут расходы L(E|MR). Другие агенты V получают доход W(M|V) на рынках M, где несут расходы предприятия K(E|M) и домохозяйства S(H|M). Условия баланса рынков, и. Условия баланса агентов, и. Здесь I – инвестиции в товары и услуги, Q – инвестиции в ресурсы. Рис.1. Потоки доходов и расходов. Направленный граф рис.1 на шести вершинах содержит девять дуг потоков. Если удалить вершину графа V и инцидентные ей дуги, оставшаяся часть графа не сбалансирована. Удаленная часть графа становится деревом графа, если ее дополнить дугами V|E и V|H с нулевыми потоками. На рис.2 ветви дерева изображены пунктирными линиями, а хорды дополнения дерева – сплошными линиями. Множество дуг замкнутого графа – объединение его ветвей и хорд. Для графа рис.2 вектор потоков ветвей Ib=(I,Q,–W,0,0), а запасы ветвей Vb=(I,Q,W,0,0). Потоки хорд Ic=(Y,R,L,C,K,S). Матрица потоков хорд Icc=diag(Ic). Рис.2. Дерево графа и его дополнение. Топологические свойства дополнения дерева описывают матрицы инцидентности таблиц 1. Элемент матрицы Dbc равен 1, если i-ая вершина начальная для j-ой хорды, и 0 в противном случае. Элемент матрицы Cbc равен 1, если i-ая вершина конечная для j-ой хорды, и 0 в противном случае. Унимодулярная матрица инцидентности Abc=Cbc–Dbc. Таблица 1. Матрицы инцидентности дополнения дерева. Dbc MP|E MR|H E|MR H|MP E|M H|M Cbc MP|E MR|H E|MR H|MP E|M H|M MP 1 0 0 0 0 0 MP 0 0 0 1 0 0 MR 0 1 0 0 0 0 MR 0 0 1 0 0 0 MF 0 0 0 0 0 0 MF 0 0 0 0 1 1 E 0 0 1 0 1 0 E 1 0 0 0 0 0 H 0 0 0 1 0 1 H 0 1 0 0 0 0 Потоки ветвей и запасы хорд и выражают законы Кирхгофа: алгебраическая сумма потоков в вершине графа и запасов в контуре графа равна нулю. Потоки и запасы дуг даны на рис.2. Мощность дуги – произведение ее потока на запас. Дуги с положительной мощностью – ресурсы, дуги с отрицательной мощностью – использования. Мощность ветвей и хорд и. Сравнение дает теорему Тевенина: Mb+Mc=0 – мощность замкнутого графа равна нулю. В таблице 2 представлена матрица потоков и матрица сальдо и. Таблица 2. Матрица проводок и матрица сальдо. Pbb MP MR M E H Sbb MP MR M E H Ib MP 0 0 0 Y 0 MP 0 0 0 Y –C I MR 0 00 0 R MR 0 0 0 –L R Q M 0 0 0 0 0 M 0 0 0 –K –S –W E 0 L K 0 0 E –Y LK 0 0 0 H C0 S 0 0 H C –R S 0 0 0 –Ib –I –Q W 0 0 0 Если I=Y–C>0, то рынок товаров и услуг MP находится в активном состоянии (I – инвестиции в товары и услуги). Если Q=R–L>0, то рынок ресурсов MR находится в активном состоянии (Q – инвестиции в ресурсы). Поскольку W+I+Q=0 и W<0, то рынки M находятся в пассивном состоянии. Агенты E и H сбалансированы. Потоки ресурсов направлены от агентов к рынкам, а потоки использования – от рынков к агентам. Выделяя в матрице потоков Icc потоки использования Ucc и потоки ресурсов Rcc, можно получить матрицу использования и ресурсов. Эта матрица сбалансирована по столбцам, но не сбалансирована по строкам. Чтобы построить граф использования ресурсов, нужно дуги положительных элементов матрицы Qbb направить от рынков к агентам, а отрицательных – от агентов к рынкам. Таблица 3. Матрица использования и ресурсов. Балансовые модели описывают взаимосвязи выходных и входных переменных (потоки или запасы). Сложение добавленной стоимости ячеек производства дает валовой внутренний продукт Y. В системе национальных счетов (СНС) доход предприятий Y=C+I+G равен сумме потребления C, инвестиции I, государственных расходов G (закрытая система) и чистого экспорта NX= EX–IM (открытая система). Если Y – валовой внутренний продукт (GDP), то NX включает только товары и услуги. Если Y – валовой национальный продукт (GNP), то NX включает доход из-за рубежа (YF): GNP=C+I+G+(EX–IM+YF). Валовой национальный доход (доход резидентов, идущий на потребление и накопление) учитывает трансферты из-за рубежа (TRF): GNDI=C+I+G+(EX–IM+YF+TRF). В круглых скобках счет текущих операций NX. Если T – выплачиваемые налоги, то частные сбережения Sp=GNDI–C–T, излишек государственного бюджета BS=T–G, сбережения S=Y–C–G. Макромодель IS-LM связывает Y со ставкой процента R. Кривая IS описывает зависимость дохода от ставки процента при равновесии на рынке товаров и услуг Y=C(Y,T)+I(R)+G+NX(Y,RER). Здесь потребление C зависит от дохода Y и налога T, инвестиция I – от ставки процента, а чистый экспорт NX – от Y и обменного курса RER. Кривая IS имеет отрицательный наклон, так как увеличение ставки R уменьшает инвестиции и снижает доходы. Кривая LM описывает связь Y и R при равновесии на денежном рынке M/P=L(R,Y). Здесь M/P – отношение денежной массы M к уровню цен P (предложение денег), а L(R,Y) – спрос на деньги. Кривая LM имеет положительный наклон, поскольку R и Y оказывают противоположное влияние на денежный спрос. Пересечение кривых IS и LM дает величины Y* и R* при равновесии на товарном и денежном рынке. Кривая BP описывает взаимосвязь Y и R при внешнем равновесии (баланс официальных расчетов). Платежный баланс включает счет текущих операций и счет операций с активами KA: NX=EX(RER)–IM(Y,RER) и KA(ΔR)=IM(Y,RER)–EX(RER), где ΔR=R–R* – разность внутренней и мировой ставки процента. Внутренняя ставка R зависит от мировой ставки R*: можно получать любые кредиты на международных рынках, не влияя на R* (малая открытая экономика). Если сальдо платежного баланса не равно нулю, точка пересечения кривых IS и LM не лежит на кривой BP. Кривая BP имеет положительный наклон: увеличение Y приводит к росту импорта и к дефициту по текущему счету NX. Равновесие восстановит положительное сальдо счета KA: для привлечения иностранного капитала нужен рост внутренней ставки процента. Наклон кривой BP зависит от склонности к импортированию и мобильности капитала: при низкой мобильности она круче, чем кривая LM. На потоки капитала между странами влияют многие факторы, но самым важным является доход резидентов. Ставки дохода на активы в стране равны номинальной ставке R. Разность номинальной и мировой ставок – это причина оттока (или притока) капитала из страны. Если внутренняя ставка процента выше мировой, иностранные инвесторы найдут привлекательными внутренние активы и приобретут их, резиденты же воздержатся от покупки иностранных активов и станут заимствовать кредиты за границей (приток капитала). Неравновесное состояние баланса текущих операций и платежного баланса, внешние долги неблагоприятно повлияют на состоянии экономики, вызывая экономические спады и финансовые кризисы. Равновесный рост предприятия – движение с оптимизацией цены, выпуска и ресурсов для роста прибыли. Экономика находится в равновесии, если достигается всеми субъектами одновременно, если спрос на товары и услуги равен предложению, если все секторы сбалансированы. Потребитель находится в равновесии, если его доходы и расходы приносят максимальное удовлетворение. Предприятие находится в равновесии, если цена продуктов, выпуск и количество используемых им ресурсов сбалансировано. Владелец ресурсов в равновесии, если использует ресурсы с максимальной выгодой. 14. Потоки Эрланга. Интервалы времени между 1-ым и 2-ым, 2-ым и 3-им,…, n-ым и n+1-ым событием,…T1,T2,…,Tn,… в потоках с ограниченным последействием независимы. Стационарный поток с ограниченным последействием называют потоком Пальма. Случайные интервалы времени T1,T2,…,Tn,… в потоках Пальма имеют один закон распределения. Простейший поток – это поток Пальма. Нестационарный пуассоновский поток не является потоком Пальма. Поток Эрланга k-го порядка получают из простейшего потока путем сохранения каждого k-го события. Промежуток времени T(k) между двумя событиями в потоке Эрланга имеет плотность распределения , t>0, k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение , и, k=1,2,3,… При k=1 закон Эрланга k-го порядка превращается в экспоненциальный закон f(t)=exp(–t) с параметром . Интенсивность потока Эрланга k-го порядка, k=1,2,3,… определяет его основные характеристики, t>0, k=1,2,3,…, и, k=1,2,3,… Интенсивность нормированного потока Эрланга, k=1,2,3,… Промежуток времени между соседними состояниями k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение, , , k=1,2,3,… Плотность распределения нормированного потока Эрланга, t>0, k=1,2,3,… Случайная величина промежутка времени – это среднее арифметическое k независимых случайных величин Ti, i=1,…,k, распределенных по одному и тому же закону распределения (экспоненциальному с параметром ). В силу центральной предельной теоремы она будет иметь распределение, близкое к нормальному с математическим ожиданием 1/ и дисперсией 1/k2. Поскольку дисперсия уменьшается с ростом k, промежуток времени между соседними событиями нормированного потока Эрланга становится все менее случайным и по закону больших чисел приближается по вероятности к математическому ожиданию 1/. Поток Эрланга приближается с ростом k к регулярному потоку с промежутком времени 1/ между событиями. Это свойство потоков Эрланга выявляет роль k как меры «последействия»: от полного отсутствия последействия при k=1 (простейший поток) до жесткого последействия при k (регулярный поток). Для моделирования реального потока с последействием применяется нормированный поток Эрланга с почти тем же математическим ожиданием и дисперсией интервала времени между соседними событиями. С помощью потоков Эрланга немарковские процессы можно сводить к марковским процессам. Пример 7. Наблюдения за работой рекламного агентства показали, что среднее значение интервала времени T между соседними поступлениями заказов M[T]=1 неделя и стандартное отклонение T=4 дня. Интенсивность и стандартное отклонение нормированного потока Эрланга (заказ в неделю) и. Отсюда k=(7/4)2=3,067. Ближайшее целое число – порядок k=3. Плотность распределения вероятностей случайного интервала времени, t>0. Вероятность, что интервал времени между двумя заказами больше 3 и меньше 5 дней. Интегрируя по частям, получим, и. Интегрируя по частям, получим. Таким образом, p=0,189. Пуассоновские потоки событий и дискретные марковские процессы с непрерывным временем тесно связаны. Случайный процесс с непрерывным временем в системе с дискретными состояниями будет марковским, если все потоки событий, переводящие систему из состояния в состояние, являются пуассоновскими (стационарными или нестационарными). Такие системы с непрерывным временем называются пуассоновскими. Исследование случайного процесса проводится по алгоритму: (1) Описать каждое состояние системы; (2) Составить граф состояний, указать возможные переходы из состояния в состояние; (3) Задать интенсивности потоков событий, под влиянием которых осуществляются эти переходы; (4) Указать начальное состояние системы (при t=0). Пример 8. Банкоматы B1 и B2 могут «отказывать» независимо друг от друга (выходить из строя). Потоки отказов B1 и B2 с интенсивностями 1=4 и 2=3 (отказа в неделю) – пуассоновские. После отказа каждый банкомат сразу ремонтируется (восстанавливается). Потоки восстановлений B1 и B2 с интенсивностями 1=5 и 2=2 (восстановлений в неделю) – пуассоновские. Потоки с постоянными интенсивностями являются простейшими. Система S может находиться в четырех состояниях: s11 – оба банкомата исправны; s12 – банкомат B1 исправен, а B2 ремонтируется; s21 – банкомат B1 ремонтируется, а B2 исправен; s22 – банкоматы ремонтируются. Размеченный граф состояний системы изображен на рис.10, а матрица плотностей вероятностей переходов дана в таблице 5. Рис.10. Граф состояний системы двух банкоматов. Таблица 5. Матрица плотности вероятностей. Составим систему уравнений Колмогорова: В начальный момент времени t=0 система находилась в состоянии s12:, , ,. Условие нормировки p11(t)+p12(t)+p21(t)+p22(t)=1 (t0). С учетом условия нормировки получаем неоднородную систему трех линейных дифференциальных уравнений первого порядка:, ,. Общее решение однородной системы, ,. Для нахождения решений неоднородной системы применим метод вариации постоянных, рассматривая c1,c2,c3 как неизвестные функции от t. Подставляя решение однородной системы, получим систему линейных уравнений для dc1/dt, dc2/dt и dc3/dt. После ее решения и интегрирования найдем функции,, , где b1, b2 и b3 – постоянные интегрирования. Для их определения используем начальные условия:, ,. Решение этой системы уравнений методом Крамера дает, ,. Подставив эти значения, получим общее решение неоднородной системы:, ,. Функцию p22(t) находят из условия нормировки:. При t=2 будем иметь, , ,. Во втором квартале система S будет находиться вероятнее всего в состоянии s12: банкомат B1 будет работать, а B2 – ремонтироваться. Дискретный процесс с непрерывным временем является марковским, если каждый из потоков, переводящих систему из состояния в состояние, является пуассоновским потоком. Преобразование Лапласа Спектральная плотность сигнала v(t). Это преобразование Фурье сигнала v(t). Обратное преобразование Фурье. Сигналу v(t) можно сопоставить спектральную плотность V() в том случае, если сигнал абсолютно интегрируем:. Если экономическую систему возбуждают источники потока y(t), а искомые переменные x(t) являются запасами, то ее поведение описывается уравнением, где квадратная матрица T(p)=G+pC, а G и C не зависят от комплексной частоты p. Допустим, что система уравнений решена, а выходная функция F(p)=cTX(p). Формальное решение, где T+(p) – присоединенная матрица. Линейные выходные функции имеют общий знаменатель, равный определителю матрицы T(p). Определитель и любой элемент присоединенной матрицы T+ – это полиномы от p, а F(p) – рациональная функция комплексной переменной p вида F(p)=N(p)/D(p). Знаменатель функции системы D(p)=|T|, а числитель N(p)=|Tcy|. Если изображение есть дробь F(p)=K1/(p–p1) с полюсом p1 и вычетом K1, то. Обращение преобразования Лапласа заключается в вычислении для. Нужно найти условие, при котором интеграл можно представить в виде. Замкнем контур интегрирования в левой полуплоскости полуокружностью с радиусом, которой растет с пределами интегрирования. Если выполнить условие равенства нулю интеграла вдоль этой бесконечной полуокружности, то интеграл равен сумме вычетов. Введем p=Rexp(i) с dp=iRexp(i)d:. На полуокружности в левой полуплоскости, ограниченной точками iR и –iR, величина R постоянна. При больших R преобладают члены старших степеней и выражение для интеграла можно упростить. Интеграл конечный. Чтобы обеспечить равенство нулю выражения при R, нужно выбрать M и N, чтобы R в знаменателе имел положительную степень. Интеграл от рациональной функции I(p) по бесконечной полуокружности равен нулю, если число полюсов MN+2 функции на два больше, чем число ее нулей. Интегрирование рациональной функции при MN+2 вдоль линии, параллельной мнимой оси, дает 2i{сумма вычетов для полюсов слева от линии}, если контур интегрирования замкнуть через левую полуплоскость. Если замкнуть контур через правую полуплоскость, то следует взять сумму вычетов для полюсов справа от линии, а умножить на (–2i). Если f(z) определена в точке ветвления, то значение f(a) является общим для ветвей, полученных при обходе. Если, описывая кривую вокруг точки z=a сколь угодно раз в том же направлении, мы каждый раз будем получать новые ветви, то точка a называется точкой ветвления бесконечного порядка (логарифмическая точка ветвления). Определение коэффициентов полиномов N(p) и D(p) по ряду чисел (pi,N(pi)) и (pi,D(pi)) составляет интерполяционную задачу. Пусть известны значения qi в n+1 точке pi. Нужно найти коэффициенты полинома, проходящего через эти точки. Подставив pi, получим систему уравнений. Наилучшим выбором pj являются равноотстоящие точки, лежащие на единичной окружности комплексной плоскости. Обозначим P=(pij), где i и j принимают значения от 0 до n. Если обозначить, то pk=wk и P=(wij), а решение принимает вид. Исходный полином, определенный в точках pk, представлен в виде,. Это дискретное преобразование Фурье. Оно эффективно при выборе n+1=2m и целом числе m (быстрое преобразование). Дисконтирование достигается преобразованием Лапласа, которое переводит функцию f(t) действительной переменной t в функцию f(p) комплексной переменной p=r+is (r=Rep, s=Imp, i – мнимая единица). При ограниченном росте |f(t)|<exp(r0t) с абсциссой абсолютной сходимости r0>0 этот интеграл сходится при Rep<r0: область определения функции f(p) лежит слева от r=r0. Изображение запаздывающего импульса Хевисайда h(t–) с амплитудой h=1:. Изображение импульса g(t)=[h(t)–h(t–)]/ длительностью :. В пределе 0 получается изображение импульса Дирака (p)=1. Таблица оригиналов f(t) и изображений f(p). (для преобразования Карсона p используется интеграл Бромвича) Изображения являются рациональными функциями p:, и, где pl – нули, а pk – полюса функции f(p). На комплексной плоскости они изображаются соответственно кружками и крестиками. Функцию можно представить суммой простых множителей с вычетами, , ,. Функцию можно представить суммой. При k=1 имеем pk=1 и nk=2, а [(p–pk)f(p)]=p-3:, и,. При k=2 имеем pk=0 и nk=3, а [(p–pk)f(p)]=(p–1)-2:, , , и,. Если f(p)=c(p)/d(p), а c(p) и d(p) – аналитические функции в простом полюсе p1, то resf(p1)=c(p1)/d(p1). Формула Хевисайда применима, если m различных полюсов pk имеют кратности mk:, Если все полюсы простые, то Через компоненты матрицы Прибыль в рыночном сегменте Экономические рынки удобно рассматривать в виде множества секторов, элементы которых имеют общие признаки. Хозяйствующие субъекты сектора более однородны по своему поведению, чем субъекты всего рынка. Устойчивость сегменту придают прибыльные субъекты. Рыночный сегмент характеризуется какими-то свойствами и параметрами. Экстенсивные свойства пропорциональны размеру сегмента (совокупный доход, энтропия, число субъектов). Интенсивные свойства не зависят от размеров сегмента: скорость обращения полезности V определяет условия обмена между сектором и рынком, а уровень цен p отражает издержки рыночного сегмента. Если экономические параметры изменяются во времени, то в секторе протекает экономический процесс. Самопроизвольный процесс приводит рыночный сегмент в такое состояние, когда его экономические свойства больше не изменяются: в секторе установится полное равновесие. Равновесные рыночные сегменты характеризуются распределением Гиббса [3]. Сейчас кажется тривиальным, что при нехватке некоторого блага его цена растет. Однако между эмпирическим фактом и математическим доказательством дистанция огромного размера [1]. В основе доказательства лежит предположение о детерминированности процессов производства товаров и услуг. Оно попросту не учитывает неопределенность будущего, тем самым не затрагивая финансовую сторону экономической деятельности. Такие явления, как денежная инфляция и спекуляция, нельзя объяснить в рамках детерминированного подхода [2]. Предметом нашего исследования является экономическая система ячеек, которые находятся в состояниях полезности. При этом ячейка «погружена» во внешнюю среду, формируемую другими ячейками. Основное занятие ячейки – это распределение товаров и услуг. Совокупность ячеек и среды образует замкнутую экономическую систему. Нас интересует товарные отношение в этой системе. Пусть индекс n нумерует товары полезностями un. Согласно основному принципу статистической механики, если известна вероятность и статистическая сумма то можно найти внутреннюю полезность системы U, накопление W и свободную полезность F как функции скорости обращения полезности V: Эти функции связаны условием баланса U=F+W. Энтропия n-го состояния Энтропия закрытого региона. Экстенсивная переменная S – мера накопления VS, а интенсивная переменная V – ее оценка. И V и S неотрицательны. Изменения Q и Pn с V описываются производными где U зависит от V. Производные энтропии по V зависят от дисперсии и асимметрии дохода: Поскольку 2>0, то S увеличивается со скоростью V, достигая насыщения при V=V3μ3/3μ2, если μ3>0. При 3<0 энтропия ограничена. Производные по V:, и, Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом V. Производные по S:, и Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом S. Скорость обращения полезности V и энтропия S сопряжены на внутренней и свободной полезности: U(S) является потенциалом для скорости обращения полезности V, а F(V) – потенциалом для энтропии S. Накопление W не является потенциалом ни для скорости обращения, ни энтропии. Для учета доходов используем экстенсивную переменную благосостояния Y. Полезность товара un уменьшается с ростом Y, а производные pn(Y)=–dun/dY>0 определяют уровень цен, где вероятность Pn(V,Y) зависит от Y, так как un зависит от Y. Рыночный сегмент имеет две пары сопряженных переменных (S,V), (Y,p) и четыре потенциала F(V,Y), G(V,p), H(S,p) и U(S,Y) с дифференциалами, , и. Свободная полезность F вычисляется по статистической сумме Q(V,Y). Внутренняя полезность U=F+W включает F и W. Свободная полезность G=F+pY включает F и pY, а внутренняя полезность H=F+VS+pY. Переменные S и Y являются экстенсивными факторами, а V и p – интенсивные факторы. Частные производные статистической суммы выражаются в виде: Свободная полезность F(V,Y) является функцией V и Y: Свободная полезность G(V,p)=F+pY является функцией V и p: Внутреняя полезность H(S,p)=G+VS является функцией S и p: Внутреняя полезность U(S,Y)=H–pY является функцией S и Y: Внутрення полезность U растет с энтропией S и уменьшается с доходом Y. Потенциалы полезности F(V,Y), G(V,p), H(S,p) и U(S,Y) аддитивны, а V и p одинаковы для всех всех субъектов сегмента. Поэтому потенциалы должны быть однородными функциями первого порядка по переменным S и Y: где ψ, μ, ν и φ – некоторые функции. Будем рассматривать N как независимую переменную. Тогда в дифференциалы нужно добавить μdN с потенциалом. Оценка μ(V,p) резидентов в открытой экономической зоне оказывается функцией скорости обращения полезности V и уровня цен p. Дифференцируя G по N, получаем (V,p) – оценка μ числа субъектов в сегменте оказывается функцией V и p. Большой потенциал открытой зоны Ω=F–G является функцией V, Y и μ: dΩ=–SdV–pdY–Ndμ. Если полезность n-го резидента в зоне обозначить unN, то вероятность. Накопление полезности в открытой экономической зоне:, , и. Открытая экономическая зона является большим каноническим ансамблем. При описании экономических явлений используют понятие эластичности фактора и показателя [4]. Пусть взаимозависимые переменные x, y и z отвечают любой тройке неповторяющихся факторов S, V, Y и p. Тогда y-ой эластичностью фактора x при неизменном факторе z называется величина xyz=y(x/y)z. Только 16 эластичностей независимы в закрытой системы. Свободная полезность F(V,Y) вычисляется с помощью статистической суммы Q, а другие потенциалы в переменных V и Y – из выражений: Дифференцирование дает Потенциалы в переменных V и p выражаются через G(V,p): Дифференцирование дает Потенциалы в переменных S и p выражаются через H(S,p): Дифференцирование дает Потенциалы в переменных S и Y выражаются через U(S,Y): Дифференцирование дает Эти производные легко вычисляются, если учесть свойства якобианов: Доход Y(F,V) как функция свободной полезности F и скорости обращения имеет частные производные: Скорость обращения полезности V(G,p) как функция свободной полезности G и уровня цен имеет частные производные: Уровень цен p(H,S) как функция внутренней полезности H и энтропии имеет частные производные: Энтропия S(U,Y) как функция внутренней полезности U и благосостояния имеет частные производные: Статистическая оценки важных эластичностей дает: где означает усреднение с учетом вероятности Pn. Экономические процессы в закрытом сегменте сопровождаются ростом энтропии, пока она не достигнет наибольшего значения при полном равновеси. С ростом числа субъектов энтропия растет при фиксированной скорости V и уровне цен p. Это означает, что норма накопления увеличивается с числом субъектов, т.е. с переходом от большого к малому бизнесу. Субъекты малого бизнеса слабо взаимодействуют друг с другом в идеальном сегменте и представляют собой однородную массу, а их прибыль линейно зависит от конъюнктуры. Замечательным достижением статистической экономики является точная формулировка условий равновесия с внешней средой. Процессы, протекающие в замкнутой неравновесной системе, идут таким образом, что система переходит из состояний с меньшей энтропией в состояния с большей энтропией, пока она не достигнет своего наибольшего значения, соответствующего полному равновесию. Энтропия замкнутой системы – сумма энтропий резидентов и внешней среды. Равенство нулю первых производных суммарной энтропии является только необходимым условием экстремума и не дает того, чтобы энтропия имела именно максимум. Для выяснения достаточных условий необходимо вычислить второй дифференциал суммарной энтропии. Это исследование удобнее провести, исходя не из условия максимума суммарной энтропии, а из эквивалентного ему условия. Выделим из системы некоторую малую часть, а остаток будем рассматривать как внешнюю среду со скоростью обращения V0 и уровнем цен p0. Тогда в равновесии имеет минимум величина U–V0S+p0Y с внутренней полезностью U, энтропией S и доходом Y. При всяком малом отклонении от равновесия ее изменение должно быть положительным: Разлагая δU в ряд, получаем с точностью до членов второго порядка: где производные взяты в состоянии равновесия. Но поскольку то члены первого порядка сокращаются. Это необходимые условия равновесия: скорость обращения полезности V и уровень цен p для резидентов равны этим же величинам внешней среды. Достаточное условие равновесия имеет вид: Для того, чтобы такое неравенство имело место при произвольных δS и δY, нужно удовлетворить два неравенства: Поскольку то первое неравенство удовлетворяется при Второе неравенство можно записать в виде якобиана Переходя к переменным V и Y, имеем Поскольку p=p0>0 и SV0,Y>0, то это равносильно условию Уровень цен должен уменьшаться с ростом благосостояния при постоянной скорости обращения полезности. Эти экономические неравенства гарантируют устойчивость равновесной системы. Для SV0,Y>0 нужно, чтобы средний квадрат внутренней полезности u2 превышал квадрат среднего U2, а дисперсия была положительной. Поскольку для устойчивости равновесия необходимо, чтобы dp/dY было отрицательным и по модулю превышало отношение дисперсии уровня цен к скорости обращения. При любом начальном состоянии закрытой системы с течением времени в ней установится единственное состояние – равновесие. Эта тенденция означает монопольное возрастание энтропии во времени и увеличение разности энтропий S=S–S0 от отрицательных значений до нуля. Эти утверждения эквивалентны, и они отражают тот факт, что равновесие является глобальным асимптотически устойчивым состоянием, энтропия – функцией Ляпунова. Если только свободная полезность F(V,Y) будет иметь несколько минимумов при неизменных V, Y и различных значениях N, то стабильному состоянию будет отвечать наименьшее значение F, а метастабильному – самый мелкий минимум с наибольшим F. Такие состояния легко разрушаются переходом системы в устойчивое состояние с наименьшей свободной полезностью. Если системы переходит из одного состояния в другое с изменением ее внутренней полезности при неизменном накоплении, то обратный переход нельзя осуществить без воображаемого внешнего источника R. Прямому переходу с совершением максимальной работы |Rmax| отвечает обратный переход c работой Rmin внешнего источника. Изменение внешней полезности ΔU при изменении состояния состоит из трех частей: из произведенной работы внешнего источника R, из работы внешней среды p0ΔY0 и из полученной из нее V0ΔS0: где индекс 0 относится к внешней среде. Поскольку затраты среды равны доходу ΔY0=–ΔY, а в силу закона возрастания энтропии S0–S, то где знак равенства достигается при обратимом процессе. Переход совершается с минимальной работой, если он происходит обратимо: Обратный переход также совершается с минимальной работы, если происходит обратимо: Пусть SΣ есть полная энтропия. Если резиденты находятся в равновесии с внешней средой, то SΣ является функция их внутренней полезности UΣ.. Если же резиденты не находятся в равновесии с внешней средой, то суммарная энтропия отличается от SΣ(UΣ) на величину Но dU/dS является равновесной скоростью обращения полезности V0. Таким образом, получаем Эта формула определяет, как отличается энтропия замкнутой системы от своего возможного значения, если резиденты не находятся в равновесии со средой. Рассмотрим закрытую систему с энтропией SΣ. Пусть β – некоторый фактор, обеспечивающий ее внутреннее равновесие, т.е. S/=0. Пусть α – другой фактор, обеспечивающий при внутреннем равновесии системы и ее равновесие с внешней средой, т.е. S/=0. Введем обозначения Энтропия SΣ замкнутой системы максимальна при полном равновесии. Чтобы энтропия была максимальной, кроме необходимых условий А=0 и В=0, должны выполняться неравенства Уже незначительные изменения фактора α при некотором воздействии на закрытую систему приводят к изменению A на величину Изменение α при постоянном β приводит к нарушению условия внутреннего равновесия системы B=0. После того, как это равновесие восстановится, величина ΔA будет иметь значение Используя свойства якобиана, находим С учетом неравенств получаем новое неравенство Это неравенство выражает принцип Ла Шателье [6]. Рассмотрим изменение Δα фактора α как меру внешнего воздействия на систему, а ΔΑ – κак меру изменения системы под его влиянием. Тогда Значение ΔΑ уменьшается при восстановлении внутреннего равновесия системы после внешнего воздействия, выводящего ее из равновесия. Другими словами, внешнее воздействие, выводящее систему из равновесия, стимулирует в системе процессы, стремящиеся ослабить его влияние. Изменение энтропии системы –Rmin/V0 зависит от скорости обращения полезности во внешней среде V0 и минимальной работы Rmin, необходимой для приведения системы из состояния равновесия с внешней средой в данное состояние. Поэтому можно написать где для бесконечно малого изменения состояния системы резидентов Все величины без индекса относятся к резидентам, а с индексом 0 – к среде. Пусть α есть энтропия S. Тогда A=V/V0–1 и в равновесии V=V0, неравенства принимают вид Рост энтропии означает, что в систему инвестируется оборотный капитал. В итоге нарушается равновесие резидентов и, в частности, увеличивается скорость обращения полезности на величину (V). Восстановление равновесия резидентов приводит к тому, что изменение скорости обращения уменьшится до (V)B=0. т.е. как бы ослабляется результат воздействия, выводящего резидентов из равновесия. Если в неравенстве в качестве фактора β взять доход Y, то будем иметь поскольку условие В=0 означает, что случае p=p0. Подстановка дает неравенство Используя свойства якобиана, можно получить Пусть α есть налог Y. Тогда A=1–V/V0 и в равновесии V=V0, а неравенства принимают вид Если в неравенстве в качестве фактора β взять энтропию S, то условие В=0 означает, что V=V0 и В устойчивой системе величина (p/Y)V должна быть отрицательной. Используя свойства якобиана, можно получить В устойчивой системе величина (S/V)p должна быть положительной. Основной недостаток идеального сегмента состоит в том, что полезность расходится при Y=0. Этот коллапс не должен допускаться государством, которое может установить минимальный предел Y0. Рассмотрим процесс L в экономической системе, которая не находится в равновесии с внешней средой. Пусть B – накопление, полученное системой из внешней среды со скоростью обращения полезности V0. Процесс L перехода из состояния 1 в состояние 2 нельзя реализовать, если нарушается неравенство где S1 и S2 – энтропии состояний, а интегрирование проводится по траектории процесса. Равенство применимо только при обратимом процессе. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы и не зависит от ее промежуточных состояний Дифференциал внутренней полезности в замкнутой системе содержит малое накопление B и малое потребление A, которые не являются дифференциалами в общем случае. Переведем идеальную систему из начального состояния 1 в промежуточное состояние 2 при неизменной энтропии: где. Выпуск и потребление положительны, если. Переведем теперь систему из состояния 2 в промежуточное состояние 3 при неизменной ренте: Переведем далее систему из состояния 3 в промежуточное состояние 4 при неизменной конъюнктуре: Наконец, переведем систему из состояния 4 в начальное состояние 1 при неизменной ренте: При этот цикл оказывается замкнутым. В начальном состоянии 1 идеальная система имеет низкую конъюнктуру и низкую ренту. Переход в состояние 2 при низкой конъюнктуре сопровождается увеличением ренты и цены, а капитал убывает потому, что выпуск равен потреблению (накопление не меняется). Переход в состояние 3 при высокой ренте сопровождается увеличением конъюнктуры и капитала, а цена уменьшается, потому что выпуск отсутствует (инвестиция накоплений в производство повышает его конъюнктуру). Переход в состояние 4 при высокой конъюнктуре сопровождается уменьшением ренты и цены, а капитал увеличивается, потому что потребление равно выпуску (накопление не изменяется). Переход в начальное состояние 1 при низкой ренте сопровождается уменьшением конъюнктуры и капитала, а цена увеличивается, потому что выпуск отсутствует (конфискация накопления из производства понижает его конъюнктуру). Коэффициент полезного действия этого замкнутого экономического цикла определяется следующим образом: Инвестиция S2=S23>0 и конфискация S1=S41<0 удовлетворяют соотношению Это соотношение справедливо только для замкнутого цикла. Макроскопическая теория выпусков и затрат использована для описания экономических циклов системы многих резидентов на основе модели В.В.Леонтьева. Основные понятия макроэкономики развиты в русле детерминированного подхода, дополненного соображениями оптимальности и полезности [1,2]. Может быть поэтому нет строгого определения конъюнктуры как меры эффективной деятельности экономической системы. Вместе с тем, этот термин используется [3]. Эвристические соображения известных экономистов о конъюнктуре близки к определению температуры как производной внутренней энергии системы по ее энтропии [4,5]. Аналогом внутренней энергии в экономике является внутренняя полезность, но она должна быть определена в рамках вероятностного подхода. Необходимость такого подхода отмечалась в связи с инфляционными процессами современной экономической жизни [6]. Полезность un зависит от индекса благосостояния Y, причем при Y=1 она равна нулю, а цена благосостояния pn(Y)–dun/dY не может быть отрицательной, так как un уменьшается с ростом Y. Согласно основного принципа статистической экономики, если известны статистическая сумма Q, вероятность Pn, энтропия S и уровень цен p, , и, то можно найти макроскопические показатели закрытой системы при скорости обращения полезности V и индексе благосостояния Y. Показателями закрытой системы являются внутренняя полезность U=F+W, свободная полезность F и накопление W, и, а ее факторами являются скорость обращения полезности V, энтропия S, индекс благосостояния Y и уровень цен p. Для простой закрытой системы, а свободная полезность (потребление) выражается в виде, где f(V)=VlnL(V). Энтропия и уровень цен простой системы даются уравнениями состояния и. Полуэластичности этих двух факторов и. Для устойчивости закрытой системы необходимо и достаточно иметь =const, =const и SV,Y>0, pY,V<0. Простая система устойчива, если d2f/dV2<0. Свободная полезность G=F+pY в простой системе определяется с учетом уравнения состояния:, а энтропия и индекс благосостояния выражаются в виде и. Полуэластичности этих факторов и. Идеальной называется простая система с SV,Y=N0>0 и, где f0 и  – постоянные интегрирования. Внутренняя полезность U=F+W такой системы определяется с учетом уравнения состояния:, где =1+N/N0>1. Удобно выбрать f0=–S0 и, чтобы внутренняя полезность исчезала при энтропии S11=S(V=1,Y=1) и индексе Y=1:. В этом случае и, а внутренняя полезность являются линейной функцией скорости обращения полезности U=N0(V–1). Свободная полезность идеальной системы и ее энтропия – нелинейные функции скорости обращения полезности и индекса благосостояния и. Зависимость энтропии идеальной системы S(V,Y) от конъюнктуры V приводится на рис.1 для двух значений индекса благосостояния Y. Рис.1. Зависимость энтропии от конъюнктуры. Используются данные для высокоэластичной экономики с небольшим числом резидентов, представляющих отрасли народного хозяйства [3] (N0=10, S11=3 и N=10). Рост энтропии с конъюнктурой свидетельствует о структурных изменениях системы, сопровождаемых линейным увеличением внутренней полезности. Этот рост замедляется с уменьшением индекса благосостояния. Уравнение состояния pY=NV связывает большую полезность pY с числом резидентов N и конъюнктурой V идеальной системы. При неизменной конъюнктуре уровень цен уменьшается с ростом индекса благосостояния (деинфляция). Рассмотрим квазистатический процесс L в системе резидентов, которые не находятся в равновесии с внешней средой. Малое накопление B система резидентов получит из окружающей среды с равновесной конъюнктурой V0. Переход системы резидентов из состояния 1 с энтропией S1 в состояние 2 с энтропией S2 нельзя реализовать, если нарушается неравенство, где интегрирование проводится по траектории процесса L. Равенство применимо при обратимых процессах. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы. Дифференциал внутренней полезности закрытой системы dU=B+A=VdS–pdY содержит малое накопление B и малое потребление А, которые не являются дифференциалами. В состоянии 1 система имеет энтропию S1 и конъюнктуру V1. Переведем систему из начального состояния 1 в состояние 2 при неизменной энтропии: и. Переход в состояние 2 с конъюнктурой V2>V1 сопровождается уменьшением индекса благосостояния Y и увеличением уровня цен p, потому что прирост полезности потребляется (рис.1). Переведем систему из состояния 2 в состояние 3 при неизменной конъюнктуре:, и. Переход в состояние 3 с энтропией S3>S1 сопровождается увеличением Y и уменьшением p, потому что внутренняя полезность не изменяется (инвестиция накоплений в систему повышает энтропию). Зависимость индекса благосостояния Y от уровня цен p приводится на рис.2 для той же высокоэластичной системы при S1=1, V1=1, V2=3 и S3=3. Рис.2. Зависимость индекса от ставки затрат. Переведем систему из состояния 3 в состояние 4 при неизменной энтропии: и. Переход в состояние 4 с конъюнктурой V4<V2 сопровождается увеличением Y и уменьшением p. Переведем систему из состояния 4 в состояние 1 при неизменной конъюнктуре:, и. Переход в состояние 1 с энтропией S1 и конъюнктурой V4=V1 сопровождается уменьшением Y и увеличением p из-за конфискации накоплений окружающей средой. Коэффициент полезного действия экономического цикла. Инвестиция B2=B23>0 и конфискация B1=B41<0 удовлетворяют соотношению. Это соотношение справедливо только для замкнутого цикла. Современному состоянию экономики Украины отвечает одна из нижних точек на траектории L12 c энтропией S1 и конъюнктурой VV2. Движение по этой траектории с падением индекса благосостояния Y и увеличением уровня цен p разогревает экономику до такой конъюнктуры V2, при которой возможны структурные изменения отношений резидентов на траектории L23. Движение по траектории с ростом Y и уменьшением p хаотизирует экономику до значения энтропии S3, которое зависит от инвестиции накоплений. Определению кризисной точки более отвечает состояние экономики с энтропией S1 и конъюнктурой V1, а квазистатический процесс L41 имеет периода застоя. Ему предшествует движение по траектории L34, которое ведет к охлаждению экономических отношений.

3. Обоснование методов выбора опрашиваемых:

- сплошной или выборочный опрос;

- определение вида выборки.

Эффективность выбранного метода опроса всецело зависит от наличия и уровня интенсивности обратной связи с опрашиваемым. А также от репрезентативности выборки, точности высказываний, распыленности элементов в совокупной выборке и плана выборки. Эти параметры определяют стоимостные и временные показатели затрат выборочного метода исследований.

Опросы могут быть одноразовыми или повторяющимися. Повторяющиеся опросы называют панелью. В качестве панели может выступать группа лиц, предприятия. Панель - это вид непрерывной выборки. Она позволяет зафиксировать изменения наблюдаемых величин, характеристик.

Важнейшими формами панели являются - панель потребителей и панель предпринимателей.

Панельный опрос используют при изучении мнений потребителей определенной группы за какой-либо промежуток времени. Определяются их потребности, привычки, вкусы, рекламации.

Методы сбора первичных данных осуществляются в определенной последовательности. Например, применение метода интервью требует выяснения необходимости его использования, разработку плана проведения интервью, подготовку перечня вопросов, примеров, выбора интервьюируемых, планирования бюджета, проведения интервью, анализа результатов, подготовки отчета.

Анкетирование по телефону применяется в тех случаях, когда необходимо собрать информацию в короткие сроки в широких географических размерах рынка. Опрос по телефону необходимо вести просто, заранее подготовив вопросы.

Опрос в письменном виде может производиться несколькими способами. В первом случае, анкеты рассылаются исследуемым потребителям по почте.

При этом может рекламироваться фирма или ее товар. Используя этот метод, исследователь должен понимать, что не все анкеты возвращаются заполненными. По данным специалистов получение ответов составляет от 20 до 50% от полного объема охваченных опросом. Применение стимулов в отношении опрашиваемых является залогом получения высокой доли заполненных анкет.

При проведении письменного опроса не следует забывать о местах распространения анкет среди потенциальных партнеров и потребителей фирмы, которые могут участвовать в выставках, ярмарках, презентациях фирмы.

Каждый из методов проведения опроса имеет свои положительные и отрицательные стороны. В табл.3. приведены преимущества и недостатки отдельных методов этой формы маркетингового исследования.

Как отмечалось, при использовании опросных методов перед исследователем возникает проблема составления вопросов. Поэтому в зависимости от направленности опроса специалисты выделяют открытые и закрытые вопросы. Отличие в этом случае состоит в том, насколько конкретно поставлена цель проводимого исследования. При разработке анкеты могут использоваться следующие рекомендации:

1. Формулировка вопросов должна быть конкретной, ясной и однозначной.

2. Анкета должна быть лаконичной и содержать оптимальное количество вопросов.

3. Анкета не должна содержать лишних вопросов.

4. В тесте анкеты должна использоваться общепризнанная терминология.

5. Все вопросы должны быть сгруппированы в определенные блоки в соответствии с логикой исследования.

6. Анкета не должна быть монотонной, навеивать скуку и вызывать усталость.

7. В анкете необходимо использовать контрольные вопросы для проверки последовательности опрашиваемых в ответах.

8. Трудные и личные вопросы помещаются в конце анкеты.

Проведение опроса нельзя начинать без соответствующего тестирования анкеты. Оно используется для оценки самих вопросов и их последовательности. В ходе тестирования выясняется действительно ли люди помнят данные, которые от них хотелось бы получить, не смущают ли их некоторые вопросы, не вызывают ли они нежелание отвечать или неуверенность при ответах.

Таблица 3

Преимущества и недостатки методов опроса и интервьюирования

Метод

Преимущества

Недостатки

1. В личной беседе

Небольшие затраты времени. Возможность наблюдения за реакцией интервьюируемого. Относительно невысокая стоимость. Интервьюирующий может объяснить вопрос.

Нужны специалисты со знанием психологии. Ограниченность по объему вопросов и численности интервьюируемых. Сложность в обработке информации. Охват небольших территорий.

2. По телефону

Небольшие затраты времени. Относительно невысокая стоимость. Охват больших территорий.

Ограничения по объему вопросов. Отсутствие контроля за достоверностью информации. Сложность в компоновке ответов. Субъективные факторы, например, нежелание давать интервью, вести разговор.

3. По почте (в письменном виде)

Широкий охват аудитории. Возможность компьютерной обработки информации. Представительность выборки. Возможность контроля достоверности ответов.

Большие затраты времени. Относительно дорогой. Требует профессиональной подготовки анкеты. Не все вопросы анкеты могут быть понятны респонденту.

Включение каждого вопроса в анкету обосновывается. Например, вопрос: "Употребляете ли вы импортное мороженое?", обоснование: вопрос позволяет получить данные о том, какой процент населения потребляет импортное мороженое. Эта информация может быть использована для сравнения результатов исследования с данными о целевой группе потребителей мороженого, полученными при анализе демографической ситуации.

2. Особенности сбора маркетинговой информации на предприятии ООО Агрофирма «Труд»

2.1 Общая характеристика предприятия ООО Агрофирма «Труд»

Полное фирменное наименование Общества: Общество с ограниченной ответственностью Агрофирма «Труд», участник общества:

Общество является юридическим лицом и осуществляет свою деятельность на основании настоящего Устава и действующего законодательства Российской Федерации. Общество является коммерческой организацией. ООО Агрофирма «Труд» вправе в установленном порядке открывать банковские счета на территории Российской Федерации и за ее пределами. Участники ООО Агрофирма «Труд» не отвечают по его обязательствам и несут риск убытков, связанных с деятельностью Общества, в пределах внесенных ими вкладов.

Уставный капитал Общества определяет минимальный размер имущества, гарантирующий интересы его кредиторов, и составляет 10000 (десять тысяч) рублей, что составляет 100%. Действительная стоимость доли участника Общества соответствует части стоимости чистых активов Общества пропорционально размеру его доли.

Направление деятельности, специализация.

До 2018 г. хозяйство специализировалось на выращивании овощей открытого грунта и племенных нетелей, так же производства зерна и кормов. В 1986-2018 г. совхоз шагнул по пути более глубокой специализации отрасли овощеводства, т.е. были сконцентрированы и объединены вопросы производства, реализации, хранения и переработки овощной продукции. В настоящее время хозяйство специализируется на производстве овощей, молока, мяса и зерна с семеноводческим направлением.

Характеристика основных видов деятельности организации

1. Целью деятельности Общества является извлечение прибыли.

2. Предметом деятельности Общества является:

Выращивание овощей, фруктов, саженцев и рассады (цветов, грибов);

Оптово-розничная торговля;

Переработка овощей;

Реализация продукции населению;

Производство товаров народного потребления;

Животноводство;

Птицеводство;

Пчеловодство;

Выполнение мероприятий по техническому перевооружению, модернизации и автоматизации производственных процессов эффективному использованию средств автоматизации, электронно-вычислительной и организационной техники;

Разработка и осуществление по экономии материальных, финансовых и трудовых ресурсов по рациональному использованию резервов производственного процесса;

Рекультивация земель;

Оказание транспортных услуг населению и юридическим лицам;

Изготовление строительных материалов;

Строительство и капительный ремонт;

Отсыпка дорог;

Осуществление торгово-коммерческой деятельности;

Осуществление коммерческий - посреднической деятельности;

Разработка и осуществление мероприятий по охране природы и окружающей среды;

Осуществление мероприятий по предупреждению ликвидации аварий, а так же по обеспечению пожарной безопасности, разработка и выполнение организационно-технических мероприятию по устранению причин и условий, порождающих производственный травматизм и профзаболевания, обучение персонала безопасным условиям труда, обеспечение средствами коллективной и индивидуальной защиты;

Осуществление охранной деятельности;

Торгово-закупочная деятельность

Оптовая и розничная реализация алкогольных напитков;

Оптовая торговля непродовольственными товарами;

Закупка сельскохозяйственной продукции у населения;

Производство, заготовка, переработка и реализация сельскохозяйственной продукции;

Организация кафе, ресторанов и других предприятий общественного питания;

Организация общественного питания;

Сдача в аренду собственного движимого и недвижимого имущества;

Организация транспортных и экспедиторских услуг, организация транспортных перевозок;

Организация, эксплуатация, сдача в аренду автомобильных стоянок, парковок;

Организация складских услуг, погрузочно-разгрузочные услуги;

Услуги по прокату, аренде, ремонту транспортных средств;

Маркетинговая деятельность;

Агентская деятельность;

Посредническая деятельность;

Проектирование, строительство, ремонт, реставрация и эксплуатация зданий и сооружений;

Осуществление функций Заказчика и Подрядчика, а также деятельность в указанных направлениях по заказам населения, предприятий и организации, производство строительно-монтажных, отделочных, специальных, проектно-изыскательных работ по своим силам, так и с привлечением субподрядчиков;

Производство промышленных и продовольственных товаров; Производство товаров народного потребления;

Производство и торговля изделиями производственно – технического назначения;

Сбор, переработка вторичного сырья и отходов производства;

Покупка, продажа и переработка черных, цветных и драгоценных металлов;

Операции с недвижимостью;

Телексное и факсимильное обслуживание клиентов;

Оказание бытовых услуг;

Научно-исследовательские работы;

Организация игорного дела, установка и эксплуатация игровых автоматов и т.д.;

Другая, не противоречащая действующему законодательству, деятельность;

3. Общество может осуществлять внешнеэкономическую деятельность по вышеперечисленным видам деятельности.

2.2 Анализ источников маркетинговой информации предприятия ООО Агрофирма «Труд»

Предприятие ООО Агрофирма «Труд» в большей степени использует внутренние источники маркетинговой информации, такие как:

- бухгалтерия,

- планово-экономический отдел,

- технологическая служба,

- отдел качества,

- отдел транспорта,

- коммерческий директор, инженер материально-технического снабжения,

- отделом сбыта,

- отдел кадров,

- юридический отдел.

Так же предприятие ООО Агрофирма «Труд» проводит собственные исследования рынка, исследуя внешние источники маркетинговой информации, получая такие данные, как:

- сведений о ценах на материально-технические ресурсы у поставщиков,

- сведений о конкурентной среде по вопросам ценовой политики,

- информацию о состоянии рынка товаров,

- сведения о конкурентной продукции,

- сведений о маршрутах и сроках поставки продукции покупателям предприятиями-конкурентами.

Так же предприятие ООО Агрофирма «Труд» получает внешнюю маркетинговую информацию от внешних источников таких как: потребители, конкуренты, поставщики, дистрибьюторы.

2.3 Особенности сбора маркетинговой информации на предприятии ООО Агрофирма «Труд»

Отдел маркетинга состоит из функциональных подразделений, занимающихся рекламой, исследованием рынка, подготовкой к различным конкурсам, выставкам и т.д. Но все они хорошо взаимодействуют между собой и тем самым выстраивают одну общую сильную систему. Именно благодаря этому удается достичь всех основных поставленных маркетинговых целей и задач.

Маркетинговая служба предприятия эффективно взаимодействует со службами предприятия:

С бухгалтерией по вопросам:

Получения: бухгалтерских данных о движении, реализации, запасах продукции; итогов инвентаризации материально-технических ресурсов; нормативов на представительские, командировочные и рекламные расходы; согласованных смет расходов на формирование спроса и стимулирования сбыта с приложением финансовых обоснований; анализа затрат, произведенных за месяц (квартал, год); сведений о кредиторской и дебиторской задолженности.

Предоставления: отчетов о затратах, произведенных на маркетинговые исследования; расчетов затрат на послепродажное обслуживание продукции; сведений о ценах на материально-технические ресурсы у поставщиков, тарифах на услуги по перевозке, проведению рекламных мероприятий; обобщенных данных о спросе на выпускаемую предприятием продукцию; маркетинг-планов; смет расходов на формирование спроса и стимулирования сбыта, проведение рекламных кампаний, участие в выставках, ярмарках, в выставках-продажах сведений о конкурентной среде по вопросам ценовой политики, объемов оборота, конкурентоспособности, скорости реализации продукции.

С планово-экономическим отделом по вопросам:

Получения: планов производства продукции (выполнения работ, оказания услуг) на месяц, квартал, год; изменений в производственных планах по отдельным позициям товарной номенклатуры, вносимых на основании маркетинговых исследований; проектов оптовых и розничных цен на продукцию (тарифов на работы и услуги) для проведения маркетингового анализа.

Предоставления: обобщенной информации о спросе на выпускаемую предприятием продукцию, в том числе по отдельным позициям номенклатуры; сведений о конкурентной среде по вопросам ценовой политики, объемов оборота, конкурентоспособности, скорости реализации продукции; информации о состоянии рынка товаров; данных, необходимых для формирования товарной номенклатуры предприятия.

С технологической службой по вопросам:

Получения: заявок на поиск информации о конкурентном товаре; сведений о научно-технических возможностях предприятия; заключений на образцы конкурентной продукции; заключений о возможности внедрения технологии производства, предложенной отделом маркетинга продукции; производственных планов и графиков производства; сведений о нормах заделов на участках и в цехах и их соблюдении; сведений о нарушениях хода производственного процесса и причинах, их вызвавших.

Предоставления: данных о покупательском спросе на выпускаемую продукцию; сведений о конкурентной продукции; предложений по разработке технологии новой продукции; предложений о дизайнерском оформлении продукции; документов и материалов для участия в выставках, ярмарках; производственных планов и графиков производства; сведений о нормах заделов на участках и в цехах и их соблюдении; сведений о нарушениях хода производственного процесса и причинах, их вызвавших.

С отделом качества по вопросам:

Получения: сведений о дефектах изготовленной продукции; обобщенных результатов рекламационной работы; сведений о технологических изменениях продукции; сведений о мероприятиях по повышению качества продукции: отчетов о проверке образцов продукции, выпускаемой предприятиями-конкурентами.

Предоставления: сведений по рекламациям; информации о несоответствии заявленного качества продукции в течение гарантийных сроков; сведений службы послепродажного и гарантийного обслуживания о недостатках продукции, выявленных в процессе ее использования или эксплуатации.

С отделом транспорта по вопросам:

Получения: оперативных, месячных, квартальных, и годовых планов-графиков транспортных перевозок продукции, изготовленной предприятием и передачи ее покупателям, а также доставки материально-технических ресурсов от поставщиков; транспортных маршрутов; расчетов транспортных затрат на доставку; сведений о маршрутах и сроках поставки продукции покупателям предприятиями-конкурентами.

Предоставления: предложений по изменению маршрутов доставок; предложений по изменению графиков погрузки и выгрузки; заявок на выделение транспортных средств для перевозки продукции, рекламных материалов, оборудования для участия в выставках, ярмарках.

С коммерческим директором, инженером материально-технического снабжения по вопросам:

Получения: сведений о заключенных договорах поставки материально-технических ресурсов; заявок на проведение маркетингового анализа оптовых и розничных цен на реализуемую продукцию; отчетов отдела качества, главного технолога, производственных подразделений о качестве материально-технических ресурсов; документов, необходимых для оформления участия в выставках, ярмарках.

Предоставления: обобщенной информации о поставщиках материалов и сырья, требуемых предприятию; сведений о ценах на требуемые материально-технические ресурсы различных поставщиков; информации о состоянии товарного рынка; сведений о появлении новых видов материалов, сырья, комплектующих с приложением технических характеристик; информации о спросе на материально-технические ресурсы, его возможных колебаниях и их причинах; сведений о крупных поставщиках (предполагаемых и действительных объемах оборотов, устойчивости на товарном рынке); сведений о планируемых выставках, ярмарках.

С отделом сбыта по вопросам:

Получения: сведений о заключенных договорах поставки; планов реализации продукции на месяц, квартал, год; отчетов о выполнении планов реализации продукции; заявок на проведение маркетингового анализа оптовых и розничных цен на реализуемую продукцию; отзывов контрагентов на поставляемую продукцию; документов, необходимых для оформления участия в выставках, ярмарках.

Предоставления: обобщенной информации о спросе на выпускаемую предприятием продукцию, в том числе по отдельным позициям номенклатуры и о факторах, определяющих его; сведений о конкурентной среде по вопросам ценовой политики, объемов оборота конкурентоспособности, скорости реализации продукции; сведений о крупных покупателях продукции; сведений о планируемых выставках, ярмарках.

С отделом кадров по вопросам:

Получения: штатных расписаний и положений о структурных подразделениях предприятия для увязки с маркетинговыми планами; положений о персонале; положений о премировании; графиков работы предприятия.

Предоставления: предложений по изменению организационно-управленческой структуры предприятия для закрепления в штатных расписаниях и положениях о структурных подразделениях предприятия; заявок на подбор персонала для отдела; перечня мероприятий, проведение которых необходимо для повышения квалификации работников предприятия по отдельным направлениям.

С юридическим отделом по вопросам:

Получения: согласованных претензий и исков к контрагентам по поводу нарушения ими договорных обязательств; разъяснения действующего законодательства и порядка его применения; анализа изменений и дополнений законодательства.

Предоставления: материалов для предъявления претензий и исков к контрагентам и покупателям по поводу нарушения ими договорных обязательств; претензий, предъявленных предприятию контрагентами; заявок на поиск необходимых нормативных правовых документов и на разъяснение действующего законодательства.

Служба маркетинга предприятию ООО Агрофирма «Труд» собирает внешнюю маркетинговую информацию, читая книги, газеты и специализированные издания, беседуя с клиентами, поставщиками, дистрибьюторами и прочими лицами, не относящимися к штатным работникам фирмы, а также обмениваясь сведениями с другими управляющими и сотрудниками самой фирмы. Служба маркетинга принимает дополнительные меры, чтобы повысить качество и увеличить количество собираемой внешней маркетинговой информации.

Во-первых, она обучает и поощряет своих продавцов фиксировать происходящие события и сообщать о них. Ведь торговые агенты -это «глаза и уши» фирмы. Они находятся в исключительно выгодном положении для сбора сведений, которых не получишь никакими другими методами.

Во-вторых, фирма поощряет дистрибьюторов, розничных торговцев и прочих своих союзников передавать ей важные сведения. На предприятии ООО Агрофирма «Труд» специально назначен специалист, ответственный за сбор внешней маркетинговой-информации. В частности, служба маркетинга высылает на места так называемых мнимых покупателей, которые следят за персоналом розницы.

О конкурентах можно многое узнать:

Полезность парных сравнений. Прокоп О.М. Научный руководитель проф. На множестве элементов Х={х1,...,хт} определена семья отношений преобладания ={,,,,}, первым из которых является отношение «не хуже» (). Функция полезности удовлетворяет условию:). Это означает, что элемент x1X не хуже элемента x2X, если полезность f(x1) элемента х1 не меньше полезности f(x2) элемента х2. Таким образом, функция полезности f отображает отношение преобладания  на множестве X. Можно убедиться, что она отображает и все другие отношения семьи . В частности, отображение основных отношений «равноценно» () и «лучшее» ():),). Всегда ли бинарное отношение преобладания можно отобразить функцией? Утвердительный ответ для счетного множества дал Кантор, а для несчетного – Милграм и Биркгоф. Очень важную теорему доказал Дебре: отношение преобладания «не хуже»  на компактном множестве XRn можно отобразить функцией полезности, если оно непрерывно на X. Если множество допустимых элементов X представляет собой компакт в Rn, то непрерывная на этом множестве функция достигает наибольшего значения (теорема Вейєрштрасса). Множество элементов, доставляющих максимум функции f на множестве X, не пусто. Поскольку эти элементы являются максимальными по отношению преобладания , что отображается функцией полезности f, то множество преобладающих элементов не пусто. Вместе с функцией ценности f все отношения преобладания семьи  отображает другая функция, полученная возрастающим преобразованием. Если u=f(х), хX – функция полезности, а v=g(и) – возрастающая функция переменной u, то сложная функция v=g(f(x)), хX также является функцией полезности. Функция полезности, заданная с точностью до произвольного монотонно возрастающего преобразования, называется порядковой. Если же функция полезности задана с точностью до произвольного положительного линейного преобразования v=f(x)+, где ,>0, ее называют интервальной. Особенность интервальной функции полезности состоит в том, что она (в отличие от порядковой) позволяет не только определять, что один элемент преобладает над другим, а и то, как различаются элементы по преобладанию. Если функция полезности f положительна и задана с точностью до любого множителя , то есть w=f(x), >0, то ее называют относительной. Она показывает, в сколько раз один элемент преобладает над другим. При сравнении двух элементов xі и xj множества важно знать, в какой степени один элемент преобладает над другим. Если при сравнении элемента xі с элементом xj первый элемент получил указанный в таблице 1 ранг, то другой элемент получает ранг, обратный к рангу первого элемента. Таблица 1. Шкала относительной важности объектов Степень важности Определение 1 Объекты равноценны 3 Объект немного лучше другого 5 Объект лучше другого 7 Объект намного лучше другого 9 Объект гораздо лучше другого 2,4,6,8 Промежуточные суждения По результатам парных сравнений образуем mm-матрицу A=(aij), элемент которой aij дает оценку преобладания элемента хi в сравнении с элементом xj (i,j=1,…,т). Пусть (w1,...,wт) – набор истинных полезностей элементов множества X. Если парные сравнения будут взаимно согласованы, должны выполняться соотношения aij=wi/wj для i,j=1,…,т. Это означает, что аii=1 и аji=1/aij для i,j=1,…,т. Последнее соотношение означает, что если элемент xі лучше элемента xj в >1 раз, то полезность xj составит 1/ часть от ценности xj. Взаимная согласованность парных сравнений означает также, что должны выполняться соотношения аij=akj/aki для i,j,k=1,…,m. Если хk лучше хi в  раз, а хi лучше xj в  раз, то хk лучше xj в  раз. Для заполнения матрицы A достаточно задать одну строку (один столбец). В самом деле, если заполнена первая строка этой матрицы (а11,...,а1i,...,а1т), то ее i-ая строка (i=2,…,т) заполняется по правилу aij=a1j/a1i (j=1,…,n). При полной согласованности элементов выполняется соотношение: Вектор относительной полезности (w1,…,wm)T – собственный вектор матрицы А для ее собственного значения =т. Для согласованной матрицы – это наибольшее собственное значение (спектральный радиус матрицы), а другие собственные значения равны нулю. Это свойство согласованных парных сравнений можно использовать в случае, если допущены ошибки. После построения матрицы парных сравнений относительные полезности элементов можно получить как компоненты собственного вектора w для собственного значения max. Чем ближе max к т, тем лучше согласованы парные сравнения элементов. Индекс согласованности (индекс Саати). Если значение индекса меньше 10 % от эталонных значений таблицы 2, то результаты парного сравнения считают удовлетворительными. Если значение индекса больше 10 %, то результаты считают неудовлетворительными, и тогда нужно уточнить оценки относительной важности элементов в парных сравнениях. Таблица 2. Эталонные значения индекса согласованности. Способ приближенного вычисления относительной полезности элементов состоит в использовании среднего геометрического элементов каждой строки матрицы:, i=1,…,m. Предположим, что вы решаете, в каком кафе провести свободное время. Выбор ограничен тремя кафе 1, 2 и 3. Они обеспечивают качественное обслуживание клиентов. В кафе 1 свободен доступ в «Интернет», а в кафе 3 много посетителей. Кафе 2 находится ближе к вашему дому. Результаты парного сравнения кафе: <1:2>=3 – есть некоторые основания считать кафе 1 лучше кафе 2; <1:3>=7 – уровень обслуживания в кафе 1 значительно лучше, чем в кафе 3; <2:3>=3 – уровень обслуживания в кафе 2 и 3 почти одинаков, но число посетителей в кафе 2 меньше, и оно расположено ближе к дому. По этим результатам составляем матрицу парных сравнений:. По методу среднего геометрического, находим,,. Оценим собственное значение, которому отвечает этот вектор полезностей. Для этого вычислим произведение. Чтобы оценить max, делим покомпонентно вектор Аw=(2,013;0,73;0,264)T на вектор относительных полезностей w=(0,669;0,243;0,088)T. Получим вектор (3,007;3,007;3,007)T. Собственное значение:. Индекс согласованности. составляет 0,6 % от эталонного значения показателя согласованности:. Уровень согласованности достаточно высок, а относительными полезностями кафе 1, 2 и 3 можно считать: w1=0,669; w2=0,243; w3=0,088. Если принять <1:2>=3 – есть основания считать кафе 1 лучше кафе 2; <1:3>=9 – уровень обслуживания в кафе 1 гораздо лучше, чем в кафе 3; <2:3>=3 – есть основания считать кафе 2 лучше кафе 3, то согласие парных сравнений полное max=3 и J=0: w1=0,692; w2=0,231; w3=0,077. При большом числе объектов этот метод слишком громоздок, что присуще всем методам, основанным на парном сравнении элементов. 2. Потоки и запасы В экономике три категории агентов: предприятия E, домохозяйства H и все другие агенты V. Агенты E производят товары и услуги. Агенты H их потребляют. Агенты V оказывают услуги по распределению созданных благ. Стоимость произведенной в стране конечной продукции равна расходам по ее приобретению, а валовой внутренний продукт (ВВП) можно получить как сумму конечных расходов Y=C+I (C – потребление, I – инвестиции). Добавленная стоимость – доходы агентов, а ВВП равен сумме факторных доходов Y=L+K (L и K – оплата труда и капитала). Плата за капитал включает амортизационные расходы, арендную плату, проценты, страховку и прибыль. Потоки Y, C и I связывают агентов с рынком товаров и услуг MP. Другие потоки связывают их с рынком ресурсов MR и другими рынками M. Отобразим агентов и рынки вершинами графа, потоки – дугами. Модель взаимодействия агентов E, H и V на рынках MP, MR и M дана на рис.1. Доход MP|E=Y предприятия E получают на рынке товаров и услуг MP, где H и V несут расходы C(MP|H) и I(MP|F). Домохозяйства получают доход R(MR|H) на рынке ресурсов MR, где предприятия несут расходы L(E|MR). Другие агенты V получают доход W(M|V) на рынках M, где несут расходы предприятия K(E|M) и домохозяйства S(H|M). Условия баланса рынков, и. Условия баланса агентов, и. Здесь I – инвестиции в товары и услуги, Q – инвестиции в ресурсы. Рис.1. Потоки доходов и расходов. Направленный граф рис.1 на шести вершинах содержит девять дуг потоков. Если удалить вершину графа V и инцидентные ей дуги, оставшаяся часть графа не сбалансирована. Удаленная часть графа становится деревом графа, если ее дополнить дугами V|E и V|H с нулевыми потоками. На рис.2 ветви дерева изображены пунктирными линиями, а хорды дополнения дерева – сплошными линиями. Множество дуг замкнутого графа – объединение его ветвей и хорд. Для графа рис.2 вектор потоков ветвей Ib=(I,Q,–W,0,0), а запасы ветвей Vb=(I,Q,W,0,0). Потоки хорд Ic=(Y,R,L,C,K,S). Матрица потоков хорд Icc=diag(Ic). Рис.2. Дерево графа и его дополнение. Топологические свойства дополнения дерева описывают матрицы инцидентности таблиц 1. Элемент матрицы Dbc равен 1, если i-ая вершина начальная для j-ой хорды, и 0 в противном случае. Элемент матрицы Cbc равен 1, если i-ая вершина конечная для j-ой хорды, и 0 в противном случае. Унимодулярная матрица инцидентности Abc=Cbc–Dbc. Таблица 1. Матрицы инцидентности дополнения дерева. Dbc MP|E MR|H E|MR H|MP E|M H|M Cbc MP|E MR|H E|MR H|MP E|M H|M MP 1 0 0 0 0 0 MP 0 0 0 1 0 0 MR 0 1 0 0 0 0 MR 0 0 1 0 0 0 MF 0 0 0 0 0 0 MF 0 0 0 0 1 1 E 0 0 1 0 1 0 E 1 0 0 0 0 0 H 0 0 0 1 0 1 H 0 1 0 0 0 0 Потоки ветвей и запасы хорд и выражают законы Кирхгофа: алгебраическая сумма потоков в вершине графа и запасов в контуре графа равна нулю. Потоки и запасы дуг даны на рис.2. Мощность дуги – произведение ее потока на запас. Дуги с положительной мощностью – ресурсы, дуги с отрицательной мощностью – использования. Мощность ветвей и хорд и. Сравнение дает теорему Тевенина: Mb+Mc=0 – мощность замкнутого графа равна нулю. В таблице 2 представлена матрица потоков и матрица сальдо и. Таблица 2. Матрица проводок и матрица сальдо. Pbb MP MR M E H Sbb MP MR M E H Ib MP 0 0 0 Y 0 MP 0 0 0 Y –C I MR 0 00 0 R MR 0 0 0 –L R Q M 0 0 0 0 0 M 0 0 0 –K –S –W E 0 L K 0 0 E –Y LK 0 0 0 H C0 S 0 0 H C –R S 0 0 0 –Ib –I –Q W 0 0 0 Если I=Y–C>0, то рынок товаров и услуг MP находится в активном состоянии (I – инвестиции в товары и услуги). Если Q=R–L>0, то рынок ресурсов MR находится в активном состоянии (Q – инвестиции в ресурсы). Поскольку W+I+Q=0 и W<0, то рынки M находятся в пассивном состоянии. Агенты E и H сбалансированы. Потоки ресурсов направлены от агентов к рынкам, а потоки использования – от рынков к агентам. Выделяя в матрице потоков Icc потоки использования Ucc и потоки ресурсов Rcc, можно получить матрицу использования и ресурсов. Эта матрица сбалансирована по столбцам, но не сбалансирована по строкам. Чтобы построить граф использования ресурсов, нужно дуги положительных элементов матрицы Qbb направить от рынков к агентам, а отрицательных – от агентов к рынкам. Таблица 3. Матрица использования и ресурсов. Балансовые модели описывают взаимосвязи выходных и входных переменных (потоки или запасы). Сложение добавленной стоимости ячеек производства дает валовой внутренний продукт Y. В системе национальных счетов (СНС) доход предприятий Y=C+I+G равен сумме потребления C, инвестиции I, государственных расходов G (закрытая система) и чистого экспорта NX= EX–IM (открытая система). Если Y – валовой внутренний продукт (GDP), то NX включает только товары и услуги. Если Y – валовой национальный продукт (GNP), то NX включает доход из-за рубежа (YF): GNP=C+I+G+(EX–IM+YF). Валовой национальный доход (доход резидентов, идущий на потребление и накопление) учитывает трансферты из-за рубежа (TRF): GNDI=C+I+G+(EX–IM+YF+TRF). В круглых скобках счет текущих операций NX. Если T – выплачиваемые налоги, то частные сбережения Sp=GNDI–C–T, излишек государственного бюджета BS=T–G, сбережения S=Y–C–G. Макромодель IS-LM связывает Y со ставкой процента R. Кривая IS описывает зависимость дохода от ставки процента при равновесии на рынке товаров и услуг Y=C(Y,T)+I(R)+G+NX(Y,RER). Здесь потребление C зависит от дохода Y и налога T, инвестиция I – от ставки процента, а чистый экспорт NX – от Y и обменного курса RER. Кривая IS имеет отрицательный наклон, так как увеличение ставки R уменьшает инвестиции и снижает доходы. Кривая LM описывает связь Y и R при равновесии на денежном рынке M/P=L(R,Y). Здесь M/P – отношение денежной массы M к уровню цен P (предложение денег), а L(R,Y) – спрос на деньги. Кривая LM имеет положительный наклон, поскольку R и Y оказывают противоположное влияние на денежный спрос. Пересечение кривых IS и LM дает величины Y* и R* при равновесии на товарном и денежном рынке. Кривая BP описывает взаимосвязь Y и R при внешнем равновесии (баланс официальных расчетов). Платежный баланс включает счет текущих операций и счет операций с активами KA: NX=EX(RER)–IM(Y,RER) и KA(ΔR)=IM(Y,RER)–EX(RER), где ΔR=R–R* – разность внутренней и мировой ставки процента. Внутренняя ставка R зависит от мировой ставки R*: можно получать любые кредиты на международных рынках, не влияя на R* (малая открытая экономика). Если сальдо платежного баланса не равно нулю, точка пересечения кривых IS и LM не лежит на кривой BP. Кривая BP имеет положительный наклон: увеличение Y приводит к росту импорта и к дефициту по текущему счету NX. Равновесие восстановит положительное сальдо счета KA: для привлечения иностранного капитала нужен рост внутренней ставки процента. Наклон кривой BP зависит от склонности к импортированию и мобильности капитала: при низкой мобильности она круче, чем кривая LM. На потоки капитала между странами влияют многие факторы, но самым важным является доход резидентов. Ставки дохода на активы в стране равны номинальной ставке R. Разность номинальной и мировой ставок – это причина оттока (или притока) капитала из страны. Если внутренняя ставка процента выше мировой, иностранные инвесторы найдут привлекательными внутренние активы и приобретут их, резиденты же воздержатся от покупки иностранных активов и станут заимствовать кредиты за границей (приток капитала). Неравновесное состояние баланса текущих операций и платежного баланса, внешние долги неблагоприятно повлияют на состоянии экономики, вызывая экономические спады и финансовые кризисы. Равновесный рост предприятия – движение с оптимизацией цены, выпуска и ресурсов для роста прибыли. Экономика находится в равновесии, если достигается всеми субъектами одновременно, если спрос на товары и услуги равен предложению, если все секторы сбалансированы. Потребитель находится в равновесии, если его доходы и расходы приносят максимальное удовлетворение. Предприятие находится в равновесии, если цена продуктов, выпуск и количество используемых им ресурсов сбалансировано. Владелец ресурсов в равновесии, если использует ресурсы с максимальной выгодой. 14. Потоки Эрланга. Интервалы времени между 1-ым и 2-ым, 2-ым и 3-им,…, n-ым и n+1-ым событием,…T1,T2,…,Tn,… в потоках с ограниченным последействием независимы. Стационарный поток с ограниченным последействием называют потоком Пальма. Случайные интервалы времени T1,T2,…,Tn,… в потоках Пальма имеют один закон распределения. Простейший поток – это поток Пальма. Нестационарный пуассоновский поток не является потоком Пальма. Поток Эрланга k-го порядка получают из простейшего потока путем сохранения каждого k-го события. Промежуток времени T(k) между двумя событиями в потоке Эрланга имеет плотность распределения , t>0, k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение , и, k=1,2,3,… При k=1 закон Эрланга k-го порядка превращается в экспоненциальный закон f(t)=exp(–t) с параметром . Интенсивность потока Эрланга k-го порядка, k=1,2,3,… определяет его основные характеристики, t>0, k=1,2,3,…, и, k=1,2,3,… Интенсивность нормированного потока Эрланга, k=1,2,3,… Промежуток времени между соседними состояниями k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение, , , k=1,2,3,… Плотность распределения нормированного потока Эрланга, t>0, k=1,2,3,… Случайная величина промежутка времени – это среднее арифметическое k независимых случайных величин Ti, i=1,…,k, распределенных по одному и тому же закону распределения (экспоненциальному с параметром ). В силу центральной предельной теоремы она будет иметь распределение, близкое к нормальному с математическим ожиданием 1/ и дисперсией 1/k2. Поскольку дисперсия уменьшается с ростом k, промежуток времени между соседними событиями нормированного потока Эрланга становится все менее случайным и по закону больших чисел приближается по вероятности к математическому ожиданию 1/. Поток Эрланга приближается с ростом k к регулярному потоку с промежутком времени 1/ между событиями. Это свойство потоков Эрланга выявляет роль k как меры «последействия»: от полного отсутствия последействия при k=1 (простейший поток) до жесткого последействия при k (регулярный поток). Для моделирования реального потока с последействием применяется нормированный поток Эрланга с почти тем же математическим ожиданием и дисперсией интервала времени между соседними событиями. С помощью потоков Эрланга немарковские процессы можно сводить к марковским процессам. Пример 7. Наблюдения за работой рекламного агентства показали, что среднее значение интервала времени T между соседними поступлениями заказов M[T]=1 неделя и стандартное отклонение T=4 дня. Интенсивность и стандартное отклонение нормированного потока Эрланга (заказ в неделю) и. Отсюда k=(7/4)2=3,067. Ближайшее целое число – порядок k=3. Плотность распределения вероятностей случайного интервала времени, t>0. Вероятность, что интервал времени между двумя заказами больше 3 и меньше 5 дней. Интегрируя по частям, получим, и. Интегрируя по частям, получим. Таким образом, p=0,189. Пуассоновские потоки событий и дискретные марковские процессы с непрерывным временем тесно связаны. Случайный процесс с непрерывным временем в системе с дискретными состояниями будет марковским, если все потоки событий, переводящие систему из состояния в состояние, являются пуассоновскими (стационарными или нестационарными). Такие системы с непрерывным временем называются пуассоновскими. Исследование случайного процесса проводится по алгоритму: (1) Описать каждое состояние системы; (2) Составить граф состояний, указать возможные переходы из состояния в состояние; (3) Задать интенсивности потоков событий, под влиянием которых осуществляются эти переходы; (4) Указать начальное состояние системы (при t=0). Пример 8. Банкоматы B1 и B2 могут «отказывать» независимо друг от друга (выходить из строя). Потоки отказов B1 и B2 с интенсивностями 1=4 и 2=3 (отказа в неделю) – пуассоновские. После отказа каждый банкомат сразу ремонтируется (восстанавливается). Потоки восстановлений B1 и B2 с интенсивностями 1=5 и 2=2 (восстановлений в неделю) – пуассоновские. Потоки с постоянными интенсивностями являются простейшими. Система S может находиться в четырех состояниях: s11 – оба банкомата исправны; s12 – банкомат B1 исправен, а B2 ремонтируется; s21 – банкомат B1 ремонтируется, а B2 исправен; s22 – банкоматы ремонтируются. Размеченный граф состояний системы изображен на рис.10, а матрица плотностей вероятностей переходов дана в таблице 5. Рис.10. Граф состояний системы двух банкоматов. Таблица 5. Матрица плотности вероятностей. Составим систему уравнений Колмогорова: В начальный момент времени t=0 система находилась в состоянии s12:, , ,. Условие нормировки p11(t)+p12(t)+p21(t)+p22(t)=1 (t0). С учетом условия нормировки получаем неоднородную систему трех линейных дифференциальных уравнений первого порядка:, ,. Общее решение однородной системы, ,. Для нахождения решений неоднородной системы применим метод вариации постоянных, рассматривая c1,c2,c3 как неизвестные функции от t. Подставляя решение однородной системы, получим систему линейных уравнений для dc1/dt, dc2/dt и dc3/dt. После ее решения и интегрирования найдем функции,, , где b1, b2 и b3 – постоянные интегрирования. Для их определения используем начальные условия:, ,. Решение этой системы уравнений методом Крамера дает, ,. Подставив эти значения, получим общее решение неоднородной системы:, ,. Функцию p22(t) находят из условия нормировки:. При t=2 будем иметь, , ,. Во втором квартале система S будет находиться вероятнее всего в состоянии s12: банкомат B1 будет работать, а B2 – ремонтироваться. Дискретный процесс с непрерывным временем является марковским, если каждый из потоков, переводящих систему из состояния в состояние, является пуассоновским потоком. Преобразование Лапласа Спектральная плотность сигнала v(t). Это преобразование Фурье сигнала v(t). Обратное преобразование Фурье. Сигналу v(t) можно сопоставить спектральную плотность V() в том случае, если сигнал абсолютно интегрируем:. Если экономическую систему возбуждают источники потока y(t), а искомые переменные x(t) являются запасами, то ее поведение описывается уравнением, где квадратная матрица T(p)=G+pC, а G и C не зависят от комплексной частоты p. Допустим, что система уравнений решена, а выходная функция F(p)=cTX(p). Формальное решение, где T+(p) – присоединенная матрица. Линейные выходные функции имеют общий знаменатель, равный определителю матрицы T(p). Определитель и любой элемент присоединенной матрицы T+ – это полиномы от p, а F(p) – рациональная функция комплексной переменной p вида F(p)=N(p)/D(p). Знаменатель функции системы D(p)=|T|, а числитель N(p)=|Tcy|. Если изображение есть дробь F(p)=K1/(p–p1) с полюсом p1 и вычетом K1, то. Обращение преобразования Лапласа заключается в вычислении для. Нужно найти условие, при котором интеграл можно представить в виде. Замкнем контур интегрирования в левой полуплоскости полуокружностью с радиусом, которой растет с пределами интегрирования. Если выполнить условие равенства нулю интеграла вдоль этой бесконечной полуокружности, то интеграл равен сумме вычетов. Введем p=Rexp(i) с dp=iRexp(i)d:. На полуокружности в левой полуплоскости, ограниченной точками iR и –iR, величина R постоянна. При больших R преобладают члены старших степеней и выражение для интеграла можно упростить. Интеграл конечный. Чтобы обеспечить равенство нулю выражения при R, нужно выбрать M и N, чтобы R в знаменателе имел положительную степень. Интеграл от рациональной функции I(p) по бесконечной полуокружности равен нулю, если число полюсов MN+2 функции на два больше, чем число ее нулей. Интегрирование рациональной функции при MN+2 вдоль линии, параллельной мнимой оси, дает 2i{сумма вычетов для полюсов слева от линии}, если контур интегрирования замкнуть через левую полуплоскость. Если замкнуть контур через правую полуплоскость, то следует взять сумму вычетов для полюсов справа от линии, а умножить на (–2i). Если f(z) определена в точке ветвления, то значение f(a) является общим для ветвей, полученных при обходе. Если, описывая кривую вокруг точки z=a сколь угодно раз в том же направлении, мы каждый раз будем получать новые ветви, то точка a называется точкой ветвления бесконечного порядка (логарифмическая точка ветвления). Определение коэффициентов полиномов N(p) и D(p) по ряду чисел (pi,N(pi)) и (pi,D(pi)) составляет интерполяционную задачу. Пусть известны значения qi в n+1 точке pi. Нужно найти коэффициенты полинома, проходящего через эти точки. Подставив pi, получим систему уравнений. Наилучшим выбором pj являются равноотстоящие точки, лежащие на единичной окружности комплексной плоскости. Обозначим P=(pij), где i и j принимают значения от 0 до n. Если обозначить, то pk=wk и P=(wij), а решение принимает вид. Исходный полином, определенный в точках pk, представлен в виде,. Это дискретное преобразование Фурье. Оно эффективно при выборе n+1=2m и целом числе m (быстрое преобразование). Дисконтирование достигается преобразованием Лапласа, которое переводит функцию f(t) действительной переменной t в функцию f(p) комплексной переменной p=r+is (r=Rep, s=Imp, i – мнимая единица). При ограниченном росте |f(t)|<exp(r0t) с абсциссой абсолютной сходимости r0>0 этот интеграл сходится при Rep<r0: область определения функции f(p) лежит слева от r=r0. Изображение запаздывающего импульса Хевисайда h(t–) с амплитудой h=1:. Изображение импульса g(t)=[h(t)–h(t–)]/ длительностью :. В пределе 0 получается изображение импульса Дирака (p)=1. Таблица оригиналов f(t) и изображений f(p). (для преобразования Карсона p используется интеграл Бромвича) Изображения являются рациональными функциями p:, и, где pl – нули, а pk – полюса функции f(p). На комплексной плоскости они изображаются соответственно кружками и крестиками. Функцию можно представить суммой простых множителей с вычетами, , ,. Функцию можно представить суммой. При k=1 имеем pk=1 и nk=2, а [(p–pk)f(p)]=p-3:, и,. При k=2 имеем pk=0 и nk=3, а [(p–pk)f(p)]=(p–1)-2:, , , и,. Если f(p)=c(p)/d(p), а c(p) и d(p) – аналитические функции в простом полюсе p1, то resf(p1)=c(p1)/d(p1). Формула Хевисайда применима, если m различных полюсов pk имеют кратности mk:, Если все полюсы простые, то Через компоненты матрицы Прибыль в рыночном сегменте Экономические рынки удобно рассматривать в виде множества секторов, элементы которых имеют общие признаки. Хозяйствующие субъекты сектора более однородны по своему поведению, чем субъекты всего рынка. Устойчивость сегменту придают прибыльные субъекты. Рыночный сегмент характеризуется какими-то свойствами и параметрами. Экстенсивные свойства пропорциональны размеру сегмента (совокупный доход, энтропия, число субъектов). Интенсивные свойства не зависят от размеров сегмента: скорость обращения полезности V определяет условия обмена между сектором и рынком, а уровень цен p отражает издержки рыночного сегмента. Если экономические параметры изменяются во времени, то в секторе протекает экономический процесс. Самопроизвольный процесс приводит рыночный сегмент в такое состояние, когда его экономические свойства больше не изменяются: в секторе установится полное равновесие. Равновесные рыночные сегменты характеризуются распределением Гиббса [3]. Сейчас кажется тривиальным, что при нехватке некоторого блага его цена растет. Однако между эмпирическим фактом и математическим доказательством дистанция огромного размера [1]. В основе доказательства лежит предположение о детерминированности процессов производства товаров и услуг. Оно попросту не учитывает неопределенность будущего, тем самым не затрагивая финансовую сторону экономической деятельности. Такие явления, как денежная инфляция и спекуляция, нельзя объяснить в рамках детерминированного подхода [2]. Предметом нашего исследования является экономическая система ячеек, которые находятся в состояниях полезности. При этом ячейка «погружена» во внешнюю среду, формируемую другими ячейками. Основное занятие ячейки – это распределение товаров и услуг. Совокупность ячеек и среды образует замкнутую экономическую систему. Нас интересует товарные отношение в этой системе. Пусть индекс n нумерует товары полезностями un. Согласно основному принципу статистической механики, если известна вероятность и статистическая сумма то можно найти внутреннюю полезность системы U, накопление W и свободную полезность F как функции скорости обращения полезности V: Эти функции связаны условием баланса U=F+W. Энтропия n-го состояния Энтропия закрытого региона. Экстенсивная переменная S – мера накопления VS, а интенсивная переменная V – ее оценка. И V и S неотрицательны. Изменения Q и Pn с V описываются производными где U зависит от V. Производные энтропии по V зависят от дисперсии и асимметрии дохода: Поскольку 2>0, то S увеличивается со скоростью V, достигая насыщения при V=V3μ3/3μ2, если μ3>0. При 3<0 энтропия ограничена. Производные по V:, и, Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом V. Производные по S:, и Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом S. Скорость обращения полезности V и энтропия S сопряжены на внутренней и свободной полезности: U(S) является потенциалом для скорости обращения полезности V, а F(V) – потенциалом для энтропии S. Накопление W не является потенциалом ни для скорости обращения, ни энтропии. Для учета доходов используем экстенсивную переменную благосостояния Y. Полезность товара un уменьшается с ростом Y, а производные pn(Y)=–dun/dY>0 определяют уровень цен, где вероятность Pn(V,Y) зависит от Y, так как un зависит от Y. Рыночный сегмент имеет две пары сопряженных переменных (S,V), (Y,p) и четыре потенциала F(V,Y), G(V,p), H(S,p) и U(S,Y) с дифференциалами, , и. Свободная полезность F вычисляется по статистической сумме Q(V,Y). Внутренняя полезность U=F+W включает F и W. Свободная полезность G=F+pY включает F и pY, а внутренняя полезность H=F+VS+pY. Переменные S и Y являются экстенсивными факторами, а V и p – интенсивные факторы. Частные производные статистической суммы выражаются в виде: Свободная полезность F(V,Y) является функцией V и Y: Свободная полезность G(V,p)=F+pY является функцией V и p: Внутреняя полезность H(S,p)=G+VS является функцией S и p: Внутреняя полезность U(S,Y)=H–pY является функцией S и Y: Внутрення полезность U растет с энтропией S и уменьшается с доходом Y. Потенциалы полезности F(V,Y), G(V,p), H(S,p) и U(S,Y) аддитивны, а V и p одинаковы для всех всех субъектов сегмента. Поэтому потенциалы должны быть однородными функциями первого порядка по переменным S и Y: где ψ, μ, ν и φ – некоторые функции. Будем рассматривать N как независимую переменную. Тогда в дифференциалы нужно добавить μdN с потенциалом. Оценка μ(V,p) резидентов в открытой экономической зоне оказывается функцией скорости обращения полезности V и уровня цен p. Дифференцируя G по N, получаем (V,p) – оценка μ числа субъектов в сегменте оказывается функцией V и p. Большой потенциал открытой зоны Ω=F–G является функцией V, Y и μ: dΩ=–SdV–pdY–Ndμ. Если полезность n-го резидента в зоне обозначить unN, то вероятность. Накопление полезности в открытой экономической зоне:, , и. Открытая экономическая зона является большим каноническим ансамблем. При описании экономических явлений используют понятие эластичности фактора и показателя [4]. Пусть взаимозависимые переменные x, y и z отвечают любой тройке неповторяющихся факторов S, V, Y и p. Тогда y-ой эластичностью фактора x при неизменном факторе z называется величина xyz=y(x/y)z. Только 16 эластичностей независимы в закрытой системы. Свободная полезность F(V,Y) вычисляется с помощью статистической суммы Q, а другие потенциалы в переменных V и Y – из выражений: Дифференцирование дает Потенциалы в переменных V и p выражаются через G(V,p): Дифференцирование дает Потенциалы в переменных S и p выражаются через H(S,p): Дифференцирование дает Потенциалы в переменных S и Y выражаются через U(S,Y): Дифференцирование дает Эти производные легко вычисляются, если учесть свойства якобианов: Доход Y(F,V) как функция свободной полезности F и скорости обращения имеет частные производные: Скорость обращения полезности V(G,p) как функция свободной полезности G и уровня цен имеет частные производные: Уровень цен p(H,S) как функция внутренней полезности H и энтропии имеет частные производные: Энтропия S(U,Y) как функция внутренней полезности U и благосостояния имеет частные производные: Статистическая оценки важных эластичностей дает: где означает усреднение с учетом вероятности Pn. Экономические процессы в закрытом сегменте сопровождаются ростом энтропии, пока она не достигнет наибольшего значения при полном равновеси. С ростом числа субъектов энтропия растет при фиксированной скорости V и уровне цен p. Это означает, что норма накопления увеличивается с числом субъектов, т.е. с переходом от большого к малому бизнесу. Субъекты малого бизнеса слабо взаимодействуют друг с другом в идеальном сегменте и представляют собой однородную массу, а их прибыль линейно зависит от конъюнктуры. Замечательным достижением статистической экономики является точная формулировка условий равновесия с внешней средой. Процессы, протекающие в замкнутой неравновесной системе, идут таким образом, что система переходит из состояний с меньшей энтропией в состояния с большей энтропией, пока она не достигнет своего наибольшего значения, соответствующего полному равновесию. Энтропия замкнутой системы – сумма энтропий резидентов и внешней среды. Равенство нулю первых производных суммарной энтропии является только необходимым условием экстремума и не дает того, чтобы энтропия имела именно максимум. Для выяснения достаточных условий необходимо вычислить второй дифференциал суммарной энтропии. Это исследование удобнее провести, исходя не из условия максимума суммарной энтропии, а из эквивалентного ему условия. Выделим из системы некоторую малую часть, а остаток будем рассматривать как внешнюю среду со скоростью обращения V0 и уровнем цен p0. Тогда в равновесии имеет минимум величина U–V0S+p0Y с внутренней полезностью U, энтропией S и доходом Y. При всяком малом отклонении от равновесия ее изменение должно быть положительным: Разлагая δU в ряд, получаем с точностью до членов второго порядка: где производные взяты в состоянии равновесия. Но поскольку то члены первого порядка сокращаются. Это необходимые условия равновесия: скорость обращения полезности V и уровень цен p для резидентов равны этим же величинам внешней среды. Достаточное условие равновесия имеет вид: Для того, чтобы такое неравенство имело место при произвольных δS и δY, нужно удовлетворить два неравенства: Поскольку то первое неравенство удовлетворяется при Второе неравенство можно записать в виде якобиана Переходя к переменным V и Y, имеем Поскольку p=p0>0 и SV0,Y>0, то это равносильно условию Уровень цен должен уменьшаться с ростом благосостояния при постоянной скорости обращения полезности. Эти экономические неравенства гарантируют устойчивость равновесной системы. Для SV0,Y>0 нужно, чтобы средний квадрат внутренней полезности u2 превышал квадрат среднего U2, а дисперсия была положительной. Поскольку для устойчивости равновесия необходимо, чтобы dp/dY было отрицательным и по модулю превышало отношение дисперсии уровня цен к скорости обращения. При любом начальном состоянии закрытой системы с течением времени в ней установится единственное состояние – равновесие. Эта тенденция означает монопольное возрастание энтропии во времени и увеличение разности энтропий S=S–S0 от отрицательных значений до нуля. Эти утверждения эквивалентны, и они отражают тот факт, что равновесие является глобальным асимптотически устойчивым состоянием, энтропия – функцией Ляпунова. Если только свободная полезность F(V,Y) будет иметь несколько минимумов при неизменных V, Y и различных значениях N, то стабильному состоянию будет отвечать наименьшее значение F, а метастабильному – самый мелкий минимум с наибольшим F. Такие состояния легко разрушаются переходом системы в устойчивое состояние с наименьшей свободной полезностью. Если системы переходит из одного состояния в другое с изменением ее внутренней полезности при неизменном накоплении, то обратный переход нельзя осуществить без воображаемого внешнего источника R. Прямому переходу с совершением максимальной работы |Rmax| отвечает обратный переход c работой Rmin внешнего источника. Изменение внешней полезности ΔU при изменении состояния состоит из трех частей: из произведенной работы внешнего источника R, из работы внешней среды p0ΔY0 и из полученной из нее V0ΔS0: где индекс 0 относится к внешней среде. Поскольку затраты среды равны доходу ΔY0=–ΔY, а в силу закона возрастания энтропии S0–S, то где знак равенства достигается при обратимом процессе. Переход совершается с минимальной работой, если он происходит обратимо: Обратный переход также совершается с минимальной работы, если происходит обратимо: Пусть SΣ есть полная энтропия. Если резиденты находятся в равновесии с внешней средой, то SΣ является функция их внутренней полезности UΣ.. Если же резиденты не находятся в равновесии с внешней средой, то суммарная энтропия отличается от SΣ(UΣ) на величину Но dU/dS является равновесной скоростью обращения полезности V0. Таким образом, получаем Эта формула определяет, как отличается энтропия замкнутой системы от своего возможного значения, если резиденты не находятся в равновесии со средой. Рассмотрим закрытую систему с энтропией SΣ. Пусть β – некоторый фактор, обеспечивающий ее внутреннее равновесие, т.е. S/=0. Пусть α – другой фактор, обеспечивающий при внутреннем равновесии системы и ее равновесие с внешней средой, т.е. S/=0. Введем обозначения Энтропия SΣ замкнутой системы максимальна при полном равновесии. Чтобы энтропия была максимальной, кроме необходимых условий А=0 и В=0, должны выполняться неравенства Уже незначительные изменения фактора α при некотором воздействии на закрытую систему приводят к изменению A на величину Изменение α при постоянном β приводит к нарушению условия внутреннего равновесия системы B=0. После того, как это равновесие восстановится, величина ΔA будет иметь значение Используя свойства якобиана, находим С учетом неравенств получаем новое неравенство Это неравенство выражает принцип Ла Шателье [6]. Рассмотрим изменение Δα фактора α как меру внешнего воздействия на систему, а ΔΑ – κак меру изменения системы под его влиянием. Тогда Значение ΔΑ уменьшается при восстановлении внутреннего равновесия системы после внешнего воздействия, выводящего ее из равновесия. Другими словами, внешнее воздействие, выводящее систему из равновесия, стимулирует в системе процессы, стремящиеся ослабить его влияние. Изменение энтропии системы –Rmin/V0 зависит от скорости обращения полезности во внешней среде V0 и минимальной работы Rmin, необходимой для приведения системы из состояния равновесия с внешней средой в данное состояние. Поэтому можно написать где для бесконечно малого изменения состояния системы резидентов Все величины без индекса относятся к резидентам, а с индексом 0 – к среде. Пусть α есть энтропия S. Тогда A=V/V0–1 и в равновесии V=V0, неравенства принимают вид Рост энтропии означает, что в систему инвестируется оборотный капитал. В итоге нарушается равновесие резидентов и, в частности, увеличивается скорость обращения полезности на величину (V). Восстановление равновесия резидентов приводит к тому, что изменение скорости обращения уменьшится до (V)B=0. т.е. как бы ослабляется результат воздействия, выводящего резидентов из равновесия. Если в неравенстве в качестве фактора β взять доход Y, то будем иметь поскольку условие В=0 означает, что случае p=p0. Подстановка дает неравенство Используя свойства якобиана, можно получить Пусть α есть налог Y. Тогда A=1–V/V0 и в равновесии V=V0, а неравенства принимают вид Если в неравенстве в качестве фактора β взять энтропию S, то условие В=0 означает, что V=V0 и В устойчивой системе величина (p/Y)V должна быть отрицательной. Используя свойства якобиана, можно получить В устойчивой системе величина (S/V)p должна быть положительной. Основной недостаток идеального сегмента состоит в том, что полезность расходится при Y=0. Этот коллапс не должен допускаться государством, которое может установить минимальный предел Y0. Рассмотрим процесс L в экономической системе, которая не находится в равновесии с внешней средой. Пусть B – накопление, полученное системой из внешней среды со скоростью обращения полезности V0. Процесс L перехода из состояния 1 в состояние 2 нельзя реализовать, если нарушается неравенство где S1 и S2 – энтропии состояний, а интегрирование проводится по траектории процесса. Равенство применимо только при обратимом процессе. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы и не зависит от ее промежуточных состояний Дифференциал внутренней полезности в замкнутой системе содержит малое накопление B и малое потребление A, которые не являются дифференциалами в общем случае. Переведем идеальную систему из начального состояния 1 в промежуточное состояние 2 при неизменной энтропии: где. Выпуск и потребление положительны, если. Переведем теперь систему из состояния 2 в промежуточное состояние 3 при неизменной ренте: Переведем далее систему из состояния 3 в промежуточное состояние 4 при неизменной конъюнктуре: Наконец, переведем систему из состояния 4 в начальное состояние 1 при неизменной ренте: При этот цикл оказывается замкнутым. В начальном состоянии 1 идеальная система имеет низкую конъюнктуру и низкую ренту. Переход в состояние 2 при низкой конъюнктуре сопровождается увеличением ренты и цены, а капитал убывает потому, что выпуск равен потреблению (накопление не меняется). Переход в состояние 3 при высокой ренте сопровождается увеличением конъюнктуры и капитала, а цена уменьшается, потому что выпуск отсутствует (инвестиция накоплений в производство повышает его конъюнктуру). Переход в состояние 4 при высокой конъюнктуре сопровождается уменьшением ренты и цены, а капитал увеличивается, потому что потребление равно выпуску (накопление не изменяется). Переход в начальное состояние 1 при низкой ренте сопровождается уменьшением конъюнктуры и капитала, а цена увеличивается, потому что выпуск отсутствует (конфискация накопления из производства понижает его конъюнктуру). Коэффициент полезного действия этого замкнутого экономического цикла определяется следующим образом: Инвестиция S2=S23>0 и конфискация S1=S41<0 удовлетворяют соотношению Это соотношение справедливо только для замкнутого цикла. Макроскопическая теория выпусков и затрат использована для описания экономических циклов системы многих резидентов на основе модели В.В.Леонтьева. Основные понятия макроэкономики развиты в русле детерминированного подхода, дополненного соображениями оптимальности и полезности [1,2]. Может быть поэтому нет строгого определения конъюнктуры как меры эффективной деятельности экономической системы. Вместе с тем, этот термин используется [3]. Эвристические соображения известных экономистов о конъюнктуре близки к определению температуры как производной внутренней энергии системы по ее энтропии [4,5]. Аналогом внутренней энергии в экономике является внутренняя полезность, но она должна быть определена в рамках вероятностного подхода. Необходимость такого подхода отмечалась в связи с инфляционными процессами современной экономической жизни [6]. Полезность un зависит от индекса благосостояния Y, причем при Y=1 она равна нулю, а цена благосостояния pn(Y)–dun/dY не может быть отрицательной, так как un уменьшается с ростом Y. Согласно основного принципа статистической экономики, если известны статистическая сумма Q, вероятность Pn, энтропия S и уровень цен p, , и, то можно найти макроскопические показатели закрытой системы при скорости обращения полезности V и индексе благосостояния Y. Показателями закрытой системы являются внутренняя полезность U=F+W, свободная полезность F и накопление W, и, а ее факторами являются скорость обращения полезности V, энтропия S, индекс благосостояния Y и уровень цен p. Для простой закрытой системы, а свободная полезность (потребление) выражается в виде, где f(V)=VlnL(V). Энтропия и уровень цен простой системы даются уравнениями состояния и. Полуэластичности этих двух факторов и. Для устойчивости закрытой системы необходимо и достаточно иметь =const, =const и SV,Y>0, pY,V<0. Простая система устойчива, если d2f/dV2<0. Свободная полезность G=F+pY в простой системе определяется с учетом уравнения состояния:, а энтропия и индекс благосостояния выражаются в виде и. Полуэластичности этих факторов и. Идеальной называется простая система с SV,Y=N0>0 и, где f0 и  – постоянные интегрирования. Внутренняя полезность U=F+W такой системы определяется с учетом уравнения состояния:, где =1+N/N0>1. Удобно выбрать f0=–S0 и, чтобы внутренняя полезность исчезала при энтропии S11=S(V=1,Y=1) и индексе Y=1:. В этом случае и, а внутренняя полезность являются линейной функцией скорости обращения полезности U=N0(V–1). Свободная полезность идеальной системы и ее энтропия – нелинейные функции скорости обращения полезности и индекса благосостояния и. Зависимость энтропии идеальной системы S(V,Y) от конъюнктуры V приводится на рис.1 для двух значений индекса благосостояния Y. Рис.1. Зависимость энтропии от конъюнктуры. Используются данные для высокоэластичной экономики с небольшим числом резидентов, представляющих отрасли народного хозяйства [3] (N0=10, S11=3 и N=10). Рост энтропии с конъюнктурой свидетельствует о структурных изменениях системы, сопровождаемых линейным увеличением внутренней полезности. Этот рост замедляется с уменьшением индекса благосостояния. Уравнение состояния pY=NV связывает большую полезность pY с числом резидентов N и конъюнктурой V идеальной системы. При неизменной конъюнктуре уровень цен уменьшается с ростом индекса благосостояния (деинфляция). Рассмотрим квазистатический процесс L в системе резидентов, которые не находятся в равновесии с внешней средой. Малое накопление B система резидентов получит из окружающей среды с равновесной конъюнктурой V0. Переход системы резидентов из состояния 1 с энтропией S1 в состояние 2 с энтропией S2 нельзя реализовать, если нарушается неравенство, где интегрирование проводится по траектории процесса L. Равенство применимо при обратимых процессах. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы. Дифференциал внутренней полезности закрытой системы dU=B+A=VdS–pdY содержит малое накопление B и малое потребление А, которые не являются дифференциалами. В состоянии 1 система имеет энтропию S1 и конъюнктуру V1. Переведем систему из начального состояния 1 в состояние 2 при неизменной энтропии: и. Переход в состояние 2 с конъюнктурой V2>V1 сопровождается уменьшением индекса благосостояния Y и увеличением уровня цен p, потому что прирост полезности потребляется (рис.1). Переведем систему из состояния 2 в состояние 3 при неизменной конъюнктуре:, и. Переход в состояние 3 с энтропией S3>S1 сопровождается увеличением Y и уменьшением p, потому что внутренняя полезность не изменяется (инвестиция накоплений в систему повышает энтропию). Зависимость индекса благосостояния Y от уровня цен p приводится на рис.2 для той же высокоэластичной системы при S1=1, V1=1, V2=3 и S3=3. Рис.2. Зависимость индекса от ставки затрат. Переведем систему из состояния 3 в состояние 4 при неизменной энтропии: и. Переход в состояние 4 с конъюнктурой V4<V2 сопровождается увеличением Y и уменьшением p. Переведем систему из состояния 4 в состояние 1 при неизменной конъюнктуре:, и. Переход в состояние 1 с энтропией S1 и конъюнктурой V4=V1 сопровождается уменьшением Y и увеличением p из-за конфискации накоплений окружающей средой. Коэффициент полезного действия экономического цикла. Инвестиция B2=B23>0 и конфискация B1=B41<0 удовлетворяют соотношению. Это соотношение справедливо только для замкнутого цикла. Современному состоянию экономики Украины отвечает одна из нижних точек на траектории L12 c энтропией S1 и конъюнктурой VV2. Движение по этой траектории с падением индекса благосостояния Y и увеличением уровня цен p разогревает экономику до такой конъюнктуры V2, при которой возможны структурные изменения отношений резидентов на траектории L23. Движение по траектории с ростом Y и уменьшением p хаотизирует экономику до значения энтропии S3, которое зависит от инвестиции накоплений. Определению кризисной точки более отвечает состояние экономики с энтропией S1 и конъюнктурой V1, а квазистатический процесс L41 имеет периода застоя. Ему предшествует движение по траектории L34, которое ведет к охлаждению экономических отношений.

1) приобретая их товары;

2) посещая «дни открытых дверей» и специализированные выставки;

3) читая публикуемые ими отчеты и присутствуя на собраниях акционеров;

4) беседуя с бывшими и нынешними служащими конкурирующих организаций, их дилерами, дистрибьюторами, поставщиками и агентами по фрахтовым операциям;

Полезность парных сравнений. Прокоп О.М. Научный руководитель проф. На множестве элементов Х={х1,...,хт} определена семья отношений преобладания ={,,,,}, первым из которых является отношение «не хуже» (). Функция полезности удовлетворяет условию:). Это означает, что элемент x1X не хуже элемента x2X, если полезность f(x1) элемента х1 не меньше полезности f(x2) элемента х2. Таким образом, функция полезности f отображает отношение преобладания  на множестве X. Можно убедиться, что она отображает и все другие отношения семьи . В частности, отображение основных отношений «равноценно» () и «лучшее» ():),). Всегда ли бинарное отношение преобладания можно отобразить функцией? Утвердительный ответ для счетного множества дал Кантор, а для несчетного – Милграм и Биркгоф. Очень важную теорему доказал Дебре: отношение преобладания «не хуже»  на компактном множестве XRn можно отобразить функцией полезности, если оно непрерывно на X. Если множество допустимых элементов X представляет собой компакт в Rn, то непрерывная на этом множестве функция достигает наибольшего значения (теорема Вейєрштрасса). Множество элементов, доставляющих максимум функции f на множестве X, не пусто. Поскольку эти элементы являются максимальными по отношению преобладания , что отображается функцией полезности f, то множество преобладающих элементов не пусто. Вместе с функцией ценности f все отношения преобладания семьи  отображает другая функция, полученная возрастающим преобразованием. Если u=f(х), хX – функция полезности, а v=g(и) – возрастающая функция переменной u, то сложная функция v=g(f(x)), хX также является функцией полезности. Функция полезности, заданная с точностью до произвольного монотонно возрастающего преобразования, называется порядковой. Если же функция полезности задана с точностью до произвольного положительного линейного преобразования v=f(x)+, где ,>0, ее называют интервальной. Особенность интервальной функции полезности состоит в том, что она (в отличие от порядковой) позволяет не только определять, что один элемент преобладает над другим, а и то, как различаются элементы по преобладанию. Если функция полезности f положительна и задана с точностью до любого множителя , то есть w=f(x), >0, то ее называют относительной. Она показывает, в сколько раз один элемент преобладает над другим. При сравнении двух элементов xі и xj множества важно знать, в какой степени один элемент преобладает над другим. Если при сравнении элемента xі с элементом xj первый элемент получил указанный в таблице 1 ранг, то другой элемент получает ранг, обратный к рангу первого элемента. Таблица 1. Шкала относительной важности объектов Степень важности Определение 1 Объекты равноценны 3 Объект немного лучше другого 5 Объект лучше другого 7 Объект намного лучше другого 9 Объект гораздо лучше другого 2,4,6,8 Промежуточные суждения По результатам парных сравнений образуем mm-матрицу A=(aij), элемент которой aij дает оценку преобладания элемента хi в сравнении с элементом xj (i,j=1,…,т). Пусть (w1,...,wт) – набор истинных полезностей элементов множества X. Если парные сравнения будут взаимно согласованы, должны выполняться соотношения aij=wi/wj для i,j=1,…,т. Это означает, что аii=1 и аji=1/aij для i,j=1,…,т. Последнее соотношение означает, что если элемент xі лучше элемента xj в >1 раз, то полезность xj составит 1/ часть от ценности xj. Взаимная согласованность парных сравнений означает также, что должны выполняться соотношения аij=akj/aki для i,j,k=1,…,m. Если хk лучше хi в  раз, а хi лучше xj в  раз, то хk лучше xj в  раз. Для заполнения матрицы A достаточно задать одну строку (один столбец). В самом деле, если заполнена первая строка этой матрицы (а11,...,а1i,...,а1т), то ее i-ая строка (i=2,…,т) заполняется по правилу aij=a1j/a1i (j=1,…,n). При полной согласованности элементов выполняется соотношение: Вектор относительной полезности (w1,…,wm)T – собственный вектор матрицы А для ее собственного значения =т. Для согласованной матрицы – это наибольшее собственное значение (спектральный радиус матрицы), а другие собственные значения равны нулю. Это свойство согласованных парных сравнений можно использовать в случае, если допущены ошибки. После построения матрицы парных сравнений относительные полезности элементов можно получить как компоненты собственного вектора w для собственного значения max. Чем ближе max к т, тем лучше согласованы парные сравнения элементов. Индекс согласованности (индекс Саати). Если значение индекса меньше 10 % от эталонных значений таблицы 2, то результаты парного сравнения считают удовлетворительными. Если значение индекса больше 10 %, то результаты считают неудовлетворительными, и тогда нужно уточнить оценки относительной важности элементов в парных сравнениях. Таблица 2. Эталонные значения индекса согласованности. Способ приближенного вычисления относительной полезности элементов состоит в использовании среднего геометрического элементов каждой строки матрицы:, i=1,…,m. Предположим, что вы решаете, в каком кафе провести свободное время. Выбор ограничен тремя кафе 1, 2 и 3. Они обеспечивают качественное обслуживание клиентов. В кафе 1 свободен доступ в «Интернет», а в кафе 3 много посетителей. Кафе 2 находится ближе к вашему дому. Результаты парного сравнения кафе: <1:2>=3 – есть некоторые основания считать кафе 1 лучше кафе 2; <1:3>=7 – уровень обслуживания в кафе 1 значительно лучше, чем в кафе 3; <2:3>=3 – уровень обслуживания в кафе 2 и 3 почти одинаков, но число посетителей в кафе 2 меньше, и оно расположено ближе к дому. По этим результатам составляем матрицу парных сравнений:. По методу среднего геометрического, находим,,. Оценим собственное значение, которому отвечает этот вектор полезностей. Для этого вычислим произведение. Чтобы оценить max, делим покомпонентно вектор Аw=(2,013;0,73;0,264)T на вектор относительных полезностей w=(0,669;0,243;0,088)T. Получим вектор (3,007;3,007;3,007)T. Собственное значение:. Индекс согласованности. составляет 0,6 % от эталонного значения показателя согласованности:. Уровень согласованности достаточно высок, а относительными полезностями кафе 1, 2 и 3 можно считать: w1=0,669; w2=0,243; w3=0,088. Если принять <1:2>=3 – есть основания считать кафе 1 лучше кафе 2; <1:3>=9 – уровень обслуживания в кафе 1 гораздо лучше, чем в кафе 3; <2:3>=3 – есть основания считать кафе 2 лучше кафе 3, то согласие парных сравнений полное max=3 и J=0: w1=0,692; w2=0,231; w3=0,077. При большом числе объектов этот метод слишком громоздок, что присуще всем методам, основанным на парном сравнении элементов. 2. Потоки и запасы В экономике три категории агентов: предприятия E, домохозяйства H и все другие агенты V. Агенты E производят товары и услуги. Агенты H их потребляют. Агенты V оказывают услуги по распределению созданных благ. Стоимость произведенной в стране конечной продукции равна расходам по ее приобретению, а валовой внутренний продукт (ВВП) можно получить как сумму конечных расходов Y=C+I (C – потребление, I – инвестиции). Добавленная стоимость – доходы агентов, а ВВП равен сумме факторных доходов Y=L+K (L и K – оплата труда и капитала). Плата за капитал включает амортизационные расходы, арендную плату, проценты, страховку и прибыль. Потоки Y, C и I связывают агентов с рынком товаров и услуг MP. Другие потоки связывают их с рынком ресурсов MR и другими рынками M. Отобразим агентов и рынки вершинами графа, потоки – дугами. Модель взаимодействия агентов E, H и V на рынках MP, MR и M дана на рис.1. Доход MP|E=Y предприятия E получают на рынке товаров и услуг MP, где H и V несут расходы C(MP|H) и I(MP|F). Домохозяйства получают доход R(MR|H) на рынке ресурсов MR, где предприятия несут расходы L(E|MR). Другие агенты V получают доход W(M|V) на рынках M, где несут расходы предприятия K(E|M) и домохозяйства S(H|M). Условия баланса рынков, и. Условия баланса агентов, и. Здесь I – инвестиции в товары и услуги, Q – инвестиции в ресурсы. Рис.1. Потоки доходов и расходов. Направленный граф рис.1 на шести вершинах содержит девять дуг потоков. Если удалить вершину графа V и инцидентные ей дуги, оставшаяся часть графа не сбалансирована. Удаленная часть графа становится деревом графа, если ее дополнить дугами V|E и V|H с нулевыми потоками. На рис.2 ветви дерева изображены пунктирными линиями, а хорды дополнения дерева – сплошными линиями. Множество дуг замкнутого графа – объединение его ветвей и хорд. Для графа рис.2 вектор потоков ветвей Ib=(I,Q,–W,0,0), а запасы ветвей Vb=(I,Q,W,0,0). Потоки хорд Ic=(Y,R,L,C,K,S). Матрица потоков хорд Icc=diag(Ic). Рис.2. Дерево графа и его дополнение. Топологические свойства дополнения дерева описывают матрицы инцидентности таблиц 1. Элемент матрицы Dbc равен 1, если i-ая вершина начальная для j-ой хорды, и 0 в противном случае. Элемент матрицы Cbc равен 1, если i-ая вершина конечная для j-ой хорды, и 0 в противном случае. Унимодулярная матрица инцидентности Abc=Cbc–Dbc. Таблица 1. Матрицы инцидентности дополнения дерева. Dbc MP|E MR|H E|MR H|MP E|M H|M Cbc MP|E MR|H E|MR H|MP E|M H|M MP 1 0 0 0 0 0 MP 0 0 0 1 0 0 MR 0 1 0 0 0 0 MR 0 0 1 0 0 0 MF 0 0 0 0 0 0 MF 0 0 0 0 1 1 E 0 0 1 0 1 0 E 1 0 0 0 0 0 H 0 0 0 1 0 1 H 0 1 0 0 0 0 Потоки ветвей и запасы хорд и выражают законы Кирхгофа: алгебраическая сумма потоков в вершине графа и запасов в контуре графа равна нулю. Потоки и запасы дуг даны на рис.2. Мощность дуги – произведение ее потока на запас. Дуги с положительной мощностью – ресурсы, дуги с отрицательной мощностью – использования. Мощность ветвей и хорд и. Сравнение дает теорему Тевенина: Mb+Mc=0 – мощность замкнутого графа равна нулю. В таблице 2 представлена матрица потоков и матрица сальдо и. Таблица 2. Матрица проводок и матрица сальдо. Pbb MP MR M E H Sbb MP MR M E H Ib MP 0 0 0 Y 0 MP 0 0 0 Y –C I MR 0 00 0 R MR 0 0 0 –L R Q M 0 0 0 0 0 M 0 0 0 –K –S –W E 0 L K 0 0 E –Y LK 0 0 0 H C0 S 0 0 H C –R S 0 0 0 –Ib –I –Q W 0 0 0 Если I=Y–C>0, то рынок товаров и услуг MP находится в активном состоянии (I – инвестиции в товары и услуги). Если Q=R–L>0, то рынок ресурсов MR находится в активном состоянии (Q – инвестиции в ресурсы). Поскольку W+I+Q=0 и W<0, то рынки M находятся в пассивном состоянии. Агенты E и H сбалансированы. Потоки ресурсов направлены от агентов к рынкам, а потоки использования – от рынков к агентам. Выделяя в матрице потоков Icc потоки использования Ucc и потоки ресурсов Rcc, можно получить матрицу использования и ресурсов. Эта матрица сбалансирована по столбцам, но не сбалансирована по строкам. Чтобы построить граф использования ресурсов, нужно дуги положительных элементов матрицы Qbb направить от рынков к агентам, а отрицательных – от агентов к рынкам. Таблица 3. Матрица использования и ресурсов. Балансовые модели описывают взаимосвязи выходных и входных переменных (потоки или запасы). Сложение добавленной стоимости ячеек производства дает валовой внутренний продукт Y. В системе национальных счетов (СНС) доход предприятий Y=C+I+G равен сумме потребления C, инвестиции I, государственных расходов G (закрытая система) и чистого экспорта NX= EX–IM (открытая система). Если Y – валовой внутренний продукт (GDP), то NX включает только товары и услуги. Если Y – валовой национальный продукт (GNP), то NX включает доход из-за рубежа (YF): GNP=C+I+G+(EX–IM+YF). Валовой национальный доход (доход резидентов, идущий на потребление и накопление) учитывает трансферты из-за рубежа (TRF): GNDI=C+I+G+(EX–IM+YF+TRF). В круглых скобках счет текущих операций NX. Если T – выплачиваемые налоги, то частные сбережения Sp=GNDI–C–T, излишек государственного бюджета BS=T–G, сбережения S=Y–C–G. Макромодель IS-LM связывает Y со ставкой процента R. Кривая IS описывает зависимость дохода от ставки процента при равновесии на рынке товаров и услуг Y=C(Y,T)+I(R)+G+NX(Y,RER). Здесь потребление C зависит от дохода Y и налога T, инвестиция I – от ставки процента, а чистый экспорт NX – от Y и обменного курса RER. Кривая IS имеет отрицательный наклон, так как увеличение ставки R уменьшает инвестиции и снижает доходы. Кривая LM описывает связь Y и R при равновесии на денежном рынке M/P=L(R,Y). Здесь M/P – отношение денежной массы M к уровню цен P (предложение денег), а L(R,Y) – спрос на деньги. Кривая LM имеет положительный наклон, поскольку R и Y оказывают противоположное влияние на денежный спрос. Пересечение кривых IS и LM дает величины Y* и R* при равновесии на товарном и денежном рынке. Кривая BP описывает взаимосвязь Y и R при внешнем равновесии (баланс официальных расчетов). Платежный баланс включает счет текущих операций и счет операций с активами KA: NX=EX(RER)–IM(Y,RER) и KA(ΔR)=IM(Y,RER)–EX(RER), где ΔR=R–R* – разность внутренней и мировой ставки процента. Внутренняя ставка R зависит от мировой ставки R*: можно получать любые кредиты на международных рынках, не влияя на R* (малая открытая экономика). Если сальдо платежного баланса не равно нулю, точка пересечения кривых IS и LM не лежит на кривой BP. Кривая BP имеет положительный наклон: увеличение Y приводит к росту импорта и к дефициту по текущему счету NX. Равновесие восстановит положительное сальдо счета KA: для привлечения иностранного капитала нужен рост внутренней ставки процента. Наклон кривой BP зависит от склонности к импортированию и мобильности капитала: при низкой мобильности она круче, чем кривая LM. На потоки капитала между странами влияют многие факторы, но самым важным является доход резидентов. Ставки дохода на активы в стране равны номинальной ставке R. Разность номинальной и мировой ставок – это причина оттока (или притока) капитала из страны. Если внутренняя ставка процента выше мировой, иностранные инвесторы найдут привлекательными внутренние активы и приобретут их, резиденты же воздержатся от покупки иностранных активов и станут заимствовать кредиты за границей (приток капитала). Неравновесное состояние баланса текущих операций и платежного баланса, внешние долги неблагоприятно повлияют на состоянии экономики, вызывая экономические спады и финансовые кризисы. Равновесный рост предприятия – движение с оптимизацией цены, выпуска и ресурсов для роста прибыли. Экономика находится в равновесии, если достигается всеми субъектами одновременно, если спрос на товары и услуги равен предложению, если все секторы сбалансированы. Потребитель находится в равновесии, если его доходы и расходы приносят максимальное удовлетворение. Предприятие находится в равновесии, если цена продуктов, выпуск и количество используемых им ресурсов сбалансировано. Владелец ресурсов в равновесии, если использует ресурсы с максимальной выгодой. 14. Потоки Эрланга. Интервалы времени между 1-ым и 2-ым, 2-ым и 3-им,…, n-ым и n+1-ым событием,…T1,T2,…,Tn,… в потоках с ограниченным последействием независимы. Стационарный поток с ограниченным последействием называют потоком Пальма. Случайные интервалы времени T1,T2,…,Tn,… в потоках Пальма имеют один закон распределения. Простейший поток – это поток Пальма. Нестационарный пуассоновский поток не является потоком Пальма. Поток Эрланга k-го порядка получают из простейшего потока путем сохранения каждого k-го события. Промежуток времени T(k) между двумя событиями в потоке Эрланга имеет плотность распределения , t>0, k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение , и, k=1,2,3,… При k=1 закон Эрланга k-го порядка превращается в экспоненциальный закон f(t)=exp(–t) с параметром . Интенсивность потока Эрланга k-го порядка, k=1,2,3,… определяет его основные характеристики, t>0, k=1,2,3,…, и, k=1,2,3,… Интенсивность нормированного потока Эрланга, k=1,2,3,… Промежуток времени между соседними состояниями k=1,2,3,… Математическое ожидание, дисперсия и стандартное отклонение, , , k=1,2,3,… Плотность распределения нормированного потока Эрланга, t>0, k=1,2,3,… Случайная величина промежутка времени – это среднее арифметическое k независимых случайных величин Ti, i=1,…,k, распределенных по одному и тому же закону распределения (экспоненциальному с параметром ). В силу центральной предельной теоремы она будет иметь распределение, близкое к нормальному с математическим ожиданием 1/ и дисперсией 1/k2. Поскольку дисперсия уменьшается с ростом k, промежуток времени между соседними событиями нормированного потока Эрланга становится все менее случайным и по закону больших чисел приближается по вероятности к математическому ожиданию 1/. Поток Эрланга приближается с ростом k к регулярному потоку с промежутком времени 1/ между событиями. Это свойство потоков Эрланга выявляет роль k как меры «последействия»: от полного отсутствия последействия при k=1 (простейший поток) до жесткого последействия при k (регулярный поток). Для моделирования реального потока с последействием применяется нормированный поток Эрланга с почти тем же математическим ожиданием и дисперсией интервала времени между соседними событиями. С помощью потоков Эрланга немарковские процессы можно сводить к марковским процессам. Пример 7. Наблюдения за работой рекламного агентства показали, что среднее значение интервала времени T между соседними поступлениями заказов M[T]=1 неделя и стандартное отклонение T=4 дня. Интенсивность и стандартное отклонение нормированного потока Эрланга (заказ в неделю) и. Отсюда k=(7/4)2=3,067. Ближайшее целое число – порядок k=3. Плотность распределения вероятностей случайного интервала времени, t>0. Вероятность, что интервал времени между двумя заказами больше 3 и меньше 5 дней. Интегрируя по частям, получим, и. Интегрируя по частям, получим. Таким образом, p=0,189. Пуассоновские потоки событий и дискретные марковские процессы с непрерывным временем тесно связаны. Случайный процесс с непрерывным временем в системе с дискретными состояниями будет марковским, если все потоки событий, переводящие систему из состояния в состояние, являются пуассоновскими (стационарными или нестационарными). Такие системы с непрерывным временем называются пуассоновскими. Исследование случайного процесса проводится по алгоритму: (1) Описать каждое состояние системы; (2) Составить граф состояний, указать возможные переходы из состояния в состояние; (3) Задать интенсивности потоков событий, под влиянием которых осуществляются эти переходы; (4) Указать начальное состояние системы (при t=0). Пример 8. Банкоматы B1 и B2 могут «отказывать» независимо друг от друга (выходить из строя). Потоки отказов B1 и B2 с интенсивностями 1=4 и 2=3 (отказа в неделю) – пуассоновские. После отказа каждый банкомат сразу ремонтируется (восстанавливается). Потоки восстановлений B1 и B2 с интенсивностями 1=5 и 2=2 (восстановлений в неделю) – пуассоновские. Потоки с постоянными интенсивностями являются простейшими. Система S может находиться в четырех состояниях: s11 – оба банкомата исправны; s12 – банкомат B1 исправен, а B2 ремонтируется; s21 – банкомат B1 ремонтируется, а B2 исправен; s22 – банкоматы ремонтируются. Размеченный граф состояний системы изображен на рис.10, а матрица плотностей вероятностей переходов дана в таблице 5. Рис.10. Граф состояний системы двух банкоматов. Таблица 5. Матрица плотности вероятностей. Составим систему уравнений Колмогорова: В начальный момент времени t=0 система находилась в состоянии s12:, , ,. Условие нормировки p11(t)+p12(t)+p21(t)+p22(t)=1 (t0). С учетом условия нормировки получаем неоднородную систему трех линейных дифференциальных уравнений первого порядка:, ,. Общее решение однородной системы, ,. Для нахождения решений неоднородной системы применим метод вариации постоянных, рассматривая c1,c2,c3 как неизвестные функции от t. Подставляя решение однородной системы, получим систему линейных уравнений для dc1/dt, dc2/dt и dc3/dt. После ее решения и интегрирования найдем функции,, , где b1, b2 и b3 – постоянные интегрирования. Для их определения используем начальные условия:, ,. Решение этой системы уравнений методом Крамера дает, ,. Подставив эти значения, получим общее решение неоднородной системы:, ,. Функцию p22(t) находят из условия нормировки:. При t=2 будем иметь, , ,. Во втором квартале система S будет находиться вероятнее всего в состоянии s12: банкомат B1 будет работать, а B2 – ремонтироваться. Дискретный процесс с непрерывным временем является марковским, если каждый из потоков, переводящих систему из состояния в состояние, является пуассоновским потоком. Преобразование Лапласа Спектральная плотность сигнала v(t). Это преобразование Фурье сигнала v(t). Обратное преобразование Фурье. Сигналу v(t) можно сопоставить спектральную плотность V() в том случае, если сигнал абсолютно интегрируем:. Если экономическую систему возбуждают источники потока y(t), а искомые переменные x(t) являются запасами, то ее поведение описывается уравнением, где квадратная матрица T(p)=G+pC, а G и C не зависят от комплексной частоты p. Допустим, что система уравнений решена, а выходная функция F(p)=cTX(p). Формальное решение, где T+(p) – присоединенная матрица. Линейные выходные функции имеют общий знаменатель, равный определителю матрицы T(p). Определитель и любой элемент присоединенной матрицы T+ – это полиномы от p, а F(p) – рациональная функция комплексной переменной p вида F(p)=N(p)/D(p). Знаменатель функции системы D(p)=|T|, а числитель N(p)=|Tcy|. Если изображение есть дробь F(p)=K1/(p–p1) с полюсом p1 и вычетом K1, то. Обращение преобразования Лапласа заключается в вычислении для. Нужно найти условие, при котором интеграл можно представить в виде. Замкнем контур интегрирования в левой полуплоскости полуокружностью с радиусом, которой растет с пределами интегрирования. Если выполнить условие равенства нулю интеграла вдоль этой бесконечной полуокружности, то интеграл равен сумме вычетов. Введем p=Rexp(i) с dp=iRexp(i)d:. На полуокружности в левой полуплоскости, ограниченной точками iR и –iR, величина R постоянна. При больших R преобладают члены старших степеней и выражение для интеграла можно упростить. Интеграл конечный. Чтобы обеспечить равенство нулю выражения при R, нужно выбрать M и N, чтобы R в знаменателе имел положительную степень. Интеграл от рациональной функции I(p) по бесконечной полуокружности равен нулю, если число полюсов MN+2 функции на два больше, чем число ее нулей. Интегрирование рациональной функции при MN+2 вдоль линии, параллельной мнимой оси, дает 2i{сумма вычетов для полюсов слева от линии}, если контур интегрирования замкнуть через левую полуплоскость. Если замкнуть контур через правую полуплоскость, то следует взять сумму вычетов для полюсов справа от линии, а умножить на (–2i). Если f(z) определена в точке ветвления, то значение f(a) является общим для ветвей, полученных при обходе. Если, описывая кривую вокруг точки z=a сколь угодно раз в том же направлении, мы каждый раз будем получать новые ветви, то точка a называется точкой ветвления бесконечного порядка (логарифмическая точка ветвления). Определение коэффициентов полиномов N(p) и D(p) по ряду чисел (pi,N(pi)) и (pi,D(pi)) составляет интерполяционную задачу. Пусть известны значения qi в n+1 точке pi. Нужно найти коэффициенты полинома, проходящего через эти точки. Подставив pi, получим систему уравнений. Наилучшим выбором pj являются равноотстоящие точки, лежащие на единичной окружности комплексной плоскости. Обозначим P=(pij), где i и j принимают значения от 0 до n. Если обозначить, то pk=wk и P=(wij), а решение принимает вид. Исходный полином, определенный в точках pk, представлен в виде,. Это дискретное преобразование Фурье. Оно эффективно при выборе n+1=2m и целом числе m (быстрое преобразование). Дисконтирование достигается преобразованием Лапласа, которое переводит функцию f(t) действительной переменной t в функцию f(p) комплексной переменной p=r+is (r=Rep, s=Imp, i – мнимая единица). При ограниченном росте |f(t)|<exp(r0t) с абсциссой абсолютной сходимости r0>0 этот интеграл сходится при Rep<r0: область определения функции f(p) лежит слева от r=r0. Изображение запаздывающего импульса Хевисайда h(t–) с амплитудой h=1:. Изображение импульса g(t)=[h(t)–h(t–)]/ длительностью :. В пределе 0 получается изображение импульса Дирака (p)=1. Таблица оригиналов f(t) и изображений f(p). (для преобразования Карсона p используется интеграл Бромвича) Изображения являются рациональными функциями p:, и, где pl – нули, а pk – полюса функции f(p). На комплексной плоскости они изображаются соответственно кружками и крестиками. Функцию можно представить суммой простых множителей с вычетами, , ,. Функцию можно представить суммой. При k=1 имеем pk=1 и nk=2, а [(p–pk)f(p)]=p-3:, и,. При k=2 имеем pk=0 и nk=3, а [(p–pk)f(p)]=(p–1)-2:, , , и,. Если f(p)=c(p)/d(p), а c(p) и d(p) – аналитические функции в простом полюсе p1, то resf(p1)=c(p1)/d(p1). Формула Хевисайда применима, если m различных полюсов pk имеют кратности mk:, Если все полюсы простые, то Через компоненты матрицы Прибыль в рыночном сегменте Экономические рынки удобно рассматривать в виде множества секторов, элементы которых имеют общие признаки. Хозяйствующие субъекты сектора более однородны по своему поведению, чем субъекты всего рынка. Устойчивость сегменту придают прибыльные субъекты. Рыночный сегмент характеризуется какими-то свойствами и параметрами. Экстенсивные свойства пропорциональны размеру сегмента (совокупный доход, энтропия, число субъектов). Интенсивные свойства не зависят от размеров сегмента: скорость обращения полезности V определяет условия обмена между сектором и рынком, а уровень цен p отражает издержки рыночного сегмента. Если экономические параметры изменяются во времени, то в секторе протекает экономический процесс. Самопроизвольный процесс приводит рыночный сегмент в такое состояние, когда его экономические свойства больше не изменяются: в секторе установится полное равновесие. Равновесные рыночные сегменты характеризуются распределением Гиббса [3]. Сейчас кажется тривиальным, что при нехватке некоторого блага его цена растет. Однако между эмпирическим фактом и математическим доказательством дистанция огромного размера [1]. В основе доказательства лежит предположение о детерминированности процессов производства товаров и услуг. Оно попросту не учитывает неопределенность будущего, тем самым не затрагивая финансовую сторону экономической деятельности. Такие явления, как денежная инфляция и спекуляция, нельзя объяснить в рамках детерминированного подхода [2]. Предметом нашего исследования является экономическая система ячеек, которые находятся в состояниях полезности. При этом ячейка «погружена» во внешнюю среду, формируемую другими ячейками. Основное занятие ячейки – это распределение товаров и услуг. Совокупность ячеек и среды образует замкнутую экономическую систему. Нас интересует товарные отношение в этой системе. Пусть индекс n нумерует товары полезностями un. Согласно основному принципу статистической механики, если известна вероятность и статистическая сумма то можно найти внутреннюю полезность системы U, накопление W и свободную полезность F как функции скорости обращения полезности V: Эти функции связаны условием баланса U=F+W. Энтропия n-го состояния Энтропия закрытого региона. Экстенсивная переменная S – мера накопления VS, а интенсивная переменная V – ее оценка. И V и S неотрицательны. Изменения Q и Pn с V описываются производными где U зависит от V. Производные энтропии по V зависят от дисперсии и асимметрии дохода: Поскольку 2>0, то S увеличивается со скоростью V, достигая насыщения при V=V3μ3/3μ2, если μ3>0. При 3<0 энтропия ограничена. Производные по V:, и, Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом V. Производные по S:, и Внутреняя полезность и накопление увеличиваются, а свободная полезность уменьшается с ростом S. Скорость обращения полезности V и энтропия S сопряжены на внутренней и свободной полезности: U(S) является потенциалом для скорости обращения полезности V, а F(V) – потенциалом для энтропии S. Накопление W не является потенциалом ни для скорости обращения, ни энтропии. Для учета доходов используем экстенсивную переменную благосостояния Y. Полезность товара un уменьшается с ростом Y, а производные pn(Y)=–dun/dY>0 определяют уровень цен, где вероятность Pn(V,Y) зависит от Y, так как un зависит от Y. Рыночный сегмент имеет две пары сопряженных переменных (S,V), (Y,p) и четыре потенциала F(V,Y), G(V,p), H(S,p) и U(S,Y) с дифференциалами, , и. Свободная полезность F вычисляется по статистической сумме Q(V,Y). Внутренняя полезность U=F+W включает F и W. Свободная полезность G=F+pY включает F и pY, а внутренняя полезность H=F+VS+pY. Переменные S и Y являются экстенсивными факторами, а V и p – интенсивные факторы. Частные производные статистической суммы выражаются в виде: Свободная полезность F(V,Y) является функцией V и Y: Свободная полезность G(V,p)=F+pY является функцией V и p: Внутреняя полезность H(S,p)=G+VS является функцией S и p: Внутреняя полезность U(S,Y)=H–pY является функцией S и Y: Внутрення полезность U растет с энтропией S и уменьшается с доходом Y. Потенциалы полезности F(V,Y), G(V,p), H(S,p) и U(S,Y) аддитивны, а V и p одинаковы для всех всех субъектов сегмента. Поэтому потенциалы должны быть однородными функциями первого порядка по переменным S и Y: где ψ, μ, ν и φ – некоторые функции. Будем рассматривать N как независимую переменную. Тогда в дифференциалы нужно добавить μdN с потенциалом. Оценка μ(V,p) резидентов в открытой экономической зоне оказывается функцией скорости обращения полезности V и уровня цен p. Дифференцируя G по N, получаем (V,p) – оценка μ числа субъектов в сегменте оказывается функцией V и p. Большой потенциал открытой зоны Ω=F–G является функцией V, Y и μ: dΩ=–SdV–pdY–Ndμ. Если полезность n-го резидента в зоне обозначить unN, то вероятность. Накопление полезности в открытой экономической зоне:, , и. Открытая экономическая зона является большим каноническим ансамблем. При описании экономических явлений используют понятие эластичности фактора и показателя [4]. Пусть взаимозависимые переменные x, y и z отвечают любой тройке неповторяющихся факторов S, V, Y и p. Тогда y-ой эластичностью фактора x при неизменном факторе z называется величина xyz=y(x/y)z. Только 16 эластичностей независимы в закрытой системы. Свободная полезность F(V,Y) вычисляется с помощью статистической суммы Q, а другие потенциалы в переменных V и Y – из выражений: Дифференцирование дает Потенциалы в переменных V и p выражаются через G(V,p): Дифференцирование дает Потенциалы в переменных S и p выражаются через H(S,p): Дифференцирование дает Потенциалы в переменных S и Y выражаются через U(S,Y): Дифференцирование дает Эти производные легко вычисляются, если учесть свойства якобианов: Доход Y(F,V) как функция свободной полезности F и скорости обращения имеет частные производные: Скорость обращения полезности V(G,p) как функция свободной полезности G и уровня цен имеет частные производные: Уровень цен p(H,S) как функция внутренней полезности H и энтропии имеет частные производные: Энтропия S(U,Y) как функция внутренней полезности U и благосостояния имеет частные производные: Статистическая оценки важных эластичностей дает: где означает усреднение с учетом вероятности Pn. Экономические процессы в закрытом сегменте сопровождаются ростом энтропии, пока она не достигнет наибольшего значения при полном равновеси. С ростом числа субъектов энтропия растет при фиксированной скорости V и уровне цен p. Это означает, что норма накопления увеличивается с числом субъектов, т.е. с переходом от большого к малому бизнесу. Субъекты малого бизнеса слабо взаимодействуют друг с другом в идеальном сегменте и представляют собой однородную массу, а их прибыль линейно зависит от конъюнктуры. Замечательным достижением статистической экономики является точная формулировка условий равновесия с внешней средой. Процессы, протекающие в замкнутой неравновесной системе, идут таким образом, что система переходит из состояний с меньшей энтропией в состояния с большей энтропией, пока она не достигнет своего наибольшего значения, соответствующего полному равновесию. Энтропия замкнутой системы – сумма энтропий резидентов и внешней среды. Равенство нулю первых производных суммарной энтропии является только необходимым условием экстремума и не дает того, чтобы энтропия имела именно максимум. Для выяснения достаточных условий необходимо вычислить второй дифференциал суммарной энтропии. Это исследование удобнее провести, исходя не из условия максимума суммарной энтропии, а из эквивалентного ему условия. Выделим из системы некоторую малую часть, а остаток будем рассматривать как внешнюю среду со скоростью обращения V0 и уровнем цен p0. Тогда в равновесии имеет минимум величина U–V0S+p0Y с внутренней полезностью U, энтропией S и доходом Y. При всяком малом отклонении от равновесия ее изменение должно быть положительным: Разлагая δU в ряд, получаем с точностью до членов второго порядка: где производные взяты в состоянии равновесия. Но поскольку то члены первого порядка сокращаются. Это необходимые условия равновесия: скорость обращения полезности V и уровень цен p для резидентов равны этим же величинам внешней среды. Достаточное условие равновесия имеет вид: Для того, чтобы такое неравенство имело место при произвольных δS и δY, нужно удовлетворить два неравенства: Поскольку то первое неравенство удовлетворяется при Второе неравенство можно записать в виде якобиана Переходя к переменным V и Y, имеем Поскольку p=p0>0 и SV0,Y>0, то это равносильно условию Уровень цен должен уменьшаться с ростом благосостояния при постоянной скорости обращения полезности. Эти экономические неравенства гарантируют устойчивость равновесной системы. Для SV0,Y>0 нужно, чтобы средний квадрат внутренней полезности u2 превышал квадрат среднего U2, а дисперсия была положительной. Поскольку для устойчивости равновесия необходимо, чтобы dp/dY было отрицательным и по модулю превышало отношение дисперсии уровня цен к скорости обращения. При любом начальном состоянии закрытой системы с течением времени в ней установится единственное состояние – равновесие. Эта тенденция означает монопольное возрастание энтропии во времени и увеличение разности энтропий S=S–S0 от отрицательных значений до нуля. Эти утверждения эквивалентны, и они отражают тот факт, что равновесие является глобальным асимптотически устойчивым состоянием, энтропия – функцией Ляпунова. Если только свободная полезность F(V,Y) будет иметь несколько минимумов при неизменных V, Y и различных значениях N, то стабильному состоянию будет отвечать наименьшее значение F, а метастабильному – самый мелкий минимум с наибольшим F. Такие состояния легко разрушаются переходом системы в устойчивое состояние с наименьшей свободной полезностью. Если системы переходит из одного состояния в другое с изменением ее внутренней полезности при неизменном накоплении, то обратный переход нельзя осуществить без воображаемого внешнего источника R. Прямому переходу с совершением максимальной работы |Rmax| отвечает обратный переход c работой Rmin внешнего источника. Изменение внешней полезности ΔU при изменении состояния состоит из трех частей: из произведенной работы внешнего источника R, из работы внешней среды p0ΔY0 и из полученной из нее V0ΔS0: где индекс 0 относится к внешней среде. Поскольку затраты среды равны доходу ΔY0=–ΔY, а в силу закона возрастания энтропии S0–S, то где знак равенства достигается при обратимом процессе. Переход совершается с минимальной работой, если он происходит обратимо: Обратный переход также совершается с минимальной работы, если происходит обратимо: Пусть SΣ есть полная энтропия. Если резиденты находятся в равновесии с внешней средой, то SΣ является функция их внутренней полезности UΣ.. Если же резиденты не находятся в равновесии с внешней средой, то суммарная энтропия отличается от SΣ(UΣ) на величину Но dU/dS является равновесной скоростью обращения полезности V0. Таким образом, получаем Эта формула определяет, как отличается энтропия замкнутой системы от своего возможного значения, если резиденты не находятся в равновесии со средой. Рассмотрим закрытую систему с энтропией SΣ. Пусть β – некоторый фактор, обеспечивающий ее внутреннее равновесие, т.е. S/=0. Пусть α – другой фактор, обеспечивающий при внутреннем равновесии системы и ее равновесие с внешней средой, т.е. S/=0. Введем обозначения Энтропия SΣ замкнутой системы максимальна при полном равновесии. Чтобы энтропия была максимальной, кроме необходимых условий А=0 и В=0, должны выполняться неравенства Уже незначительные изменения фактора α при некотором воздействии на закрытую систему приводят к изменению A на величину Изменение α при постоянном β приводит к нарушению условия внутреннего равновесия системы B=0. После того, как это равновесие восстановится, величина ΔA будет иметь значение Используя свойства якобиана, находим С учетом неравенств получаем новое неравенство Это неравенство выражает принцип Ла Шателье [6]. Рассмотрим изменение Δα фактора α как меру внешнего воздействия на систему, а ΔΑ – κак меру изменения системы под его влиянием. Тогда Значение ΔΑ уменьшается при восстановлении внутреннего равновесия системы после внешнего воздействия, выводящего ее из равновесия. Другими словами, внешнее воздействие, выводящее систему из равновесия, стимулирует в системе процессы, стремящиеся ослабить его влияние. Изменение энтропии системы –Rmin/V0 зависит от скорости обращения полезности во внешней среде V0 и минимальной работы Rmin, необходимой для приведения системы из состояния равновесия с внешней средой в данное состояние. Поэтому можно написать где для бесконечно малого изменения состояния системы резидентов Все величины без индекса относятся к резидентам, а с индексом 0 – к среде. Пусть α есть энтропия S. Тогда A=V/V0–1 и в равновесии V=V0, неравенства принимают вид Рост энтропии означает, что в систему инвестируется оборотный капитал. В итоге нарушается равновесие резидентов и, в частности, увеличивается скорость обращения полезности на величину (V). Восстановление равновесия резидентов приводит к тому, что изменение скорости обращения уменьшится до (V)B=0. т.е. как бы ослабляется результат воздействия, выводящего резидентов из равновесия. Если в неравенстве в качестве фактора β взять доход Y, то будем иметь поскольку условие В=0 означает, что случае p=p0. Подстановка дает неравенство Используя свойства якобиана, можно получить Пусть α есть налог Y. Тогда A=1–V/V0 и в равновесии V=V0, а неравенства принимают вид Если в неравенстве в качестве фактора β взять энтропию S, то условие В=0 означает, что V=V0 и В устойчивой системе величина (p/Y)V должна быть отрицательной. Используя свойства якобиана, можно получить В устойчивой системе величина (S/V)p должна быть положительной. Основной недостаток идеального сегмента состоит в том, что полезность расходится при Y=0. Этот коллапс не должен допускаться государством, которое может установить минимальный предел Y0. Рассмотрим процесс L в экономической системе, которая не находится в равновесии с внешней средой. Пусть B – накопление, полученное системой из внешней среды со скоростью обращения полезности V0. Процесс L перехода из состояния 1 в состояние 2 нельзя реализовать, если нарушается неравенство где S1 и S2 – энтропии состояний, а интегрирование проводится по траектории процесса. Равенство применимо только при обратимом процессе. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы и не зависит от ее промежуточных состояний Дифференциал внутренней полезности в замкнутой системе содержит малое накопление B и малое потребление A, которые не являются дифференциалами в общем случае. Переведем идеальную систему из начального состояния 1 в промежуточное состояние 2 при неизменной энтропии: где. Выпуск и потребление положительны, если. Переведем теперь систему из состояния 2 в промежуточное состояние 3 при неизменной ренте: Переведем далее систему из состояния 3 в промежуточное состояние 4 при неизменной конъюнктуре: Наконец, переведем систему из состояния 4 в начальное состояние 1 при неизменной ренте: При этот цикл оказывается замкнутым. В начальном состоянии 1 идеальная система имеет низкую конъюнктуру и низкую ренту. Переход в состояние 2 при низкой конъюнктуре сопровождается увеличением ренты и цены, а капитал убывает потому, что выпуск равен потреблению (накопление не меняется). Переход в состояние 3 при высокой ренте сопровождается увеличением конъюнктуры и капитала, а цена уменьшается, потому что выпуск отсутствует (инвестиция накоплений в производство повышает его конъюнктуру). Переход в состояние 4 при высокой конъюнктуре сопровождается уменьшением ренты и цены, а капитал увеличивается, потому что потребление равно выпуску (накопление не изменяется). Переход в начальное состояние 1 при низкой ренте сопровождается уменьшением конъюнктуры и капитала, а цена увеличивается, потому что выпуск отсутствует (конфискация накопления из производства понижает его конъюнктуру). Коэффициент полезного действия этого замкнутого экономического цикла определяется следующим образом: Инвестиция S2=S23>0 и конфискация S1=S41<0 удовлетворяют соотношению Это соотношение справедливо только для замкнутого цикла. Макроскопическая теория выпусков и затрат использована для описания экономических циклов системы многих резидентов на основе модели В.В.Леонтьева. Основные понятия макроэкономики развиты в русле детерминированного подхода, дополненного соображениями оптимальности и полезности [1,2]. Может быть поэтому нет строгого определения конъюнктуры как меры эффективной деятельности экономической системы. Вместе с тем, этот термин используется [3]. Эвристические соображения известных экономистов о конъюнктуре близки к определению температуры как производной внутренней энергии системы по ее энтропии [4,5]. Аналогом внутренней энергии в экономике является внутренняя полезность, но она должна быть определена в рамках вероятностного подхода. Необходимость такого подхода отмечалась в связи с инфляционными процессами современной экономической жизни [6]. Полезность un зависит от индекса благосостояния Y, причем при Y=1 она равна нулю, а цена благосостояния pn(Y)–dun/dY не может быть отрицательной, так как un уменьшается с ростом Y. Согласно основного принципа статистической экономики, если известны статистическая сумма Q, вероятность Pn, энтропия S и уровень цен p, , и, то можно найти макроскопические показатели закрытой системы при скорости обращения полезности V и индексе благосостояния Y. Показателями закрытой системы являются внутренняя полезность U=F+W, свободная полезность F и накопление W, и, а ее факторами являются скорость обращения полезности V, энтропия S, индекс благосостояния Y и уровень цен p. Для простой закрытой системы, а свободная полезность (потребление) выражается в виде, где f(V)=VlnL(V). Энтропия и уровень цен простой системы даются уравнениями состояния и. Полуэластичности этих двух факторов и. Для устойчивости закрытой системы необходимо и достаточно иметь =const, =const и SV,Y>0, pY,V<0. Простая система устойчива, если d2f/dV2<0. Свободная полезность G=F+pY в простой системе определяется с учетом уравнения состояния:, а энтропия и индекс благосостояния выражаются в виде и. Полуэластичности этих факторов и. Идеальной называется простая система с SV,Y=N0>0 и, где f0 и  – постоянные интегрирования. Внутренняя полезность U=F+W такой системы определяется с учетом уравнения состояния:, где =1+N/N0>1. Удобно выбрать f0=–S0 и, чтобы внутренняя полезность исчезала при энтропии S11=S(V=1,Y=1) и индексе Y=1:. В этом случае и, а внутренняя полезность являются линейной функцией скорости обращения полезности U=N0(V–1). Свободная полезность идеальной системы и ее энтропия – нелинейные функции скорости обращения полезности и индекса благосостояния и. Зависимость энтропии идеальной системы S(V,Y) от конъюнктуры V приводится на рис.1 для двух значений индекса благосостояния Y. Рис.1. Зависимость энтропии от конъюнктуры. Используются данные для высокоэластичной экономики с небольшим числом резидентов, представляющих отрасли народного хозяйства [3] (N0=10, S11=3 и N=10). Рост энтропии с конъюнктурой свидетельствует о структурных изменениях системы, сопровождаемых линейным увеличением внутренней полезности. Этот рост замедляется с уменьшением индекса благосостояния. Уравнение состояния pY=NV связывает большую полезность pY с числом резидентов N и конъюнктурой V идеальной системы. При неизменной конъюнктуре уровень цен уменьшается с ростом индекса благосостояния (деинфляция). Рассмотрим квазистатический процесс L в системе резидентов, которые не находятся в равновесии с внешней средой. Малое накопление B система резидентов получит из окружающей среды с равновесной конъюнктурой V0. Переход системы резидентов из состояния 1 с энтропией S1 в состояние 2 с энтропией S2 нельзя реализовать, если нарушается неравенство, где интегрирование проводится по траектории процесса L. Равенство применимо при обратимых процессах. Изменение внутренней полезности при обратимом процессе определяется начальным 1 и конечным 2 состоянием системы. Дифференциал внутренней полезности закрытой системы dU=B+A=VdS–pdY содержит малое накопление B и малое потребление А, которые не являются дифференциалами. В состоянии 1 система имеет энтропию S1 и конъюнктуру V1. Переведем систему из начального состояния 1 в состояние 2 при неизменной энтропии: и. Переход в состояние 2 с конъюнктурой V2>V1 сопровождается уменьшением индекса благосостояния Y и увеличением уровня цен p, потому что прирост полезности потребляется (рис.1). Переведем систему из состояния 2 в состояние 3 при неизменной конъюнктуре:, и. Переход в состояние 3 с энтропией S3>S1 сопровождается увеличением Y и уменьшением p, потому что внутренняя полезность не изменяется (инвестиция накоплений в систему повышает энтропию). Зависимость индекса благосостояния Y от уровня цен p приводится на рис.2 для той же высокоэластичной системы при S1=1, V1=1, V2=3 и S3=3. Рис.2. Зависимость индекса от ставки затрат. Переведем систему из состояния 3 в состояние 4 при неизменной энтропии: и. Переход в состояние 4 с конъюнктурой V4<V2 сопровождается увеличением Y и уменьшением p. Переведем систему из состояния 4 в состояние 1 при неизменной конъюнктуре:, и. Переход в состояние 1 с энтропией S1 и конъюнктурой V4=V1 сопровождается уменьшением Y и увеличением p из-за конфискации накоплений окружающей средой. Коэффициент полезного действия экономического цикла. Инвестиция B2=B23>0 и конфискация B1=B41<0 удовлетворяют соотношению. Это соотношение справедливо только для замкнутого цикла. Современному состоянию экономики Украины отвечает одна из нижних точек на траектории L12 c энтропией S1 и конъюнктурой VV2. Движение по этой траектории с падением индекса благосостояния Y и увеличением уровня цен p разогревает экономику до такой конъюнктуры V2, при которой возможны структурные изменения отношений резидентов на траектории L23. Движение по траектории с ростом Y и уменьшением p хаотизирует экономику до значения энтропии S3, которое зависит от инвестиции накоплений. Определению кризисной точки более отвечает состояние экономики с энтропией S1 и конъюнктурой V1, а квазистатический процесс L41 имеет периода застоя. Ему предшествует движение по траектории L34, которое ведет к охлаждению экономических отношений.

5) собирая их рекламу.

3. Рекомендации по выбору источников маркетинговой информации предприятию ООО Агрофирма «Труд»

При выборе источников информации целесообразно ориентироваться на следующие свойства информационного обеспечения:

достоверность;

полнота;

время публикации;

релевантность;

низкая себестоимость.

Все перечисленные свойства должны соблюдаться как при выборе источников, так и в процессе обработки, передачи и представления данных. Выбор источников - начальная стадия длительного процесса, однако эта стадия во многом определяющая. Поэтому на них следует обратить особое внимание.

Достоверность и полнота маркетинговой информации играют, как уже написано выше, ключевую роль. В огромных информационных потоках часто может встречаться заведомо ложная или противоречивая информация, которую очень трудно обнаружить. Когда такая информация уже обработана и на основе ее сделаны аналитические выводы, то отделить ее от достоверной информации становится практически невозможно.

Самый надежный способ - заранее пресекать возможность прохождения такой информации - опять же приводит к вопросу выбора информационных источников. Что же касается полноты, то здесь конечный результат также часто зависит от того, «как начнешь».

Любопытно, но такое свойство информации как время публикации играет меньшую роль. При рассмотрении данного свойства речь идет не о том, когда публикуется та или иная информация, а о временном промежутке от момента публикации информации до ее представления руководству компании.

Ограничивающим фактором при выборе источников информации является стоимость информации. Информация - это ресурс, характеристики которого имеют свою цену. Естественно, что чем выше достоверность, полнота информации, чем меньше время ее публикации, тем выше стоимость такой информации. Часто информационное обеспечение в виде исследований, проведенных сторонними организациями или же самостоятельно, хотя и отражает всю картину происходящего, очень дорогое. С другой стороны, собранные наспех новости, хотя и являются достаточно дешевым ресурсом, вряд ли несут в себе все те качества, которые необходимы для принятия правильных маркетинговых решений.

При оценке источников информации целесообразно выделить еще одно свойство - доступность. Доступность определяет количество усилий, которые необходимо затратить исследователю для получения информации из какого-либо источника. Нередко доступность связывают со стоимостью источника информации, однако это не совсем так. Дело в том, что совершенно бесплатная казалось бы информация оказывается трудно доступной в силу различных обстоятельств. Например, информация, размещенная на сайте в Интернете гораздо более доступна, чем та же информация, но опубликованная в журнале, выпущенного малым тиражом для ограниченного числа заказчиков. Т.е. под доступностью будем понимать количество тех или иных действий, которые необходимо совершить или же моральные ресурсы которые необходимо потратить исследователю для получения информации из какого-либо источника. Как правило, такие действия и моральные затраты практически невозможно выразить в денежном эквиваленте.

Наиболее близким к реальному «полевому» маркетингу будет такой источник информации, как клиенты, ведь именно их поведение в конечном итоге станет критерием оценки эффективности проведённых маркетинговых мероприятий.

Кроме того, можно использовать маркетинговую информацию, полученную от собственных конкурентов (при общении с ними или изучении их рекламных и других доступных материалов). Иногда такой подход оказывается весьма результативным. Возможно, конкуренты уже всё сделали за нас, а нам нужно только скопировать их тактику или стратегию поведения.

ЗАКЛЮЧЕНИЕ

Важнейшим условием успешного развития фирмы в быстро меняющейся ситуации на современном мировом рынке является обеспеченность высшего руководства фирмы качественной и своевременной информацией. От полноты, объективности, достоверности, системности, своевременности или периодичности получаемой информации зависит порой и судьба самой фирмы, выходящей на внешний рынок.

Маркетинговые исследования (marketing research) представляют собой систематический процесс сбора, анализа и использования достоверной информации (information) для принятия соответствующих маркетинговых решений.

Таким образом, маркетинговая информация является основным источником для проведения маркетингового исследования, как на внутреннем, так и на внешнем рынке. Маркетинговые исследования — это одна из функций маркетинга, которая содействует уменьшению коммерческого риска фирмы, подсказывая возможности и пути улучшения положения фирмы на внешнем рынке.

Так, потребность в информации о состоянии и динамике рынков испытывают до 85% субъектов рынка России, а о действиях конкурирующих компаний, об изменении запросов потребителей и их реакции на новые товары — около 70%. Используемую в международном маркетинге информацию можно разделить на несколько групп:

1) информация о рынках и рыночной конъюнктуре;

2) информация о методах и формах международной торговли;

3) информация собственно о предприятии (цели и потенциал). При этом создаваемый информационный массив (база рыночной и маркетинговой информации) может организовываться в соответствии со структурой маркетинговых исследований и по мере расширения неэкономической деятельности предприятия расширяться и углубляться. База данных маркетинговой информации должна иметь также несколько разрезов (уровней), чтобы проводить маркетинговые исследования по соответствующей мировой отрасли в целом или по отдельным регионам и странам (отраслевой и страновой аспекты).

Список ИСПОЛЬЗОВАННОЙ лИтературЫ

  1. Алексеенко В.Б. Промышленный маркетинг: учебное пособие. М.: Российский ун-т дружбы народов, 2016
  2. Алексунин В.А. Маркетинговые коммуникации: учебное пособие. М.: Дашков и К°, 2017
  3. Амблер Т. Практический маркетинг/Пер. с англ. Под общей ред. Ю.Н. Каптуревского. - СПб: Издательство «Питер», 2016.- 400 с.
  4. Ансофф И. Стратегическое управление. - М.: Прогресс, 2015. - 560 с.
  5. Аристов О.В. Конкуренция и конкурентоспособность: Учеб пособие/ ГУУ.-М.: ЗАО «Финстатинформ», 2014.
  6. Базиков А.А. Экономика, маркетинг и мировая экономика: учебное пособие. Орел, 2015
  7. Балашов В. Система маркетинга на предприятии // Практический маркетинг. - 2015. - №3. - С.17-20.
  8. Басовский Л.Е. Маркетинг: Курс лекций. - М.: ИНФРА-М, 2016. - 219 с.
  9. Беляевский И.К. Маркетинговое исследование: информация, анализ, прогноз: Учебное пособие. – М.: Финансы и статистика, 2016. – 320 с.
  10. Березин И.С. Маркетинг и исследования рынков. - М.: Русская Деловая Литература, 2018.- 416с.
  11. Гамаюнов С.Н. Основные принципы маркетинга: учебное пособие. Тверь: АгросферА, 2017
  12. Годин А.М. Маркетинг на предприятии отрасли печати. М.: Издательство МГУП, 2017
  13. Голубков Е.П. Маркетинговые исследования. М. «Финпресс», - 2017
  14. Голубков Е.П. Основы маркетинга. - М.: Финпресс, 2017. - 656 с.
  15. Грузинов В.П. Схема маркетинговой деятельности. - М.: «Инфра – М», 2016.-305с.
  16. Дикарева В.А. Основы современного маркетинга: учебное пособие. М.: Изд-во Граница, 2015
  17. Жукова Т.Н. Маркетинг в отраслях и сферах деятельности: учебное пособие. СПб: СПбГИЭУ, 2015
  18. Завьялов П.С. Маркетинг в схемах, рисунках, таблицах: Учебное пособие. - М.: ИНФРА-М, - 2016
  19. Захарова И.В. Маркетинг в вопросах и решениях: учебное пособие. М.: КноРус, 2017
  20. Иванова Н.В. Практикум по дисциплине "Маркетинг": учебное пособие. Волгоград: Волгоградская ГСХА, 2017
  21. Карпова С.В. Маркетинг: учебное пособие. Ростов-на-Дону: Феникс, 2017
  22. Киселица Е.П. Маркетинг: учебное пособие. Тюмень: Изд-во Тюменского гос. ун-та, 2016
  23. Кныш М.И. Конкурентные стратегии: Учеб. пособие. - СПб, 2014. - 300 с.
  24. Ковалев А.И., Войленко В.В. Маркетинговый анализ. - М., - 2014.
  25. Ковалев А.И., Маркетинг в системе управления предприятием; М. - 2018
  26. Кондратьева М.Н. Экономика и маркетинг: учебное пособие. Ульяновск: УлГТУ, 2016
  27. Котлер Ф. Основы маркетинга. - СПб: Питер, 2015. - 670 с.
  28. Котлер Филип, Армстронг Гари, Сандерс Джон. Основы маркетинга. СПб. 2015.
  29. Котлер, Ф. Маркетинг менеджмент / Ф. Котлер; СПб. : Питер, 2016. – 896 с.
  30. Хендерсон Лайман. Маркетинг в полиграфии. М.: «Принт-Медиа центр», 2015
  31. Ламбен Ж.Ж. Стратегический маркетинг. - СПб.: Наука, 2018. - 650 с.
  32. Любушин Н.П. Анализ финансово-экономической деятельности предприятия: Учебное пособие для вузов - М.: ЮНИТИ-ДАНА, 2014. - 471 с.
  33. Максимова И.В. Маркетинг: Учебное пособие.- Волгоград: ВАГС, - 2015
  34. Максимова Ю.Ю. Практический маркетинг: учебное пособие. Коломна: Московский гос. обл. социально-гуманитарный ин-т, 2016
  35. Маркетинг: учебник / Коллектив авторов; Под ред. проф. Н.П. Ващекина. - 3-е изд., перераб. и доп. - М.: ИД ФБК-ПРЕСС, - 2016
  1. Березин И.С. Маркетинг и исследования рынков. - М.: Русская Деловая Литература, 2018.- 416с.

  2. Годин А.М. Маркетинг на предприятии отрасли печати. М.: Издательство МГУП, 2017

  3. Балашов В. Система маркетинга на предприятии // Практический маркетинг. - 2015. - №3. - С.17-20.

  4. Киселица Е.П. Маркетинг: учебное пособие. Тюмень: Изд-во Тюменского гос. ун-та, 2016

  5. Киселица Е.П. Маркетинг: учебное пособие. Тюмень: Изд-во Тюменского гос. ун-та, 2016

  6. Котлер, Ф. Маркетинг менеджмент / Ф. Котлер; СПб. : Питер, 2016. – 896 с.

  7. Максимова Ю.Ю. Практический маркетинг: учебное пособие. Коломна: Московский гос. обл. социально-гуманитарный ин-т, 2016

  8. Кондратьева М.Н. Экономика и маркетинг: учебное пособие. Ульяновск: УлГТУ, 2016