Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Интеллектуальные Системы и Технологии

Технология экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта. Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ, способных имитировать, воспроизводить те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта. К ним относятся задачи принятия решений, распознавания образов и понимания человеческого языка. Эта технология уже успешно применяется в некоторых областях техники и жизни общества — органической химии, поиске полезных ископаемых, медицинской диагностике. Вот в этом заключается актуальность. А точнее актуальность темы моей работы заключается в том что, именно интеллектуальные информационные технологии и экспертные системы являются последними прогрессами науки в области информатики и информационного общества. Именно над этим направлением трудятся многие ученые информатики, именная эта тема у всех на слуху, над ней трудятся, ее развивают.

Рассмотрим факторы, стимулировавшие развитие систем с базами знаний:

— компании, добившиеся значительной экономии денежных средств, благодаря технологии баз знаний, развивают и выстраивают ее в специальные бизнес — процессы, которые были бы просто невозможны без компьютерной экспертизы;

— разработаны новые технологии создания баз знаний, является необходимым средством, которое может изменить бизнес — процесс;

— современные системы реализованы не на специализированном, а на стандартном оборудовании.

Объединение всех видов программных продуктов и их отдельных компонентов в единую ЭС, признано экономически выгодным, так как применение ЭС позволяет существенно сократить расходы на подготовку квалифицированного персонала, дальнейшую проверку работоспособности и надежности, разрабатываемых и исследовательских систем, а также уменьшить время проектирования и (или) исследования.

    1. В разработке ЭС участвуют представители следующих специальностей: эксперт в той проблемной области, задачи которой будет решать ЭС; инженер по знаниям - специалист по разработке ЭС; программист - специалист по разработке инструментальных средств (ИС). Необходимо отметить, что отсутствие среди участников разработки инженера по знаниям (т. е. его замена программистом) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его. 
      Эксперт определяет знания, характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний. 
      Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС, осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС, выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области) которые будут использоваться в правилах, вводимых экспертом. 
      Программист разрабатывает ИС, содержащее все основные компоненты ЭС, осуществляет сопряжение ИС с той средой, в которой оно будет использовано. 

Классификация ЭС 

Экспертные системы как любой сложный объект можно определить только совокупностью характеристик. 

1.Назначение определяется следующей совокупностью параметров: цель создания ЭС - для обучения специалистов, для решения задач, для автоматизации рутинных работ, для тиражирования знаний экспертов и т. п.; основной пользователь - не специалист в области экспертизы, специалист, учащийся. 

Сложность ЭС

2.По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы - генерацию неизвестных решений (формирование объектов). 
3.По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

4.По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной). 

5.По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими). 

6.По типу используемых методов и знаний ЭС делят на традиционные и гибридные. Традиционные ЭС используют в основном неформализованные методы инженерии знаний и неформализованные знания, полученные от экспертов. Гибридные ЭС используют и методы инженерии знаний, и формализованные методы, а также данные традиционного программирования и математики. 

7. По степени сложности структуры ЭС делят на поверхностные и глубинные. Поверхностные ЭС представляют знания об области экспертизы в виде правил (условие ? действие). Условие каждого правила определяет образец некоторой ситуации, при соблюдении которой правило может быть выполнено. Поиск решения состоит в выполнении тех правил, образцы которых сопоставляются с текущими данными (текущей ситуацией в РП). При этом предполагается, что в процессе поиска решения последовательность формируемых таким образом ситуаций не оборвется до получения решения, т. е. не возникнет неизвестной ситуации, которая не сопоставится ни с одним правилом. Глубинные ЭС, кроме возможностей поверхностных систем, обладают способностью при возникновении неизвестной ситуации определять с помощью некоторых общих принципов, справедливых для области экспертизы, какие действия следует выполнить. 
Совокупность рассматриваемых выше характеристик позволяет определить особенности конкретной ЭС. Однако пользователи зачастую стремятся охарактеризовать ЭС каким-либо одним обобщенным параметром. В этой связи говорят о поколениях ЭС. К первому поколению следует относить статические поверхностные ЭС, ко второму - статические глубинные ЭС (иногда ко второму поколению относят гибридные ЭС), а к третьему - динамические ЭС (вероятно, они, как правило, будут глубинными и гибридными). 
Решаемые ЭС задачи можно характеризовать следующими аспектами: числом и сложностью правил, используемых в задаче; связностью правил; пространством поиска; количеством активных агентов, изменяющих предметную область; классом решаемых задач. 

8. Пространство поиска ЭС может быть определено по крайней мере тремя под аспектами: размером, глубиной и шириной. Размер пространства поиска дает обобщенную характеристику сложности задачи. Выделяют малые (до 101 состояний) и большие (свыше 101 состояний) пространства поиска. Глубина пространства поиска характеризуется средним числом последовательно применяемых правил, преобразующих исходные данные в конечный результат, ширина пространства - средним числом правил, пригодных к выполнению в текущем состоянии. 
9. Класс решаемых задач характеризует методы, используемые ЭС для решения задачи. Данный аспект, в существующих ЭС принимает следующие значения: задачи расширения, до определения, преобразования. Задачи расширения и до определения являются статическими, а задачи преобразования - динамическими. 

    1. Типичная статическая ЭС состоит из следующих основных компонентов :

— решателя (интерпретатора);

— рабочей памяти (РП), называемой также базой данных (БД);

— базы знаний (БЗ);

— компонентов приобретения знаний;

— объяснительного компонента;

— диалогового компонента.

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе. База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области. Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными, к исходным данным, приводят к решению задачи. Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом. Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем, как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы. В разработке ЭС участвуют представители следующих специальностей:

— эксперт в проблемной области, задачи которой будет решать ЭС;

— инженер по знаниям — специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);

— программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС.

Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.

Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано. Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области. Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу).

В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее.

  1. Экспертная система работает в двух основных режимах:

1) в режиме приобретения знаний;

2) в режиме решения задачи (называемом также режимом консультаций, или режимом использования экспертной системы).

Это логично и понятно, ведь сначала необходимо как бы загрузить экспертную систему информацией из той предметной области, в которой ей предстоит работать, это и есть режим «обучения» экспертной системы, режим, когда она получает знания. А уже после загрузки всей необходимой для работы информации следует и сама работа. Экспертная система становится готовой для эксплуатации, и ее теперь можно использовать для консультаций или для решения каких-либо задач.

Рассмотрим более подробно режим приобретения знаний.

В режиме приобретения знаний работу с экспертной системой осуществляет эксперт при посредничестве инженера по знаниям. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями (данными), которые, в свою очередь, позволяют системе в режиме решения уже без участия эксперта решать задачи из данной предметной области.

Следует отметить, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые непосредственно программистом. Отсюда следует, что в отличие от традиционного подхода в случае экспертных систем разработку программ осуществляет не программист, а эксперт, естественно, с помощью экспертных систем, т. е. по большому счету человек, не владеющий программированием.

А теперь рассмотрим второй режим функционирования экспертной системы, т. е. режим решения задач.

В режиме решения задачи (или так называемом режиме консультации) общение с экспертными системами осуществляет непосредственно конечный пользователь, которого интересует концевой итог работы и иногда способ его получения. Необходимо отметить, что в зависимости от назначения экспертной системы пользователь не обязательно должен быть специалистом в данной проблемной области. В этом случае он обращается к экспертным системам за результатом, не имея достаточных знаний для получения результатов. Или все же пользователь может обладать уровнем знаний, достаточным для достижения необходимого результата самостоятельно. В этом случае пользователь может сам получить результат, но обращается к экспертным системам с целью либо ускорить процесс получения результата, либо возложить на экспертные системы монотонную работу. В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из базы данных формирует решение задачи. Экспертные системы при решении задачи не только исполняют предписанную последовательность конкретной операции, но и предварительно формирует ее. Это делается для случая, если реакция системы не совсем понятна пользователю. В этой ситуации пользователь может потребовать объяснения о том, почему данная экспертная система задает тот или иной вопрос или почему данная экспертная система не может выполнить данную операцию, как получен тот или иной результат, поставляемый данной экспертной системой.

Вывод

Я могу сделать вывод, что внедрение и разработка эспертных систем очень важна.

Приведем некоторые факты, свидетельствующие о необходимости разработки и внедрения экспертных систем:

— нехватка специалистов, расходующих значительное время для оказания помощи другим;

— потребность в многочисленном коллективе специалистов, поскольку ни один из них не обладает достаточным знанием;

— сниженная производительность, поскольку задача требует полного анализа — сложное набора условий, а обычный специалист не в состоянии просмотреть (за отведенное время) все эти условия;

— большое расхождение между решениями самых хороших и самых плохих исполнителей;

— наличие конкурентов, имеющих преимущество в том, что они лучше справляются с поставленной задачей.

Список используемой литературы:

1. Амарселлус Д. Программирование экспертных систем на Турбо Прологе: Пер. с англ. — М.: Финансы и статистика, 2010 г.

2. Моисеев В.Б. Представление знаний в интеллектуальных системах. Информатика и образование,. №2, 2011 г. с. 84-91

3. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы: М. Наука, 2010 г.