Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Звуковые волны в физике - формулы и определение с примерами

Содержание:

Звуковые волны:

Мы живем в мире звуков. Звук - это голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром во время грозы и т. п.

Что такое звук? Как он возникает? Чем одни звуки отличаются от других?

Звук — это механические колебания любой частоты в упругой среде.

Главу физики, изучающую звуковые явления, называют акустикой.

Акустика — это учение о возникновении, распространении и восприятии звуковых волн.

Волны на поверхности воды или вдоль резинового шнура можно непосредственно видеть. Если же волны распространяются в прозрачной среде (например, воздухе или жидкости), они невидимы. Но при определенных условиях их можно слышать.

Опыт 1. Зажмем длинную металлическую линейку в тисках или плотно прижмем ее к краю стола. Отклонив свободный конец линейки от положения равновесия, мы возбудим ее колебания (рис. 211).

Звуковые волны в физике - формулы и определение с примерами

Если линейка достаточно длинная, мы ничего не услышим. Укоротим свободный конец линейки - и она начнет «звучать».

Пластина сжимает слой воздуха, прилегающий к одной из ее сторон, и одновременно создает разрежение с другой стороны. Эти сжатия и разрежения чередуются во времени и распространяются в обе стороны в виде упругой продольной волны. Она достигает нашего уха и вызывает колебание барабанной перепонки (3), находящейся в среднем ухе (рис. 212).

Ухо человека - хороший приемник звуковых колебаний. Оно состоит из трех частей: внешнего, среднего и внутреннего уха.

Элементами внешнего уха являются ушная раковина (1) и внешний слуховой проход (2). Они служат для того, чтобы направлять звуковые волны к барабанной перепонке (3). Барабанная перепонка и соединенные с ней три слуховые косточки - это среднее ухо. Они передают звуковые колебания к внутреннему уху - овальной полости (4).
Звуковые волны в физике - формулы и определение с примерами

Здесь звуковые колебания превращаются в последовательность нервных импульсов, которые передаются в мозг слуховым нервом (5).

Наше ухо воспринимает звуковые колебания, частота которых лежит в пределах от 16-17 до 20 000 Гц. Такие колебания называют звуковыми или акустическими. В предыдущем опыте мы наблюдали, что чем короче выступающий конец линейки, тем больше частота его колебаний. Поэтому мы и слышали звук, достаточно укоротив конец линейки.

Любое твердое, жидкое или газообразное тело, колеблющееся со звуковой частотой, создает в окружающей среде звуковую волну.

Чаще всего наших ушей достигают волны, воздуху. Если звуковая волна распространяется продольной, поскольку в газах возможно таких волн.

В продольных волнах колебания частиц приводят к тому, что в газе возникают сжатия и разрежения, периодически повторяющиеся (рис. 213).

Звуковые волны в физике - формулы и определение с примерами

Опыт 2. Разместим источник звука под колпаком воздушного насоса (рис. 214, а) и начнем выкачивать из него воздух. По мере того как количество воздуха под колпаком уменьшается, звук ослабевает, а потом вообще исчезает (рис. 214, б).
Звуковые волны в физике - формулы и определение с примерами

Такой опыт впервые выполнил в 1660 г. Роберт Бойль и этим же доказал, что звук хорошо распространяется в воздухе и вовсе не распространяется в безвоздушном пространстве, называемом вакуумом.

Звук распространяется также в жидких и твердых средах. Нырнув с головой во время купания, вы можете услышать звук от удара двух камней, производимого в воде на большом расстоянии (рис. 215). Под водой также хорошо слышны звуки гребных винтов теплоходов и т. п.
Звуковые волны в физике - формулы и определение с примерами

Опыт 3. Приложите вплотную к уху конец длинной деревянной линейки и слегка постучите по другому ее концу ручкой. Вы отчетливо будете слышать звук. Отодвинув линейку немного от уха, постучите по ней снова. Вы почти не услышите звука.

Шум поезда, раздающийся издалека, не слышен, но его можно услышать, если прислониться ухом к рельсе. Хорошо проводит звук и земля.

Звук хорошо распространяется в жидкостях и твердых телах.

Существуют материалы, плохо проводящие звук, поскольку поглощают его. Например, пористые панели, прессованная пробка, пенопласт используют для звукоизоляции, то есть для защиты помещений от проникновения в них посторонних звуков. Звуковые волны, подобно всем другим волнам, распространяются с конечной скоростью. Вы, наверное, замечали, что вспышка молнии предшествует удару грома. Если гроза далеко, то звук грома мы услышим через несколько десятков секунд.

Как и любая волна, звуковая волна характеризуется скоростью распространения колебаний. С длиной волны Звуковые волны в физике - формулы и определение с примерами и частотой колебаний v скорость распространения волны и связана уже известной вам формулой:

Звуковые волны в физике - формулы и определение с примерами

где v - скорость распространения звуковой волны (м/с); Звуковые волны в физике - формулы и определение с примерами- длина звуковой волны (м); v - частота колебаний (Гц).

Скорость распространения звука в разных средах разная. С помощью опытов в 1822 г. было установлено (рис. 216), что в воздухе при температуре 10 °С скорость распространения звуковых волн равна 337,2 м/с.

Звуковые волны в физике - формулы и определение с примерами

В воде скорость звука больше, чем в воздухе. Впервые ее измеряли в 1827 г. на Женевском озере в Швейцарии. На одной лодке поджигали порох и синхронно ударяли в подводный колокол (рис. 217). Вторая лодка находилась на расстоянии 14 км от первой. Звук улавливался с помощью опущенного в воду рупора. По разности времени между вспышкой света и приходом звукового сигнала определили скорость звука. При температуре 8 °С скорость распространения звука в воде равна 1435 м/с.
Звуковые волны в физике - формулы и определение с примерами

В твердых телах скорость звука еще больше, чем в жидкостях. В таблице даны значения скорости распространения звуковых волн в разных средах.

Звуковые волны в физике - формулы и определение с примерами

В таблице указаны значения скорости распространения звука в разных средах при определенной температуре, поскольку скорость распространения звука в среде зависит от ее температуры.

Например, скорость распространения звука в жидкостях (за исключением воды) уменьшается с повышением температуры, а в газах скорость распространения звука при постоянном давлении с повышением температуры увеличивается.

Современная техника дает возможность измерять скорость распространения звука с высокой точностью (рис. 218).

Звуковые волны в физике - формулы и определение с примерами
 

Скорость распространения звука в среде зависит от ее температуры.
Звуки, которые мы слышим каждый день, очень разнообразны. Они разделяются на музыкальные звуки и шумы. К первым относится пение, звучание натянутых струн скрипки (рис. 219), гитары или виолончели, духовых или других музыкальных инструментов, свист и т. д.

Звуковые волны в физике - формулы и определение с примерами

Шумы возникают во время грозы, шелеста листвы, при работе двигателей и т. п.

С помощью органов речи мы в состоянии воспроизвести музыкальные звуки и, конечно, создавать шум.

Но чем, с точки зрения физики, отличаются музыкальные звуки от шума и почему такими непохожими между собой могут быть музыкальные звуки?
Звуковые волны в физике - формулы и определение с примерами

Опыт 4. Возьмем камертон (нем. kammerton - «гребень») и ударим по одной из его ножек шариком (рис. 220, а). Мы услышим музыкальный звук «ля» частотой 440 Гц. Постепенно вследствие затухания колебаний ножек звук ослабевает. Следовательно, звуковая волна возбуждается колеблющимися ножками камертона. Характер этих колебаний можно установить, если прикрепить к ножке камертона иглу и провести ею с постоянной скоростью по поверхности закопченной стеклянной пластинки. На пластинке появится линия (рис. 220, б). Говорят, что ножки камертона колеблются гармонично.

Звук, издаваемый гармонически колеблющимся телом, называют музыкальным тоном, или тоном.

Музыкальные тоны отличаются на слух громкостью и высотой.

Громкость звука зависит от разности давлений, амплитуды и частоты звуковых колебаний. Например, чем сильнее удар молоточка по камертону, тем громче он звучит, поскольку сильный удар является причиной возникновения колебаний большей амплитуды.

Громкость звука зависит от разности давлений, амплитуды и частоты звуковых колебаний.

О звуках разной громкости говорят, что один громче другого не во столько-то раз, а на столько-то единиц. Единицей громкости звука является один децибел (1 дБ). Названа в честь американского ученого Александра Грейама Белла - изобретателя телефона и слуховых аппаратов для глухих.

Громкость звука шелеста листвы составляет 10 дБ, шепота - 20 дБ, уличного шума - 70 дБ. Шум громкостью 130 дБ чувствуется кожей и вызывает болевые ощущения (рис. 221).

Кстати:

Самым громким в мире животных является голубой кит. Он может издавать звуки громкостью 188 дБ, которые слышны на расстоянии до 850 км.

Чувствительность уха зависит от частоты звука. Звуковые колебания одинаковых амплитуд кажутся неодинаково громкими, если их частоты разные. Наше ухо наиболее чувствительно к колебаниям частотой около 3500 Гц.
Звуковые волны в физике - формулы и определение с примерами

Громкость звука измеряют специальным прибором - сонометром (рис. 222).

Звуковые волны в физике - формулы и определение с примерами

Опыт 5. Возьмем несколько камертонов разных размеров. Поочередно заставим их звучать и каждый раз иглой, прикрепленной к ножке камертона, будем проводить вдоль закопченной пластинки, как это показано на рисунке 220, б. Сравнивая полученные результаты, мы замечаем: чем выше звук камертона, тем меньше период колебаний и, соответственно, больше частота колебаний ножек камертона.

Высота звука зависит от частоты колебаний.

То же можно наблюдать на примере колеблющейся струны. Натягивая струну гитары или скрипки, мы увеличиваем частоту колебаний - и высота звука увеличивается.

Графики звуковых колебаний, создающихся звучащими камертонами, например камертона «ля» (440 Гц), или музыкальными инструментами, можно наблюдать с помощью компьютера (рис. 223) или осциллографа (рис. 224).

Звуковые волны в физике - формулы и определение с примерами
А что же такое шум? Шум отличается от музыкального тона тем, что ему не соответствует какая-либо определенная частота колебаний и, следовательно, определенная высота звука.

Шум — это совокупность колебаний всевозможных частот.
Какой вид имеют эти колебания, также можно увидеть, используя микрофон и компьютер или осциллограф.

Инфразвуки и ультразвуки

Вы уже знаете, что механические колебания частотой от 16 до 20 000 Гц относятся к звуковым, которые слышит человек. Но существуют звуковые колебания, которые человек не слышит.

Колебания с меньшими частотами называют инфразвуком (лат. infra -«ниже», «под»).

Инфразвуковые колебания (инфразвук) — это колебания, частота которых меньше самой низкой частоты звуковых колебаний, то есть 16 Гц.

Наше ухо инфразвук не воспринимает. Он возникает во время шторма, грозы, землетрясений. Инфразвук мало поглощается средой и может распространяться на большие расстояния. Действие сейсмографа основано на инфразвуке. Такой прибор (рис. 225) предназначен для предвидения землетрясений, для изучения строения Земли, разведки полезных ископаемых.
Звуковые волны в физике - формулы и определение с примерами
 

Кстати:

На острове Ява растет цветок - живой сейсмограф, который называют «королевской примулой». От всех других примул он отличается тем, что цветет только перед извержением вулкана, чем и предупреждает людей об опасности.

Звуковые колебания, частота которых более 20 000 Гц, называют ультразвуком (лат. ultra - «дальше», «больше», «над»).

Ультразвуковые колебания (ультразвук) — колебания, частота которых больше наивысшей частоты звуковых колебаний, то есть больше 20 000 Гц.
Ультразвуковые колебания применяют для обработки твердых и сверхтвердых материалов. К обрабатываемым деталям подается смесь воды с мелким порошком, которая под действием ультразвукового излучателя колеблется с большей частотой, давая возможность делать отверстия сложной формы. Так же получают изображение на камнях, металлах, фарфоре и т. д.

Распространяясь в упругой среде, ультразвук отражается от разных препятствий. Эти колебания можно принять и зафиксировать. Зная время и скорость их распространения, можно определить расстояние к препятствию. На этом принципе основывается действие эхолота - прибора для измерения глубины озер, морей, океанов или глубины погружения тел.

На кораблях устанавливают ультразвуковые излучатели, которые периодически посылают импульсы в направлении дна (рис. 226). Отраженные колебания принимаются, и на экране компьютера появляется рельеф дна. Если на пути ультразвука, например, косяк рыб, он тоже отображается на экране.

Звуковые волны в физике - формулы и определение с примерами

Для многих технических потребностей используются смеси жидкостей, несмешивающихся в обычных условиях (например, ртуть и вода). Но если колбу с водой и ртутью облучать на протяжении определенного времени ультразвуком, то образуется стойкая смесь, которая может храниться достаточно долго. На промышленных предприятиях с помощью ультразвуковых колебаний смешивают воду и масло.

Ученые установили, что простые живые существа быстро погибают под действием ультразвука. Это свойство используют для стерилизации воды, молока и других пищевых продуктов. Ультразвуки являются причиной паралича и гибели холоднокровных животных - рыб, лягушек, головастиков.

В медицине ультразвук используют с лечебной (рис. 227, а) и диагностической (рис. 227, б) целью.
Звуковые волны в физике - формулы и определение с примерами

Кстати:

Гибель «Титаника» в 1912 г. стала толчком для французского ученого Поля Ланжевена в изобретении ультразвукового локатора. В природе же летучие мыши, дельфины, киты излучают ультразвуки в широком диапазоне. Дельфин четко отличает скалу от косяка рыб.

В Новой Зеландии, среди многочисленных островов, где трудно найти морской путь, один из дельфинов исполнял обязанности лоцмана 30 лет.

Пример №

Как проверяют наличие трещин в колесах вагонов, в стеклянной или фарфоровой посуде?

Ответ: постукивают (молотком, ложкой или другим предметом) по колесу, посуде.

Если слышен глухой звук, то это значит, что в них есть трещины.

Пример №

Почему летучие мыши (рис. 228) даже в полной темноте не налетают на препятствия?

Звуковые волны в физике - формулы и определение с примерами

Ответ: летучая мышь излучает ультразвуковые волны, отражающиеся от препятствия, и млекопитающее знает, где оно находится.

Электромагнитное поле и электромагнитные волны

Aнглийский физик Джеймс Кларк Максвелл внес весомый вклад в изучение основных свойств электромагнитного поля. Он задался вопросом: если переменное магнитное поле порождает электрическое, то не существует ли в природе обратного процесса, когда переменное электрическое поле, в свою очередь, порождает магнитное?

Максвелл допустил, что такого рода процесс реально происходит в природе: во всех случаях, когда электрическое поле изменяется, оно порождает магнитное поле.

Согласно гипотезе Максвелла, магнитное поле, например при разрядке конденсатора - прибора для накопления электроэнергии (рис. 231), - не только создается током в проводнике, а изменяющимся электрическим полем в пространстве между обкладками конденсатора.

Звуковые волны в физике - формулы и определение с примерами

Справедливость гипотезы Максвелла была доказана экспериментальным обнаружением электромагнитных волн. Электромагнитные волны существуют только потому, что переменное магнитное поле порождает переменное электрическое поле, которое, в свою очередь, порождает магнитное поле.

После открытия взаимосвязи между электрическим и магнитным полями стало ясно, что эти поля не существуют обособленно, независимо друг от друга: нельзя создать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и переменное электрическое поле, поскольку переменное электрическое поле не может существовать без магнитного.

Электрические и магнитные поля - это проявления единого целого, которое можно назвать электромагнитным полем.

Электромагнитное поле — особая форма материи. Оно существует реально, то есть независимо от нас, от наших знаний о нем. Его можно выявить только с помощью специальных приборов.

Представьте, что электрический заряд заставили очень быстро колебаться вдоль некой прямой так, чтобы он двигался подобно грузу, подвешенному на пружине, но значительно быстрее. Тогда электрическое поле, существующее вокруг заряда, периодически будет изменяться.

Переменное электрическое поле будет порождать магнитное поле, периодически меняющееся, а последнее, в свою очередь, вызовет появление переменного электрического поля уже на большем расстоянии от заряда и т. д.

В пространстве вокруг заряда, захватывая все большие и большие области, возникает система периодически переменных электрических и магнитных полей, взаимно перпендикулярных.

На рисунке 232 изображен «мгновенный снимок» такой системы полей. Образуется так называемая электромагнитная волна, бегущая по всем направлениям от колеблющегося заряда.

Звуковые волны в физике - формулы и определение с примерами

Колеблющиеся заряды излучают электромагнитные волны. При этом важное значение имеет изменение скорости движения таких зарядов со временем.

Максвелл был глубоко убежден в реальности электромагнитных волн. Лишь через 10 лет после его смерти электромагнитные волны впервые экспериментально зафиксировал немецкий физик Генрих Герц. Он использовал простое устройство, называемое вибратором Герца. Это устройство представляет собой открытый колебательный контур.

Схематический переход от замкнутого колебательного контура к открытому показан на рисунке 233. В закрытом колебательном контуре следует постепенно раздвигать пластины конденсатора, одновременно уменьшая их площадь и число витков в катушке. Фактически, закрытый колебательный контур превращается в прямой отрезок провода.

Звуковые волны в физике - формулы и определение с примерами

Для возбуждения колебаний в таком контуре во времена Герца поступали так. Проводник разрезали посредине, оставляя небольшой промежуток, называемый искровым (рис. 234). Обе части проводника заряжали до тех пор, пока между ними не проскакивала искра (рис. 235), цепь замыкалась и в открытом контуре возникали колебания.
Звуковые волны в физике - формулы и определение с примерами

Колебания в контуре затухающие, поскольку контур имеет сопротивление и энергия теряется на излучение электромагнитных волн. После того как колебания прекращаются, оба проводника вновь заряжаются от источника до наступления пробоя искрового промежутка, и процесс повторяется сначала.

Чтобы получить незатухающие колебания в открытом колебательном контуре, его соединяют с колебательным контуром специального прибора - генератора, который является источником незатухающих колебаний.

Герц не только получил электромагнитные волны, но и установил, что они подобны другим видам волн. В частности, он наблюдал отражение электромагнитных волн от металлического листа. С помощью опытов он установил, что скорость распространения электромагнитных волн равна 300 000 км/с.

Электромагнитные волны распространяются в пространстве со скоростью с, которая равна 300 000 км/с.

Расстояние, на которое перемещается электромагнитная волна за время, равное одному периоду колебаний, называют длиной волны.

Если v - скорость распространения электромагнитной волны в однородной среде (м/с); Т - ее период (с); v - частота колебаний (Гц); Звуковые волны в физике - формулы и определение с примерами - длина волны (м), то Звуковые волны в физике - формулы и определение с примерами или Звуковые волны в физике - формулы и определение с примерамиДля вакуума Звуковые волны в физике - формулы и определение с примерами или Звуковые волны в физике - формулы и определение с примерами

Свойства электромагнитных волн

Электромагнитные волны поглощаются, отражаются и преломляются, как и все другие виды волн. Это легко наблюдать.

Радиотехнические устройства (например, генератор сверхвысокой частоты (СВЧ)) позволяют провести наглядные опыты по изучению свойств электромагнитных волн.

Электромагнитные волны излучаются рупорной антенной в направлении оси рупора-громкоговорителя. Приемная антенна в виде такого же рупора улавливает волны, которые распространяются вдоль его оси. Общий вид установки изображен на рисунке 236.

Рупоры размещают друг против друга и, после включения звука, помещают между ними различные диэлектрические тела. При этом замечают уменьшение громкости. Это свидетельствует о том, что электромагнитные волны поглощаются.
Звуковые волны в физике - формулы и определение с примерами

Если диэлектрик заменить металлической пластиной, то волны не будут достигать приемника в результате отражения. Звука не будет слышно. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры размещают под одинаковыми углами к металлическому листу (рис. 237, а). Звук исчезает и тогда, когда убирают лист или поворачивают его.

Электромагнитные волны отражаются.

Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы, заполненной парафином. Рупоры устанавливают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют призмой (рис. 237, б). Убирая призму или поворачивая ее, наблюдают исчезновение звука.

Электромагнитные волны преломляются.
Звуковые волны в физике - формулы и определение с примерами

Электромагнитные волны подразделяются на несколько видов: радиоволны, световые волны, рентгеновское и Звуковые волны в физике - формулы и определение с примерами-излучение (см. табл.). Следует отметить, что границы между разными видами электромагнитных волн достаточно условны.

Звуковые волны в физике - формулы и определение с примерами

Радиоволны разделяют по длине волн на длинные (свыше 10 км), средние (сотни метров), короткие (десятки метров). Все они преимущественно используются в радиосвязи. Ультракороткие радиоволны разделяют на метровые, дециметровые и миллиметровые. Первые используют в телевидении, вторые и третьи - в радиолокации. Диапазон радиоволн частично перекрывается с инфракрасными лучами, которые широко применяют в технике. В этом диапазоне работают лазеры.

Ультрафиолетовые лучи используют для обеззараживания помещений в больницах, стимуляции химических реакций, образования нужных генных мутаций и т. п. Поверхность Земли защищена от вредных составляющих ультрафиолетовых лучей Солнца озоновым слоем. Его сохранение - это одна из важных экологических проблем.

Рентгеновское излучение получают при торможении электронов, которые ускоряются напряжением в десятки киловольт. В отличие от светового луча видимого спектра и ультрафиолетового излучения, оно имеет значительно меньшую длину волн. И чем больше энергия электронов, бомбардирующих препятствие, тем меньше длина волны рентгеновского излучения.

Физические основы современных беспроводных средств связи и коммуникаций

Жизнь современного человека сегодня кажется невозможной без существования мобильных телефонов, стационарных радиотелефонов, Интернета и т. п. Все это - беспроводные средства персональной связи.

Мобильные телефоны являются сложной миниатюрной приемно-передающей радиостанцией, излучающей электромагнитные волны. Максимальная мощность излучается сотовым телефоном во время установления связи.

Мобильный телефон имеет большую, а иногда и неограниченную дальность действия, которую обеспечивает сотовая структура зон связи. Кроме того, эта станция подключена к обычной проводной телефонной сети и оснащена аппаратурой преобразования высокочастотного сигнала сотового телефона в низкочастотный сигнал проводного телефона и наоборот, что обеспечивается соединением обеих систем. Периодически (с интервалом 30-60 мин) базовая станция излучает служебный сигнал. Приняв его, мобильный телефон автоматически добавляет и передает полученную кодовую комбинацию на базовую станцию. В результате этого осуществляется идентификация конкретного сотового телефона, номера счета его владельца и привязка аппарата к определенной зоне, в которой он находится. Если пользователь звонит по телефону, базовая станция выделяет ему одну из свободных частот той зоны, в которой он находится, вносит соответствующие изменения на его счет и передает его вызов по назначению. Если мобильный пользователь во время разговора перемещается из одной зоны связи в другую, базовая станция автоматически переводит сигнал на свободную частоту новой зоны.

Стационарный беспроводной радиотелефон объединяет в себе обычный проводной телефон - аппарат, подключенный к телефонной сети, и приемно-передающее радиоустройство в виде телефонной трубки, обеспечивающей двусторонний обмен сигналами с базовым аппаратом. В зависимости от типа радиотелефона, дальность связи между трубкой и аппаратом, с учетом наличия препятствий, составляет в среднем до 50 м.

Спутниковая связь и радары

Системы спутниковой связи состоят из приемно-передающей станции на Земле и спутника, находящегося на орбите (рис. 238). Радиолокационные станции (рис. 239) оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси.
Звуковые волны в физике - формулы и определение с примерами

Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц.

Рост мощности радиолокаторов разного назначения и использования узконаправленных антенн кругового обзора приводит к значительному увеличению интенсивности электромагнитных волн чрезвычайно высокочастотного диапазона и дает возможность получать на местности огромные «зоны покрытия» с высокой плотностью потока энергии.

Начиная с середины 90-х годов XX в. распространилась технология мобильных компьютерных сетей. С 1997 г. появилась возможность создавать мобильные сети Интернет, которые обеспечивают взаимодействие пользователей независимо от того, в какой стране они находятся.

Развитие технологии мобильных телефонных сетей привело к тому, что эти сети стали широко использоваться для доступа в Интернет. Третье поколение мобильных телефонных сетей, известное как сети 3G, обеспечивает передачу данных со скоростью 1,5-2 Мбит/с. В настоящее время идет активное внедрение мобильных сетей четвертого (4G, например, LTE - Long Term Evolution - «долгосрочное развитие») и пятого (5G) поколений. Они обещают пропускную способность в десятки раз больше, чем в сетях. Для высокоскоростной передачи данных предлагается использовать миллиметровый диапазон радиоволн с частотой от 30 до 300 ГГц. Теоретически мобильные сети пятого поколения (5G) предоставят возможность передавать информацию со скоростью до 10 Гбит/с и временем ответа меньше 1 миллисекунды.

Беспроводные сети часто связывают с радиосигналами, однако это не всегда правильно. В беспроводной связи используется намного более широкий диапазон электромагнитного спектра, от радиоволн низкой частоты в несколько килогерц к видимому свету, частота которого составляет приблизительно 8 • Звуковые волны в физике - формулы и определение с примерами Гц.

Навигационную систему GPS (точнее - NAVSTAR GPS, рис. 240) разработали и вывели на орбиту американские ученые в середине 1990-х годов.
Звуковые волны в физике - формулы и определение с примерами

Она состоит из 24 космических спутников, движущихся по определенным орбитам вокруг Земли. Спутники с высоты 20 тыс. км охватывают каждую точку нашей планеты, посылая на Землю определенные радиосигналы. Эти 

сигналы и улавливают наземные GPS-навигаторы. Навигатор, например, в автомобиле идентифицирует его местонахождение и направление движения.

Навигатор в авто принимает сигнал от трех разных спутников, координаты которых узнает, и определяет свои точные координаты на координатной сетке, условно разделяющей всю планету. Часто он использует также сигнал четвертого спутника для окончательной корректировки местонахождения.

Интернет

Сегодня в мире существует свыше 130 миллионов компьютеров и более 80 % из них объединены в разнообразные информационно-вычислительные сети - от малых локальных сетей в офисах до глобальных сетей типа Интернет. Всемирная тенденция к объединению компьютеров в сети предопределена важными причинами, такими как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (e-mail писем и т. д.), не отходя от рабочего места, возможность мгновенного получения информации из любой точки земного шара, обменяться информацией между компьютерами разных производителей.

Интернет - глобальная компьютерная сеть, охватывающая весь мир (рис. 241, а). В наше время Всемирная паутина имеет около 3 миллиардов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10 %. Интернет как бы образует ядро, обеспечивающее связь различных информационных сетей, которые принадлежат разным учреждениям во всем мире.

Звуковые волны в физике - формулы и определение с примерами

Электронная почта

Электронная почта (electronic mail) - самая распространенная служба Интернета, предназначенная для пересылки по компьютерным сетям сообщений (электронных писем, рис. 241, б) за несколько секунд. Сегодня в мире свыше 50 миллионов человек пользуется электронной почтой.

С ее помощью вы можете отправлять сообщения, получать их на свой электронный почтовый ящик, отвечать на письма автоматически, рассылать копии вашего письма сразу на несколько адресов, переправлять полученное письмо по другому адресу, использовать вместо адресов (числовых или доменных имен) логические имена, создавать несколько подразделений почтового ящика для разного рода корреспонденции, вкладывать в письма текстовые файлы, программы, изображения и т. п.

Доски объявлений

Электронные доски являются цифровым аналогом обычных досок объявлений, которые размещаются в общедоступных, публичных местах. Это так называемые сетевые новости или дискуссионные клубы. Доски объявлений используются для организации деловой деятельности и предоставления разнообразных услуг пользователям сети: резервирования мест в гостиницах, самолетах и поездах, рекламы и продажи товаров, предложения рабочих мест, осуществления электронных платежей. Они служат для организации справочных служб, сообщения деловых, биржевых и политических новостей, новостей спорта, обзора кино-и видеофильмов, передачи прогнозов погоды, участия в коллективных или одиночных видеоиграх и т. д. В мире существует огромное количество коммерческих, а также неприбыльных BBS (Bulletin Board System - «система досок объявлений»). Многие электронные доски связаны между собой. Самой большой глобальной сетью электронных досок объявлений является всемирная сеть Usenet, доступ к которой есть и с Интернета (рис. 242).

Интернет-телефония

IP-телефония - это технология, дающая возможность использовать любую IP-сеть как средство организации и ведения телефонных разговоров, передачи видеоизображений и факсов в режиме реального времени. Создание «пакетов» - преобразование аналоговых (в частности, звуковых) сигналов в цифровые, их сжатие, передача по сети Интернет и обратное преобразвание (декодирование) в аналоговое происходит благодаря существованию протокола передачи данных через Интернет (IP - Internet Protocol), отсюда и название «1Р-телефония».

Под интернет-телефонией подразумевают, в первую очередь, такую технологию, в которой голосовой трафик частично передается через телефонную сеть общего пользования, а частично - через Интернет (рис. 243). Именно так осуществляются звонки с телефона на телефон, с компьютера на телефон, с телефона на компьютер, а также приобрел популярность Surf’n’Cali - звонок с веб-браузера на телефон (просматривая какой-либо корпоративный веб-сайт, пользователь нажимает мышкой на кнопку Call и соединяется с офисом этой компании).
Звуковые волны в физике - формулы и определение с примерами

IP-телефон (отдельный аппарат или программа на компьютере) преобразовывает ваш голос в поток звуковых файлов, которые передаются через Интернет. Если вы «звоните» на компьютер или аппаратный IP-телефон, этот поток преобразовывается в ваш голос непосредственно в вызванном вами компьютере или аппаратном IP-телефоне. Если вы «звоните» на обычный проводной или сотовый телефон, тогда на специальном узле связи поток файлов с Интернета преобразовывается в электрический сигнал, передающийся по проводам или через сотовую сеть к вызванному вами абоненту, и в его телефоне этот сигнал преобразовывается в ваш голос.

Создано мобильное приложение к смартфонам под названием Viber (Вайбер). Благодаря этому приложению можно звонить, писать, обмениваться картинками, фотографиями с телефона, планшета или компьютера с собеседником из любой точки мира. Передача голосового трафика происходит с помощью GPRS-интернета на телефоне.

Wi-Fi (англ. Wireless Fidelity - «беспроводная точность»). Ядром беспроводной сети Wi-Fi является так называемая точка доступа (Access Point), которая подключается к наземной сетевой инфраструктуре (каналов Интернет-провайдера) и обеспечивает передачу радиосигнала. Обычно точка доступа состоит из приемника, передатчика, интерфейса для подключения к проводной сети и программному обеспечению для настройки. Вокруг точки доступа формируется пространственная область радиусом 50-100 м (ее называют хот-спотом, или зоной Wi-Fi), в пределах которой можно пользоваться беспроводной сетью.

Дальность передачи информации зависит от мощности передатчика, наличия и характеристики препятствий, типа антенны. Это беспроводной стандарт, который использует частоту 5 ГГц.

Для того чтобы подсоединиться к точке доступа, необходимо чтобы ноутбук или мобильное устройство с адаптером Wi-Fi просто попало в радиус действия данной зоны. Все действия по определению устройства и настройке сети большинство операционных систем компьютеров и мобильных устройств производят автоматически. Если устройство одновременно попадает в зону действия нескольких зон Wi-Fi, то подключение состоится к точке доступа, обеспечивающей более мощный сигнал.

Кстати:

Волна - это одно из интересных явлений в физике, которое наблюдается в самых разнообразных проявлениях практически во всех ее областях. Волны распространяются по поверхности океанов и в их толще, в межзвездной пустоте и в

кристаллических решетках, «бегут» по проводам линий электропередач, доносят до нас разнообразие цветов и большое количество звуков. Существуют волны песчаные и волны на снегу. Землетрясения и цунами в океане - тоже волновые движения, только гигантских масштабов. Есть волны, которые еще не стали привычными и для самих физиков, например, волны в транспортных потоках, в химических реакциях, в сердце и нервной системе, в сообществах биологических организмов, в звездных системах - галактиках. По образному высказыванию ученых, волны «разбежались» из физики и охватили почти все огромное количество процессов в живой и неживой природе. И наиболее интересно, что все эти волны математически подобны, то есть могут быть описаны одними и теми же уравнениями. Вот почему так важно «подружиться» с этим понятием, ведь и вам, повидимому, придется не раз столкнуться с ним самым неожиданным образом.

Пример:

Что изменяется: длина волны или частота при переходе электромагнитной волны с одной среды в другую?

Ответ: изменяется длина волны и скорость, частота остается постоянной.

Пример:

Какова длина электромагнитной волны, если колебания в ней происходят с частотой 3 • 105 Гц?

Дано:

Звуковые волны в физике - формулы и определение с примерами

Звуковые волны в физике - формулы и определение с примерами

Решение

По формуле Звуковые волны в физике - формулы и определение с примерамиопределим длину электро-v

магнитной волны:

Звуковые волны в физике - формулы и определение с примерами

Ответ: Звуковые волны в физике - формулы и определение с примерами

Звуковые волны

Звуки (звуковые волны) приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в ней с течением времени.

Таким образом, в процессе распространения звуковой волны с течением времени изменяются такие характеристики среды, как давление и плотность.

Звуковые волны, воспринимаемые органами слуха, вызывают звуковые ощущения.

Раздел физики, в котором изучаются звуковые явления, называется акустикой. Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук (v< 16 Гц);
  • слышимый человеком звук (16 Гц < v < 20 000 Гц);
  • ультразвук (v > 20 000 Гц);
  • гиперзвук (Звуковые волны в физике - формулы и определение с примерами Гц<у< Звуковые волны в физике - формулы и определение с примерами Гц — Звуковые волны в физике - формулы и определение с примерами Гц).

Многие животные могут воспринимать звуки ультразвуковых частот. Например, собаки могут слышать звуки частотой до 50 000 Гц, а летучие мыши — до 100 000 Гц.

Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.

Одной из важнейших характеристик звуковых сигналов является их спектр.

Спектром называется набор звуков различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т. п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется определенной интенсивностью. Так реактивный самолет может создать звук интенсивностью Звуковые волны в физике - формулы и определение с примерами мощные усилители на концерте в закрытом помещении — до Звуковые волны в физике - формулы и определение с примерами поезд метро — около Звуковые волны в физике - формулы и определение с примерами

Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости. Интенсивность звуковых волн, при которой у человека возникает ощущение давящей боли, называют порогом болевого ощущения или болевым порогом.
Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Звуковые волны в физике - формулы и определение с примерами (порог слышимости) до Звуковые волны в физике - формулы и определение с примерами (порог болевого ощущения).
Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Уровень интенсивности звука L определяют по шкале, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела).

1Б — самый слабый звук, который воспринимает наше ухо. Эта единица названа в честь изобретателя телефона Александра Белла. Измерение уровня интенсивности в децибелах проще и поэтому принято в физике и технике. Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Звуковые волны в физике - формулы и определение с примерами

где I — интенсивность данного звука, Звуковые волны в физике - формулы и определение с примерами — интенсивность, соответствующая порогу слышимости.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на
10 дБ. Например, звук в 50 дБ оказывается в 100 раз интенсивнее звука 1 в 30 дБ.

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 2) и т. д.

Таблица 2

Частота v колебаний различных источников звука
 

Источник звука v, Гц Источник звука v, Гц

Мужской голос:

бас

баритон

тенор

Женский голос:

контральто

меццо-сопрано

сопрано

колоратурное сопрано

Орган

Флейта

Скрипка

Арфа

Барабан

100—7000

80—350

100—400

130-500

200-9000

170—780

200—900

250—1000

260—1400

22—16 000

260—15 000

260—15 000

30—15 000

90— 14 000

Контрабас

Виолончель

Труба

Саксофон

Рояль

Музыкальные тона:

нота до

нота ре

нота ми

нота фа

нота соль

нота ля

нота си

60—8000

70—8000

60—6000

80—8000

90—9000

261,63

293,66

329,63  

349,23  

392,0  

440,0  

493,88


 

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 3).

Таблица 3

Скорость звука в различной среде

Среда /, °С Звуковые волны в физике - формулы и определение с примерами
Воздух 0 331
Воздух 20 343
Вода 20 1490
Глицерин 20 1920
Ртуть 20 1450
Лед 0 3280
Сталь 20 5050
Стекло 20 5300
Чугун 20 3850

Скорость звука в идеальных газах с ростом температуры растет пропорционально Звуковые волны в физике - формулы и определение с примерами, где Т — абсолютная температура. В воздухе скорость звука v = 331 Звуковые волны в физике - формулы и определение с примерами при температуре t = 0 °С и v = 343Звуковые волны в физике - формулы и определение с примерами при температуре t = 20 °С. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение — вода).

Впервые скорость распространения звука в воздухе была определена в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле.

Мерсенн определил, что скорость звука в воздухе равна 414 Звуковые волны в физике - формулы и определение с примерами.

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами. Широко известные животные, обладающие способностью к эхолокации — летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокаторы, используемые иод водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение, в отличие от рентгеновского, безвредно для человека.

Итоги:

Колебательным движением (колебаниями) называют любой процесс, который обладает свойством повторяемости во времени.

Периодическим называется движение, при котором физические величины, характеризующие колебательную систему, через равные промежутки времени принимают одни и те же значения.

Колебания, при которых зависимость координаты (смешения) тела от времени определяется соотношениями

Звуковые волны в физике - формулы и определение с примерами

называются гармоническими.

Зависимость координаты от времени x(t) называется кинематическим законом гармонических колебаний (законом движения).

Колебания материальной точки являются гармоническими, если они происходят под действием возвращающей силы, модуль которой прямо пропорционален смещению точки из положения равновесия Звуковые волны в физике - формулы и определение с примерами = -kx, направленной к положению равновесия колеблющегося тела.

Амплитуда колебаний А {А > 0) — максимальное смещение Звуковые волны в физике - формулы и определение с примерами тела или системы тел из положения равновесия.

Фаза колебаний Звуковые волны в физике - формулы и определение с примерами определяет состояние колебательной системы (координаты, скорости, ускорения) в любой момент времени при заданной амплитуде. Единицей фазы является радиан (1 рад). В начальный момент времени (t = 0) Звуковые волны в физике - формулы и определение с примерами

Циклическая частота Звуковые волны в физике - формулы и определение с примерами — число полных колебаний за промежуток времени Звуковые волны в физике - формулы и определение с примерами секунд:

Звуковые волны в физике - формулы и определение с примерами

Период колебания Т — время одного полного колебания: Т = Звуковые волны в физике - формулы и определение с примерами.

Частота колебаний v — число полных колебаний в единицу времени:

Звуковые волны в физике - формулы и определение с примерами

Период Т и частота v — обратные величины: Т = Звуковые волны в физике - формулы и определение с примерами

При гармонических колебаниях проекция ускорения тела прямо пропорциональна его смещению от положения равновесия и противоположна ему по знаку:

Звуковые волны в физике - формулы и определение с примерами

Пружинный маятник — груз массой т, прикрепленный к одному из концов невесомой упругой пружины жесткостью k, второй конец которой зафиксирован относительно данной ИСО. Его период колебаний

Звуковые волны в физике - формулы и определение с примерами

Математический маятник — материальная точка массой /п, подвешенная на невесомой нерастяжимой нити длиной / в поле каких-либо сил. Период малых колебаний математического маятника определяется по формуле Гюйгенса

Звуковые волны в физике - формулы и определение с примерами

Механическая энергия Звуковые волны в физике - формулы и определение с примерами колеблющегося маятника равна сумме его кинетической и потенциальной энергий. Она остается постоянной при отсутствии сил трения (сопротивления).

Собственные (свободные) колебания — это колебания, происходящие в отсутствие внешних воздействий на систему. Они происходят со строго определенной частотой, называемой частотой собственных колебаний системы.

Затухающими называются колебания, энергия которых уменьшается с течением времени.

Вынужденными называются колебания системы, вызываемые действием на нее периодических внешних сил.

Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний, когда частота периодической внешней силы совпадает с собственной частотой колебаний системы.

Механическая волна — процесс распространения механических колебаний в упругой среде.

Длина волны — расстояние, пройденное волной за промежуток времени, равный периоду колебаний частиц:

Звуковые волны в физике - формулы и определение с примерами

Скорость волны определяется как произведение длины волны на частоту:

Звуковые волны в физике - формулы и определение с примерами

Это скорость гребня волны или любой другой точки волны.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной к направлению распространения волны.

Звуком называются колебания среды, воспринимаемые органами слуха.

Раздел физики, в котором изучаются звуковые явления, называется акустикой.

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды, распространяющиеся в ней с течением времени.

Звуковые волны. Инфразвук и ультразвук

Мы живем в океане звуков. Что представляют собой звуки? Как они образуются? Почему невозможно услышать гул ракетных двигателей в космосе? Почему гром слышится позже, чем видна вспышка молнии? Для чего в студиях звукозаписи стены покрывают слоем звукопоглощающих материалов? Как в полной темноте летучие мыши и дельфины находят добычу? Попробуем найти ответы на эти вопросы.

Один конец линейки прижмите к краю стола, а второй оттяните вниз и отпустите — он начнет колебаться, и вы услышите звук (рис. 18.1). Дело в том, что колебание линейки вызывает сгущение и разрежение воздуха и как следствие — периодические увеличения и уменьшения давления в зоне колебаний. Сжатый воздух, пытаясь расшириться, давит на соседние слои и сжимает их. Так от линейки во все стороны начинает распространяться продольная механическая волна, которая в конце концов достигает вашего уха. В результате давление воздуха вблизи ушной мембраны периодически изменяется, и мембрана начинает колебаться. Конец линейки колеблется с частотой свыше 20 Гц, именно с такой частотой начинает колебаться и ушная мембрана, а колебания с частотой 20-20 000 Гц человек воспринимает как звук.

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.1. После того как конец линейки будет отпущен, линейка начнет колебаться, издавая звук

3вук — это физическое явление, представляющее собой механическую волну частотой от 20 до 20 000 Гц.

Источники звука — это тела, колеблющиеся с частотой 20-20 000 Гц. Так, источниками звука являются мембраны наушников и струны музыкальных инструментов, диффузоры громкоговорителей и крылья насекомых, части машин и т. п. В трубе, флейте, свистке звук образуется в результате колебания столба воздуха внутри инструментов. Голосовые аппараты человека и животных тоже являются источниками звука.

Для изучения звука удобно использовать камертон (рис. 18.2). Это устройство представляет собой металлическую «рогатку», закрепленную на ящичке, в котором отсутствует одна стенка. Если резиновым молоточком ударить по ножкам камертона, камертон издаст ясный длинный звук, который постепенно ослабевает, но не изменяет своей частоты.

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.2. Ножки камертона колеблются и издают звук

В приемниках звука происходит преобразование звуковых сигналов в другие сигналы, благодаря чему звук можно воспринимать и анализировать. Органы слуха человека и животных — приемники звука, в которых звуковые (механические) колебания преобразуются в нервные импульсы. В технике для приема звука в основном применяют преобразователи, в которых звуковые колебания обычно преобразуются в электрические (рис. 18.3).

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.3. В микрофоне звуковые колебания преобразуются в электрические

Скорость распространения звука

Если мы видим момент зарождения звука издали (удар колокола, хлопок ладоней и т. д.), то замечаем, что сам звук мы слышим через некоторый интервал времени. Зная расстояние до источника звука и время «опоздания», можно измерить скорость распространения звука в воздухе. Впервые ее измерил французский ученый Марин Мерсенн (1588-1648) в 1636 г.

При температуре 20 °С скорость звука в воздухе равна примерно 340 м/с. Это почти в миллион раз меньше скорости распространения света. Именно поэтому гром слышен позже, чем видна вспышка молнии (рис. 18.4).

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.4. Если гроза от нас далеко ,то грохот грома можно услышать даже через 10-20 с после вспышки молнии

Скорость распространения звука зависит от температуры, плотности и других характеристик среды. Так, в жидкостях звук распространяется быстрее, чем в газах, и медленнее, чем в твердых телах. Скорость распространения звука обычно увеличивается с увеличением температуры среды. К тому же чем меньше масса молекул среды, тем быстрее распространяется звук. При решении задач мы будем использовать приблизительные значения скорости распространения звука (см. таблицу на с. 120).

Первые точные измерения скорости распространения звука в воде провели ученые из Швейцарии Жан Колладон и Шарль Штурм в 1826 г.

Один из исследователей сидел в лодке на Женевском озере и ударял по погруженному в воду колоколу. Одновременно с ударом происходила вспышка пороха. Второй исследователь, находясь на расстоянии 16 км, измерял время между вспышкой пороха и звуком от удара колокола, который он слышал через погруженную в воду озера трубу.

Приблизительные значения скорости распространения звука в некоторых средах

Среда Звуковые волны в физике - формулы и определение с примерамим/с
Вода 1500
Водород 1250
Железо, сталь, чугун 5000
Воздух 340
Стекло 4500

Обратите внимание! Поскольку звук — это механическая волна, а для распространения механической волны необходима среда, звуковая волна не распространяется в вакууме (рис. 18.5).

Характеристики звука

Звуки разной частоты мы воспринимаем как звуки разного тона: чем больше частота звука, тем выше тон звука, и наоборот. Мы легко отличаем высокий тон жужжания комара от низкого тона гудения шмеля, звучание скрипки — от звучания контрабаса.

Громкость звука определяется прежде всего амплитудой звуковой волны (максимальным изменением давления): чем больше амплитуда, тем громче звук. Громкость звука зависит также от его тона (частоты звуковой волны). Человеческое ухо плохо воспринимает звуки низких частот (около 20 Гц) и высоких частот (около 20 000 Гц), лучше всего оно воспринимает звуки средних частот (1000-3000 Гц).

При распространении звука происходит его постепенное рассеяние и угасание, а значит, и уменьшение громкости. Знание закономерностей рассеяния звука важно для определения дальности распространения звукового сигнала. Так, на дальность распространения звука в воздухе влияют температура и атмосферное давление, сила и скорость ветра и др. Иногда в глубинах океана образуются условия для сверхдальнего (свыше 5000 км) распространения звука — в таком случае говорят о подводном звуковом канале.

Кроме громкости и высоты тона мы различаем звуки по тембру: одну и ту же ноту, взятую на рояле, саксофоне или разными людьми, мы воспринимаем по-разному. Такие разные «оттенки» звуков называют тембрами. Дело в том, что звуки являются сложными: кроме основной частоты (по которой мы и оцениваем высоту звука) любой звук содержит несколько более слабых и более высоких дополнительных частот — обертонов. Чем больше обертонов содержит основной звук, тем он богаче.

Отражение звука

Сравнив распространение звука и распространение света, можно заметить некоторые общие черты. И это не случайно: свет тоже является волной, но не механической (об этом вы узнаете позже). На границе раздела разных сред звуковая волна, как и свет, испытывает преломление, поглощение и отражение. Рассмотрим подробнее отражение звука.

Если встать на некотором расстоянии от скалы или одиночного небоскреба и хлопнуть в ладоши или громко крикнуть, через небольшой интервал времени услышим повторение звука — эхо (рис. 18.6).

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.6. Эхо образуется вследствие отражения звука

Эхо — это звук, отраженный от удаленного препятствия.

Если расстояние до препятствия достаточно велико, а звук короткий (удар, вскрик), мы слышим четкое повторение звука. Если звук длинный, то эхо смешивается с начальным звуком и отраженный звук будет нечетким.

На явлении отражения звука основано действие шумозащитных экранов, которые устанавливают вдоль автомобильных трасс и вблизи аэропортов. Исследование отражения, рассеяния и угасания звука в газах, жидкостях и твердых телах позволяет получить информацию о внутреннем строении среды, в которой распространяется звук.

Инфразвук и ультразвук

Звуковые волны, частота которых меньше 20 Гц, называют инфразвуковыми (от лат. infra — ниже, под).

Инфразвуковые волны возникают во время работы некоторых механизмов, при взрывах, обвалах, мощных порывах ветра, во время шторма, землетрясения и т. п.

Инфразвук очень опасен для животных и человека: он может вызвать симптомы морской болезни, головокружение, потерю зрения, быть причиной повышенной агрессивности. При длительном воздействии интенсивное инфразвуковое излучение может привести к остановке сердца. При этом человек даже не понимает, что происходит, ведь он не слышит инфразвук.

Звуковые волны, частота которых превышает 20 кГц, называют ультразвуковыми (от лат. ultra — сверх, за пределами).

Ультразвук есть в шуме ветра и водопада, в звуках, которые издают некоторые живые существа. Ультразвук до 100 кГц воспринимают многие насекомые и грызуны (рис. 18.7); улавливают такие колебания и собаки. Интересно, что дети, в отличие от взрослых, тоже слышат ультразвуковые сигналы (до 24 000 Гц).

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.7. Ультразвуковой излучатель для отпугивания насекомых

Некоторые животные применяют ультразвук для ориентации или охоты. Так, летучие мыши и дельфины излучают ультразвук и воспринимают его эхо, благодаря чему они даже в полной темноте могут найти дорогу или поймать добычу. Говорят, что в таких случаях животные используют эхолокацию (рис. 18.8).

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.8. Во время охоты летучие мыши используют эхолокацию

Эхолокация — способ обнаружения и получения информации об объекте с помощью эха.

Люди научились применять эхолокацию в разных областях, причем чаще всего для эхолокации используют именно ультразвук.

Например, в медицине эхолокация позволяет «увидеть» еще не родившегося ребенка, исследовать состояние внутренних органов, обнаружить посторонние тела в тканях. В технике эхолокацию применяют для выявления дефектов в изделиях, измерения глубин морей и океанов (рис. 18.9) и т. д.

Звуковые волны в физике - формулы и определение с примерами

Рис. 18.9. Измерение глубины водоема с помощью эхолокации

Кроме того, ультразвуком обеззараживают хирургические инструменты, лекарства, руки хирургов. Лечение с помощью ультразвука иногда позволяет избежать хирургических операций.

Ультразвук применяют также для обработки прочных материалов, очистки поверхностей от загрязнений и т. п.