Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Произведение числа Авогадро Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами на постоянную Больцмана k называют универсальной газовой постоянной (R): R=Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) в состояние (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) (рис. 30.1).

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами Разделив обе части первого уравнения на Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами, а второго — на Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами, получим: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерами. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) в состояние (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерамиT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pУравнение состояния идеального газа - основные понятия, формулы и определение с примерами. После сокращения на T получим: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) в состояние (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами. После сокращения на p получим: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pУравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами) в состояние (Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами. После сокращения на V получим: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерами Разделив уравнение (2) на уравнение (1) и учитывая, что Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами получим: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамигде Уравнение состояния идеального газа - основные понятия, формулы и определение с примерамиУравнение состояния идеального газа - основные понятия, формулы и определение с примерамиНайдем значение искомой величины: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами

Выводы:

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами — универсальная газовая постоянная.
  3. Уравнение Клапейрона: Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Уравнение состояния идеального газа - основные понятия, формулы и определение с примерами