Треугольники и окружность - задачи с примерами решения
Пример:
Длина катета ВС прямоугольного треугольника АСВ равна 15 см, а его катет АС является диаметром окружности, которая пересекает гипотенузу в точке F, CF =12 см. Вычислите радиус окружности.
Решение:
Из условия следует, что радиус R равен половине катета АС. Заметим, что
1) В треугольнике
2) Воспользовавшись равенством найдем
3) Теперь
4) Квадрат длины катета прямоугольного треугольника равен произведению длины гипотенузы и длины проекции этого катета на гипотенузу, следовательно,
Таким образом,
Ответ 10 см.
Пример:
Решение:
По теореме об угле между хордой и касательной Так как точки С и В диаметрально противоположные, то угол САВ опирается на диаметр, а следовательно, он прямой, т. е. треугольник САВ — прямоугольный (рис. 109, а, б). Расстояние от точки С до точки касания А равно длине катета СА треугольника САВ. Так как
Ответ
Пример:
Вычислите радиус окружности, вписанной в равнобедренный треугольник ABC, если длина его основания АС равна 24 см, а высота BD, проведенная к основанию, равна 9 см.
Решение:
Для вычисления радиуса г вписанной окружности воспользуемся формулой где S — площадь треугольника, р — его полупериметр. Отсюда получим
1) Площадь треугольника
2) В прямоугольном треугольнике ADB длина катета
3) Теперь полупериметр
4) Таким образом, найдем
Ответ: 4 см.
Пример:
В равнобедренном треугольнике ABC с основанием АС на стороне ВС лежит точка D так, что В каком отношении точка О пересечения отрезка AD и высоты BE делит высоту BE, считая от вершины В?
Решение:
1) Так как (рис. 111, а, б). Проведем отрезок , параллельный отрезку AD.
2) Так как высота, проведенная к основанию равнобедренного треугольника, является медианой, то точка Е — середина стороны АС.
3) По признаку средней линии отрезок EF — средняя линия треугольника ADC, значит,
4) Так как
Ответ:
Пример:
Отрезки AF и СТ — высоты остроугольного треугольника ABC. Найдите радиус окружности, описанной около треугольника BTF, если A ABC = 60° и АС = b.
Решение:
Воспользуемся теоремой синусов и тем, что треугольник ABC подобен треугольнику BTF.
1) В треугольнике BTF по теореме синусов выполняется равенствоСледовательно, (рис. 112, a, 6).
2) Рассмотрим треугольники ABC и FTC. Эти треугольники подобны. Действительно,
Следовательно,т.е. треугольники подобны с коэффициентом подобия
3) Из подобия треугольников ABC и FTC следует, что Таким образом,
Ответ:
Пример:
Отрезок BD — биссектриса треугольника ABC. Известно, что Докажите, что (рис. 113, а).
Доказательство.
Рассмотрим окружность, описанную около треугольника ABC. Пусть прямая BD пересекает окружность в точке F и DF = х (рис. 113, б).
1) По свойству отрезков пересекающихся хорд выполняется равенство
2) Треугольники ABD и FBC подобны, так как по условию и поскольку являются вписанными в окружность и опираются на одну и ту же дугу.
3) Из подобия треугольников ABD и FBC следует, что Отсюда
3) Таким образом,
Что и требовалось доказать.
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |