Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Замечательные пределы - определение и вычисление с примерами решения

Содержание:

Замечательные пределы

Сравнение бесконечно малых функций

Признак существования предела (теорема о 2-х милиционерах)

Теорема: Если значения функции Замечательные пределы - определение и вычисление с примерами решения

значениями функций Замечательные пределы - определение и вычисление с примерами решения

Рассмотрим геометрический смысл данной теоремы (Рис. 62). Из рисунка видно, что в случае, когда функции Замечательные пределы - определение и вычисление с примерами решения стягиваются к прямой у=А, то они “вынуждают” функцию Замечательные пределы - определение и вычисление с примерами решения также приближаться к той же самой прямой (“куда идут два милиционера, ведущие арестованного, туда идет и сам арестованный”). Замечательные пределы - определение и вычисление с примерами решения

Рис. 62. Иллюстрация теоремы о “2-х милиционерах”.

Доказательство: Пусть Замечательные пределы - определение и вычисление с примерами решения - точка сгущения для функций Замечательные пределы - определение и вычисление с примерами решения в общей области определения. Это означает, что в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решениявыполняется неравенство Замечательные пределы - определение и вычисление с примерами решения В Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения Так как значения функции Замечательные пределы - определение и вычисление с примерами решения заключены между значениями функций Замечательные пределы - определение и вычисление с примерами решения то в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения меньшей из Замечательные пределы - определение и вычисление с примерами решения-окрестностей будет выполняться неравенство Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения или Замечательные пределы - определение и вычисление с примерами решения

Первый замечательный предел

Определение: Предел отношения синуса какого-либо аргумента к этому аргументу при стремлении аргумента к нулю равен единице, т.е. Замечательные пределы - определение и вычисление с примерами решения и называется первым замечательным пределом.

Пример:

Пределы являются первыми замечательными пределами Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения

Доказательство: Для вывода этой формулы построим окружность с центром в точке О(0; 0) и радиусом R = 1. Выберем угол Замечательные пределы - определение и вычисление с примерами решенияв первой координатной четверти и сравним площади трех фигур: треугольник АОВ, сектор АОВ и треугольник AOD (Рис. 63): Замечательные пределы - определение и вычисление с примерами решения

Рис. 63. Иллюстрация вывода формулы первого замечательного предела.

Из рисунка видно, что площади указанных фигу р связаны соотношением:

Замечательные пределы - определение и вычисление с примерами решения

Вычислим эти площади Замечательные пределы - определение и вычисление с примерами решения

Следовательно, вышеприведенное неравенство приводится к виду Замечательные пределы - определение и вычисление с примерами решения В силу того, что Замечательные пределы - определение и вычисление с примерами решения получаем Замечательные пределы - определение и вычисление с примерами решения Разделим полученное неравенство на Замечательные пределы - определение и вычисление с примерами решения знак всех неравенств не изменится: Замечательные пределы - определение и вычисление с примерами решения Переходя к обратным неравенствам, Замечательные пределы - определение и вычисление с примерами решения или в силу того, что Замечательные пределы - определение и вычисление с примерами решения то по теореме о 2-х милиционерах Замечательные пределы - определение и вычисление с примерами решения

Аналогично проводится доказательство для любого значения угла Замечательные пределы - определение и вычисление с примерами решения

Таким образом, наличие в пределе, сводящемся к неопределенности Замечательные пределы - определение и вычисление с примерами решения тригонометрических функции может указывать на первый замечательный предел.

При вычислении первого замечательного предела используют следующие формулы:

Замечательные пределы - определение и вычисление с примерами решения а также следующие таблицы:

Табл. 1. Значения синуса и косинуса на интервале Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения

Табл. 2. Формулы приведения.

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельной величины переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения и преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения тогда данный предел равен:Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Введём замену Замечательные пределы - определение и вычисление с примерами решения (при Замечательные пределы - определение и вычисление с примерами решения) и воспользуемся следующей формулой Замечательные пределы - определение и вычисление с примерами решения Предел преобразуется к виду:

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулами Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения получим: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Число e и натуральные логарифмы. Второй замечательный предел

Рассмотрим логарифмическую функцию Замечательные пределы - определение и вычисление с примерами решения Выбирая различные значения основания, будем вычислять тангенсы угла наклона касательной к графику этой функции в точке Замечательные пределы - определение и вычисление с примерами решения(см. график логарифмической функции в Лекции № 22).

Определение: Натуральным логарифмом называется логарифм, для которого основание выбрано так, чтобы тангенс угла наклона касательной к положительному направлению оси абсцисс (Ох) был равен 1.

Основанием натурального логарифма является число Замечательные пределы - определение и вычисление с примерами решения Это число трансцедентное, т.е. не является решением ни одного алгебраического уравнения. Установим связь между натуральными Замечательные пределы - определение и вычисление с примерами решения и десятичными Замечательные пределы - определение и вычисление с примерами решения логарифмами: Замечательные пределы - определение и вычисление с примерами решения

Определение: Вторым замечательным пределом называется предельное равенствоЗамечательные пределы - определение и вычисление с примерами решения (первая форма)

или

Замечательные пределы - определение и вычисление с примерами решения(вторая форма).

Замечание: Первая форма второго замечательного предела переходит во вторую с помощью замены Замечательные пределы - определение и вычисление с примерами решения с учетом теоремы о связи бесконечно большой функции с бесконечно малой функцией.

Замечание: Наличие неопределенности Замечательные пределы - определение и вычисление с примерами решения указывает на второй замечательный предел, т.е. если пределы функций Замечательные пределы - определение и вычисление с примерами решения что указывает на второй замечательный предел.

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х не имеем неопределенности Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения - не второй замечательный предел.

Пример:

Найти lim Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции: Замечательные пределы - определение и вычисление с примерами решения( - первая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела) Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение Замечательные пределы - определение и вычисление с примерами решения возведем круглую скобку в эту степень, а за квадратной скобкой возведем в обратную степень для тождественности проводимых преобразований, получим) =

Замечательные пределы - определение и вычисление с примерами решения = (выражение в квадратных скобках стремится к числу е, а показатель степени - к числу -4/5 (см. раскрытие неопределённости Замечательные пределы - определение и вычисление с примерами решения для полиномов примере из пункта Вычисление пределов и раскрытие неопределенностей поэтому окончательный ответ имеет вид)= Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции:

Замечательные пределы - определение и вычисление с примерами решения (вторая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела)= Замечательные пределы - определение и вычисление с примерами решения = (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение (2-2х))= Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения=(выражение в квадратных скобках стремится к числу е, а показатель степени - к числу -2 (подставить в показатель степени вместо переменной х ее предельное значение 1), поэтому окончательный ответ имеет вид) Замечательные пределы - определение и вычисление с примерами решения

Сравнение бесконечно малых функций

Сравнить две бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решения означает вычислить предел Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К не существует, то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решенияназываются несравнимыми.

Пример:

ПустьЗамечательные пределы - определение и вычисление с примерами решения - две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что эти бесконечно малые функции несравнимые.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения -данный предел не существует, так как нельзя указать предельное значение для подлимитной функции cosx на бесконечности.

Определение: Если предел К равен нулю, то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения - две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияпри Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен Замечательные пределы - определение и вычисление с примерами решения то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения - две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен конечному числу Замечательные пределы - определение и вычисление с примерами решения то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения называются бесконечно малыми функциями одного порядка малости.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения - две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости при Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен 1, то бесконечно малые функции а(х) и Д(х) называются эквивалентными.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения - две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными.

Решение:

Вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными при Замечательные пределы - определение и вычисление с примерами решения Рассмотрим признак эквивалентности бесконечно малых функций.

Теорема: Для того чтобы бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения были эквивалентными, необходимо и достаточно, чтобы разность бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения была бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения.

Доказательство:

1. Необходимость. Пусть бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решенияявляется бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения т.е. пределы Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения Докажем, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Преобразуем первый из этих пределов: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что Замечательные пределы - определение и вычисление с примерами решения т.е. бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Аналогично преобразуется второй пре- дел.

2. Достаточность. Пусть бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными, т.е. Замечательные пределы - определение и вычисление с примерами решения Докажем, что разность двух бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Аналогично доказывается, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения

Замечание: При вычислениях одна бесконечно малая функция может быть заменена на эквивалентную бесконечно малую функцию. Например, функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны функции х при Замечательные пределы - определение и вычисление с примерами решения

---вышмат

Замечательные пределы

Первый замечательный предел

Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице:

Замечательные пределы - определение и вычисление с примерами решения Следовательно,

Замечательные пределы - определение и вычисление с примерами решения

Пример №25

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Применим первый замечательный предел:Замечательные пределы - определение и вычисление с примерами решения

Второй замечательный предел

Числом е называется предел функции

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

(Для запоминания: 2<е<3; 1828 - год рождения Л.Н. Толстого) Следовательно, Замечательные пределы - определение и вычисление с примерами решения

Задача о непрерывном начислении процентов

Первоначальный вклад в банк составил Замечательные пределы - определение и вычисление с примерами решения денежных единиц. Банк выплачивает ежегодно Замечательные пределы - определение и вычисление с примерами решения годовых. Необходимо найти размер вклада Замечательные пределы - определение и вычисление с примерами решения через t лет.

Решение:

Размер вклада будет увеличиваться ежегодно вЗамечательные пределы - определение и вычисление с примерами решения раз и

через t лет составит Замечательные пределы - определение и вычисление с примерами решения Если же начислять проценты n раз в году,

то будущая сумма составит Замечательные пределы - определение и вычисление с примерами решения Предположим, что проценты по вкладу начисляются каждое полугодие (n=2), ежеквартально (n=4), ежемесячно (n=12), каждый день (n=365), каждый час (n=8760) и, наконец, непрерывно (nЗамечательные пределы - определение и вычисление с примерами решения). Тогда за год размер вклада составит:Замечательные пределы - определение и вычисление с примерами решения

а за t лет: Замечательные пределы - определение и вычисление с примерами решения

Пример №26

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Т.к. Замечательные пределы - определение и вычисление с примерами решения имеем неопределенность вида Замечательные пределы - определение и вычисление с примерами решения Для ее раскрытия воспользуемся вторым замечательным пределом, выделив предварительно у дроби целую часть:

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Пример №27

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Преобразуя выражение и используя непрерывность показательно-степенной функции, получим:

Замечательные пределы - определение и вычисление с примерами решения