Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Трехфазные несимметричные цепи

Содержание:

Трехфазные несимметричные цепи:

Трехфазная цепь несимметрична, если комплексы сопротивлений ее фаз неодинаковы.

Несимметричной может быть действующая в цепи система э. д. с. (не равны модули э. д. с. или фазовые сдвиги между каждой парой э. д. с.). .
Для расчета несимметричной цепи применяются различные методы в зависимости от ее схемы и вида несимметрии.

Расчет несимметричной трехфазной цепи при соединении источника и приемника звездой

На схеме (см. рис. 20.4) видно, что при соединении звездой трехфазная система представляет собой электрическую цепь с двумя узлами — нейтральными точками N и N'. Наиболее удобным методом расчета в данном случае является метод узлового напряжения.

Определение токов

Рассмотрим сначала общий случай расчета цепи с нулевым проводом, сопротивление которого ZN. При этом сделаем некоторые упрощения: сопротивления линейных проводов и фаз источников будем полагать равными нулю. Если указанные сопротивления нельзя считать равными нулю, их можно отнести к приемнику, прибавив к сопротивлениям последнего по правилам сложения комплексов.
При таком упрощении потенциалы линейных зажимов источника и приемника (например, точек А и А') можно считать одинаковыми.
Напряжение между нулевыми точками N и N', или узловое напряжение
Трехфазные несимметричные цепи

Смещение нейтрали

На рис. 21.1 изображена топографическая диаграмма цепи рис. 20.4, а при несимметричной нагрузке.

При наличии сопротивления в нулевом проводе (Трехфазные несимметричные цепи) нулевая точка приемника на топографической диаграмме не совпадает с нулевой точкой источника. Поэтому напряжение UN называют напряжением смещения нейтрали. Вследствие смещения нейтрали напряжения на фазах приемника оказываются неодинаковыми, несмотря на симметрию фазных напряжений источника (см. решение задачи 21.3).

Трехфазные несимметричные цепи
Рис. 21.1. Топографическая диаграмма при несимметричной нагрузке (соединение звездой)

Из формулы (21.1) видно, что симметрия фазных напряжений на нагрузке, когда UN = 0, достигается в двух частных случаях.
1. При симметричной нагрузке, когда комплексы проводимостей фаз равны: Трехфазные несимметричные цепи. В этом случае в числителе проводимость Трехфазные несимметричные цепи можно вынести за скобку, внутри которой складывается три вектора э. д. с. источника, равных по величине и сдвинутых по фазе на 120°; эта сумма равна нулю (см. рис. 20.8, б) и UN = 0. Поэтому ток в нулевом проводе равен нулю [см. формулу (21.4)] и необходимость в этом проводе отпадает, а электроснабжение симметричных приемников осуществляется по трехпроводной системе.
2. В четырехпроводной системе, когда сопротивление нулевого провода равно нулю (YN = ∞.)

Роль нулевого провода

Нулевой провод является уравнительным. Потенциалы нейтрали источника и приемника с помощью этого провода принудительно уравнены, а поэтому звезда векторов фазных напряжений приемника точно совпадает со звездой фазных напряжений источника.

Четырехпроводная система применяется в электрических сетях с напряжением 380/220 В при электроснабжении от общего источника силовой (электродвигатели) и осветительной (электролампы) нагрузки.
При несимметричной нагрузке обрыв нулевого провода (Трехфазные несимметричные цепи) вызывает значительное изменение токов и фазных напряжений, что в большинстве случаев недопустимо. Поэтому в нулевой провод предохранители не устанавливаются.

Определение мощности

При несимметричной нагрузке нужно определить мощность каждой фазы. Например, для фазы А:
Трехфазные несимметричные цепи  Трехфазные несимметричные цепи  Трехфазные несимметричные цепи
Аналогично определяются мощности других фаз.
Активная мощность всей трехфазной цепи равна сумме мощностей фаз:
Трехфазные несимметричные цепи
Реактивная мощность цепи равна алгебраической сумме реактивных мощностей фаз:
Трехфазные несимметричные цепи
В этой сумме реактивная мощность катушки считается положительной, а реактивная мощность конденсатора — отрицательной.

Задача 21.1.

При соединении звездой с нулевым проводом определить фазные напряжения и токи в приемнике энергии, сопротивления которого заданы комплексами:
Трехфазные несимметричные цепи  Трехфазные несимметричные цепи  Трехфазные несимметричные цепи

Действующая величина симметричной трехфазной системы э. д. с. 220 В. Сопротивление нулевого провода Трехфазные несимметричные цепи 
Построить векторную диаграмму.
Сопротивлениями линейных проводов и внутренними сопротивлениями источника э. д. с. пренебречь.
Решение. Схема, соответствующая условию задачи, показана на рис. 21.2, а.
Проводимости ветвей между узловыми точками NN':
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи

Трехфазные несимметричные цепи
Рис. 21.2. К задаче 21.1

Комплексы э. д. с. источника:
Трехфазные несимметричные цепи  Трехфазные несимметричные цепи  Трехфазные несимметричные цепи
Узловое напряжение
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Фазные напряжения приемника:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Токи в фазах и нулевом проводе:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Векторная диаграмма напряжений и токов показана на рис. 21.2, б.
 

Задача 21.3.

Электрические лампы включены звездой в трехфазную сеть с линейным напряжением 380 В. В каждую фазу включены по 50 ламп с номинальной мощностью 60 Вт каждая, номинальным напряжением 220 В. Как изменяются фазные напряжения и токи при изменении нагрузки одной фазы от холостого хода до короткого замыкания при обрыве нулевого провода?
В каждом выбранном случае нагрузки построить векторную диаграмму, определить мощность всей трехфазной цепи.
Решение. Условию задачи соответствует схема рис. 21.3, а, на которой группа ламп в каждой фазе условно показана двумя лампами.
Оставляя постоянным число ламп в фазах В и С, будем менять его в фазе А. Подсчеты по условию задачи выполним для таких нагрузок в фазе А: 50, 25, 100 ламп, короткое замыкание, холостой ход.
1.    При включении в каждую фазу по 50 одинаковых ламп нагрузка симметрична. Поэтому фазные напряжения на нагрузке равны фазным напряжениям в сети:
Трехфазные несимметричные цепи
Напряжение на лампах равно номинальному. В этом случае лампы работают с номинальной мощностью.
Это даёт право определить фазные токи по заданной мощности ламп:
Трехфазные несимметричные цепи
При соединении звездой IФ = IЛ, поэтому Iл = 13,6 А. Общая мощность трехфазной цепи
Р = ЗРФ = 3 • 60 • 50 = 9000 Вт.
2.    В фазе А включено 25 ламп.
При несимметричной нагрузке напряжения на лампах отличаются от фазных напряжений в сети. Поэтому определить токи по заданной мощности ламп нельзя, так как действительная мощность ламп и фазные напряжения их неизвестны. При решении задачи будем считать, что сопротивление ламп в накаленном состоянии нити практически не меняется при некотором изменении их мощности.
Сопротивление лампы в номинальном режиме
Трехфазные несимметричные цепи
Сопротивление фаз В и С при включении 50 ламп
Трехфазные несимметричные цепи
Сопротивление фазы А
Трехфазные несимметричные цепи
Комплексы фазных напряжений в сети:
Трехфазные несимметричные цепи   Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Проводимости ветвей:
Трехфазные несимметричные цепи   Трехфазные несимметричные цепи
Смещение нейтрали
Трехфазные несимметричные цепи
Напряжения фаз:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Токи в фазах:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Мощность всех ламп в фазах:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Мощность одной лампы:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Общая мощность в трехфазной системе
Трехфазные несимметричные цепи
Векторная диаграмма напряжений для различной нагрузки фазы А показана на рис. 21.3, д.

Положение нулевой точки на диаграмме соответствует такой нагрузке фазы А: 1 — симметричная нагрузка (во всех фазах по 50 ламп); 2 — в фазе А 25 ламп; 3 — фаза А разомкнута (холостой ход); 4 — в фазе А 100 ламп; 5 — в фазе А короткое замыкание.

Выполните расчет трехфазной цепи для случаев нагрузки 3, 4, 5 подобно приведенному расчету для случая нагрузки 2, проверьте соответствие результатов расчета векторной диаграмме рис. 21.3, д.
Как видно, нулевая точка нагрузки при изменении проводимости фазы А перемещается на прямой АD, которая является перпендикуляром, опущенным из точки А к вектору линейного напряжения UBC. При холостом ходе фазы А (обрыв линейного провода в этой фазе) нулевая точка перемещается в точку D и напряжения на двух других фазах UB и UC по величине оказываются равными половине линейного напряжения UBC (рис. 21.3, б).

Трехфазные несимметричные цепи

Рис. 21.3. К задаче 21.3

То же следует из схемы рис. 21.3, в. В рассматриваемом случае сопротивления фаз В и С оказываются включенными последовательно на линейное напряжение UBC.

Сопротивления эти равны, поэтому линейное напряжение делится между двумя фазами поровну.

При коротком замыкании фазы А линейный провод этой фазы подводится непосредственно к нулевой точке нагрузки (рис. 21.3, г). Поэтому лампы, включенные в фазы В и С, оказываются под линейным напряжением.

Расчет несимметричной трехфазной цепи при соединении треугольником

Трехфазная цепь при соединении приемника треугольником и любой схеме соединения фаз источника имеет разветвленную многоконтурную схему (см., например, рис. 20.8, а; 21.5).

Расчет такой цепи выполняется одним из известных методов с учетом состава ее элементов и схемы соединения.

Соединение источника и приемника треугольником

Расчет сложной цепи (см. рис. 20.8, а) значительно упрощается, если не принимать во внимание сопротивление проводов. В этом случае напряжения на фазах приемника равны соответствующим напряжениям источника и, как правило, представляют собой симметричную систему.
Если трехфазная система напряжений, приложенных к приемнику, известна, то фазные токи Трехфазные несимметричные цепи
где Трехфазные несимметричные цепи — полные сопротивления фаз.
Линейные токи можно определить графически, как показано на рис. 21.4. Если задача решается в комплексной форме, линейные токи находят по формулам (20.7).

Мощность в несимметричной трехфазной цепи при соединении треугольником определяют по тем же формулам, что и при соединении звездой (21.6), (21.7).

Трехфазные несимметричные цепи
Рис. 21.4. Векторная диаграмма токов при несимметричной нагрузке (соединение треугольником)

Трехфазные несимметричные цепи

Рис. 21.5. К вопросу о преобразовании треугольника сопротивлений в эквивалентную звезду в трехфазной цепи

Преобразование звезды и треугольника сопротивлений в трехфазных цепях

Расчет трехфазных цепей при смешанном соединении (звездой и треугольником), с учетом сопротивлений проводов линии представляет значительные трудности.

В этих случаях упрощения достигаются благодаря применению метода взаимного преобразования звезды и треугольника.
На рис. 21.5 приемник энергии соединен треугольником. С учетом сопротивлений проводов линии (Трехфазные несимметричные цепи) расчет такой цепи удобно выполнить, заменив треугольник сопротивлений эквивалентной звездой. Общее сопротивление фазы определяется сложением сопротивлений проводов линии и эквивалентной звезды приемника.

Если в ходе расчета схемы со смешанным соединением приемников — звездой и треугольником (рис. 21.6) — необходимо определить общее сопротивление фазы, это делается преобразованием звезды в треугольник или треугольника в звезду.
При симметричной нагрузке можно преобразовать треугольник в звезду, а затем две звезды заменить одной. Последняя операция возможна только при симметричной нагрузке, когда фазные напряжения у этих «звезд» одинаковы (смещение нейтрали отсутствует). При несимметричной нагрузке звезду следует преобразовать в эквивалентный треугольник, а затем сложением соответствующих проводимостей определить общую проводимость каждой фазы.
Трехфазные несимметричные цепи

Рис. 21.6. к расчету трехфазной цепи при соединении приемников звездой и треугольником

Если в последнем случае требуется учесть сопротивление проводов, то общий треугольник еще раз приходится преобразовать в звезду и к сопротивлениям звезды прибавить сопротивления проводов линии.

Задача 21.4.

Сопротивления фаз приемника Трехфазные несимметричные цепиТрехфазные несимметричные цепи Трехфазные несимметричные цепи подключены треугольником к трехфазному генератору, обмотки которого также соединены треугольником. Действующие значения симметричной системы э. д. с. генератора 220 В. Пренебрегая сопротивлениями линейных проводов и обмоток генератора, определить фазные и линейные токи, активную, реактивную и полную мощности каждой фазы и всей цепи. Построить векторную диаграмму.
Решение. Схема рис. 20.8, а соответствует условию задачи. Если сопротивления линейных проводов и обмоток генератора считать равными нулю, то фазные напряжения приемника равны соответствующим э. д. с.:
Трехфазные несимметричные цепи Трехфазные несимметричные цепи Трехфазные несимметричные цепи
Фазные токи в приемнике:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Линейные токи:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Сумма линейных токов
Трехфазные несимметричные цепи
Равенство нулю суммы линейных токов является общим свойством трехфазных трехпроводных цепей при соединении звездой и треугольником при симметричной и несимметричной нагрузках.
Трехфазные несимметричные цепи
Рис. 21.7. К задаче 21.4

Трехфазные несимметричные цепи

Рис. 21.8. К задаче 21.5

Мощности фаз:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Общая мощность системы:
активная
Трехфазные несимметричные цепи
реактивная
Трехфазные несимметричные цепи
Векторная диаграмма построена на рис. 21.7.
 

Задача 21.5.

Приемник электрической энергии, соединенный треугольником, включен в сеть с линейным напряжением 120 В. Сопротивления фаз: Трехфазные несимметричные цепи Трехфазные несимметричные цепи Трехфазные несимметричные цепи(инд.); Трехфазные несимметричные цепи (емк.).
Начертить схему по условию задачи. Определить фазные и линейные токи, активную, реактивную и полную мощности в каждой фазе и всей цени. Построить векторную диаграмму.
Решение. Схема цепи изображена на рис. 21.8, а.
Решим задачу без применения комплексных чисел. Токи в фазах:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Линейные токи определим графически с помощью векторной диаграммы. Для этого найдем активные и реактивные токи фаз.
В фазе АВ включено активное сопротивление, поэтому
Трехфазные несимметричные цепи Трехфазные несимметричные цепи
В фазе ВС последовательно соединены R и ХL, поэтому
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
В фазе CA включено емкостное сопротивление, следовательно,
Трехфазные несимметричные цепи Трехфазные несимметричные цепи
Векторная диаграмма цепи показана на рис. 21.8, б. Для определения линейных токов постройте векторную диаграмму на листе миллиметровой бумаги в масштабах: Трехфазные несимметричные цепи Трехфазные несимметричные цепи
Линейные токи: Трехфазные несимметричные цепи Трехфазные несимметричные цепи Трехфазные несимметричные цепи
Мощности фаз:
активные
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи

реактивные
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
полные
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Мощность всей цепи:
активная
Трехфазные несимметричные цепи
реактивная
Трехфазные несимметричные цепи
Знак минус указывает на емкостный характер реактивной мощности цепи.

Симметричные составляющие несимметричной трехфазной системы

Несимметричную трехфазную систему токов (напряжений или других синусоидальных величин) можно представить в виде суммы трех симметричных систем.

Разложение несимметричной системы векторов на симметричные составляющие применяется для расчета и анализа несимметричных режимов в трехфазных цепях: при симметричной нагрузке, но несимметричной системе э. д. с., при однофазных и двухфазных коротких замыканиях, при обрыве линейных проводов в цепях с симметричной системой э. д. с.

Комплексы симметричных составляющих

Первая симметричная система имеет прямую последовательность фаз (Трехфазные несимметричные цепи рис. 21.9, а), вторая — обратную (Трехфазные несимметричные цепи рис. 21.9, б). Третья система, называемая системой нулевой последовательности, состоит из трех равных величин, совпадающих по фазе (Трехфазные несимметричные цепи рис. 21.9, в).

Трехфазные несимметричные цепи

Рис. 21.9. Симметричные составляющие несимметричной системы

Система величин:
прямой последовательности
Трехфазные несимметричные цепи
обратной последовательности
Трехфазные несимметричные цепи
нулевой последовательности
Трехфазные несимметричные цепи
Умножение на Трехфазные несимметричные цепи означает поворот вектора на 120" против движения часовой стрелки. Обозначим Трехфазные несимметричные цепи через а и будем называть это выражение поворотным множителем.
Поворот вектора против часовой стрелки на 240° можно выразить умножением его на а2.
Умножение вектора на а3 не меняет его положения:
Трехфазные несимметричные цепи
С помощью поворотного множителя а системы прямой и обратной последовательности можно записать так:
Трехфазные несимметричные цепи
Сумма синусоидальных величин симметричной системы равна нулю, поэтому
Трехфазные несимметричные цепи

Разложение несимметричной системы на симметричные составляющие

Выразим комплексы несимметричной системы через симметричные составляющие:
Трехфазные несимметричные цепи
Если из этой системы уравнений можно однозначно определить симметричные составляющие через известные величины Трехфазные несимметричные цепи несимметричной системы, то этим будет доказана возможность разложения несимметричной системы на три симметричные — прямой, обратной и нулевой последовательности.
Используя выражения (21.10), запишем систему уравнений (21.12) в таком виде:
Трехфазные несимметричные цепи
Решение системы уравнений (21.13) позволяет найти симметричные составляющие Трехфазные несимметричные цепи
Сложим уравнения:
Трехфазные несимметричные цепи
Учитывая формулу (21.11), найдем
Трехфазные несимметричные цепи
Умножим второе уравнение в системе (21.13) на Трехфазные несимметричные цепи, а третье — на Трехфазные несимметричные цепи и сложим все уравнения:
Трехфазные несимметричные цепи
откуда
Трехфазные несимметричные цепи
Умножим второе уравнение в системе (21.13) на Трехфазные несимметричные цепи, а третье на Трехфазные несимметричные цепи и сложим все уравнения:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепиТрехфазные несимметричные цепи = Трехфазные несимметричные цепиТрехфазные несимметричные цепи + Трехфазные несимметричные цепиТрехфазные несимметричные цепи + Трехфазные несимметричные цепиТрехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи + Трехфазные несимметричные цепи + Трехфазные несимметричные цепи = Трехфазные несимметричные цепи (1 + Трехфазные несимметричные цепи + Трехфазные несимметричные цепи) + Трехфазные несимметричные цепи • 3 + Трехфазные несимметричные цепи (1 + Трехфазные несимметричные цепи + Трехфазные несимметричные цепи)
откуда
Трехфазные несимметричные цепиТрехфазные несимметричные цепи                                       (21.16)

Свойства трехфазных цепей

Отметим некоторые свойства трехфазных цепей  в отношении симметричных составляющих токов и напряжений.

Степень несимметрии линейных напряжений оценивается коэффициентом несимметрии, т.е. отношением составляющей обратной последовательности напряжений к составляющей прямой последовательности.
ε = 100 • Uоп/Uпп.
Отсюда следует, что ток в нулевом проводе можно найти, если утроить величину составляющей тока нулевой последовательности.
В трехпроводной системе сумма линейных токов равна нулю. Из формулы (21.14) следует, что линейные токи в этом случае не содержат составляющей нулевой последовательности. Это справедливо и для линейных напряжений трехфазной системы, сумма которых тоже равна нулю.
Трехфазные несимметричные цепи
Рис. 21.10. Симметричные составляющие токов трехфазной цепи при разомкнутых двух фазах

Отсутствие тока в одной или двух фазах при несимметричном режиме означает, что сумма трех симметричных составляющих токов в этих фазах равна нулю.
Например, на схеме рис. 21.10, а фазы В и С разомкнуты. Поэтому Трехфазные несимметричные цепи
Согласно формулам (21.14) — (21.16), симметричные составляющие токов имеют следующие выражения:
прямой последовательности
Трехфазные несимметричные цепи
обратной последовательности
Трехфазные несимметричные цепи
нулевой последовательности
Трехфазные несимметричные цепи
На рис. 21.10, б показаны симметричные составляющие прямой, обратной и нулевой последовательности и их геометрическое сложение; в результате сложения получаем:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи

Задача 21.8.

В результате неправильной маркировки концов обмоток трехфазного трансформатора (начало фазы А вторичной обмотки помечено как конец) система линейных напряжений несимметрична. Определить симметричные составляющие линейных напряжений при соединении звездой, если фазные напряжения во вторичной обмотке 220 В.
Решение. Запишем комплексы фазных напряжений во вторичной обмотке:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Вектор напряжения Трехфазные несимметричные цепи в соответствии с условием задачи повернут на 180°.
Комплексы линейных напряжений:
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Составляющие:
нулевой последовательности
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
прямой последовательности
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
обратной последовательности
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи

Трехфазные несимметричные цепи
Рис. 21.11. К задаче 21.8

На рис. 21.11, а, б показаны векторы систем прямой и обратной последовательности и их сумма — система трех исходных векторов линейных напряжений.

Задача 21.9.

Трехфазный электродвигатель, включенный в сеть с линейным напряжением 380 В при соединении звездой, имеет мощность на валу Р2 = 14 кВт; соsφ = 0,8; к. п. д. η = 0,85.
Определить симметричные составляющие токов в обмотке двигателя при обрыве линейного провода в фазе В.
Решение. При нормальной работе ток в фазе двигателя
Трехфазные несимметричные цепи
При симметричной системе напряжений токи в фазах двигателя образуют симметричную систему (рис. 21.12, а). При обрыве линейного провода В векторная диаграмма фазных напряжений и токов показана на рис. 21.12, б.
Ток в фазах В равен нулю (IB = 0).
Токи в фазах А и С равны по величине, но находятся в противофазе: IА = IC.
Для определения величины токов IА и IC  найдем расчетное сопротивление фазы двигателя при нормальном режиме, которое будем считать неизменным:
Трехфазные несимметричные цепи
При обрыве линейного провода фазы В обмотки двух других фаз двигателя с одинаковым сопротивлением включены последовательно на линейное напряжение UCA. Поэтому ток в фазах А и С
Трехфазные несимметричные цепи

Трехфазные несимметричные цепи
Рис. 21.12. к задаче 21.9

Выразим токи в комплексной форме, полагая ток IA совпадающим с положительным направлением действительной оси:
Трехфазные несимметричные цепи
Токи:
нулевой последовательности
Трехфазные несимметричные цепи
прямой последовательности
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи
обратной последовательности
Трехфазные несимметричные цепи
Трехфазные несимметричные цепи

На рис. 21.12, в изображены симметричные составляющие токов в двигателе при обрыве фазы.

Несимметричный режим работы трехфазной цепи

Несимметрия в трехфазной цепи может быть вызвана различными причинами: 1) неодинаковым сопротивлением фаз (несимметричная нагрузка); 2) несимметричным коротким замыканием (например, между двумя фазами или фазой и нейтралью); 3) размыканием фазы; 4) неравенством э. д. с. и т. п.

Расчет токов и напряжений в трехфазной цепи при несимметричном режиме может производиться теми же

методами, которые применяются для расчета однофазных цепей.

Рассмотрим несколько простейших вариантов (без взаимной индукции между фазами).

1.    Несимметричная трехфазная цепь, соединенная звездой, с нейтральным проводом (рис. 12-13).

Трехфазные несимметричные цепи

Несимметричная трехфазная цепь, показанная на рис. 12-13, может рассматриваться как трехконтурная цепь с тремя э. д. с. Такая цепь может быть рассчитана методами контурных токов, узловых напряжений и другими. Поскольку в схеме имеются только два узла, наиболее целесообразно в данном случае определить узловое напряжение (напряжение смещения) между нейтральными точками N' и N по формуле,Трехфазные несимметричные цепи

где Трехфазные несимметричные цепи— проводимости соответствующих ветвей.

После этого найдем токи:

Трехфазные несимметричные цепи

В симметричной трехфазной цепи Трехфазные несимметричные цепи и поэтому при Трехфазные несимметричные цепи узловое напряжение равно нулю.

Стучаю размыкания какой-либо фазы или нейтрального провода соответствует равенство нулю проводимости данной фазы или нейтрального провода.    j

При отсутствии нейтрального провода, полагая в (12-1)Трехфазные несимметричные цепи, имеем:
Трехфазные несимметричные цепи
2.    Несимметричная трехфазная нагрузка, соединенная звездой (без нейтрального провода), с заданными линейными напряжениями на выводах (рис. 12-14).

Если заданы линейные напряженияТрехфазные несимметричные цепина выводах нагрузки, соединенной звездой, то токи в фазах звезды определяются следующим образом.

Трехфазные несимметричные цепи

Обозначив фазные напряжения на выводах нагрузки черезТрехфазные несимметричные цепи(рис. 12-14), получим

Трехфазные несимметричные цепи
где Трехфазные несимметричные цепи— проводимости фаз нагрузки.

Равенство нулю суммы токов трех фаз записывается в виде:

Трехфазные несимметричные цепи

Фазные напряжения Трехфазные несимметричные цепи могут быть выражены через Трехфазные несимметричные цепии заданные линейные напряжения:

Трехфазные несимметричные цепи

Подстановка (12-3) в (12-2) дает:

Трехфазные несимметричные цепи
Круговой заменой индексов (с порядком следования АВСА и т. д.) находятся:
Трехфазные несимметричные цепи
По фазным напряжениям нагрузки находятся фазные токи.

В Случае симметричной нагрузки Трехфазные несимметричные цепи вектор фазного напряжения равен одной трети диагонали параллелограмма, построенного на соответствующих линейных напряжениях. Фазные напряжения в этом случае определяются векторами, соединяющими центр тяжести треугольника напряжений (точка пересечения медиан) с вершинами треугольника.

Трехфазные несимметричные цепи

На рис. 12-15 построение сделано для фазы А по формуле (12-4)1

Трехфазные несимметричные цепи

В качестве примера рассмотрим схему фазоуказателя, используемую для определения чередования фаз по времени, состоящую из конденсатора и двух одинаковых электрических ламп, соединенных звездойТрехфазные несимметричные цепи.

Положим, что конденсатор присоединен к фазе А, лампы — к фазам В и С; емкостное сопротивление конденсатора берется равным по модулю сопротивлению лампы, т. е. Трехфазные несимметричные цепи причем Трехфазные несимметричные цепи

Неравенство напряжений на лампах проявится в том, что накал ламп будет разным. 

1 Для определения чередования фаз на практике обычно пользуются специальным прибором, в котором создается вращающееся магнитное поле, увлекающее за собой диск в ту или другую сторону.

Отношение напряжений согласно выведенным выше выражениям (12-4) равно при симметрии линейных напряжений:
Трехфазные несимметричные цепи

Следовательно, лампа, присоединенная к фазе В (т. е. к фазе, опережающей ту, к которой присоединена вторая лампа), будет светить ярко, а лампа, присоединенная к отстающей фазе, — тускло.

Вместо конденсатора можно применить индуктивную катушку, подобрав ее индуктивное сопротивление приблизительно равным по модулю сопротивлению лампы. В этом случае ярче будет светить лампа, присоединенная к отстающей фазе. Эти соотношения также могут быть получены непосредственно из векторной диаграммы.

Трехфазные несимметричные цепи

3. Несимметричная трехфазная нагрузка, соединенная треугольником, с заданными напряжениями на выводах Рис. 12-16. Несимметричная (рис. 12-16).   Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы линейные напряжения Трехфазные несимметричные цепи (рис. 12-16), то токи в сопротивлениях нагрузки равны:

Трехфазные несимметричные цепи
Токи в линии определяются как разности соответствующих токов нагрузки, например: Трехфазные несимметричные цепии т. д.

Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы фазные напряжения Трехфазные несимметричные цепи источника, соединенного в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений, в результате чего задача сводится к только что рассмотренному случаю(рис. 12-16).
Пример 12-2. Сопротивления фаз нагрузки, соединенной звездной
Трехфазные несимметричные цепиТрехфазные несимметричные цепи

Сопротивление нейтрального провода

Трехфазные несимметричные цепи

Напряжения на цепи представляют собой симметричную звезду: Трехфазные несимметричные цепи

Требуется определить фазные напряжения нагрузки.

Проводимости фаз нагрузки и нейтрального провода

Трехфазные несимметричные цепи

На основании формулы (12-1)

Трехфазные несимметричные цепи

Искомые фазные напряжения нагрузки:

Трехфазные несимметричные цепи

Мощность несимметричной трехфазной цепи

Пользуясь комплексной формой записи мощности, можно написать общее выражение для мощности трехфазной цепи:

Трехфазные несимметричные цепи

Действительная часть этого выражения представляет собой активную мощность

Трехфазные несимметричные цепи

Суммарная активная мощность, потребляемая несимметричной трехфазной цепью, может быть в соответствии с этим измерена при помощи трех ваттметров, включенных на подведенные к данной цепи фазные напряжения относительно нейтрали и одноименные с ними токи. Активная мощность равна сумме показаний трех ваттметров. Такой метод измерения применяется при наличии нейтрального провода (рис. 12-17) или искусственно созданной нейтральной точки.

В случае отсутствия нейтрального провода измерение может быть произведено с помощью двух ваттметров
Трехфазные несимметричные цепи

(рис. 12-18). В этом случае выражение (12-5) преобразуется следующим образом: исключая ток Трехфазные несимметричные цепи с помощью условияТрехфазные несимметричные цепи
получаем:Трехфазные несимметричные цепи

или
Трехфазные несимметричные цепи

В соответствии с (12-6) при измерении активной мощности двумя ваттметрами к одному из них подводятся напряжение Трехфазные несимметричные цепи и ток Трехфазные несимметричные цепи а ко второму — напряжение Трехфазные несимметричные цепи и ток Трехфазные несимметричные цепи (рис. 12-18, а). Показания ваттметров складываются алгебраически.

Круговой заменой А, В. и С в выражении (12-6) можно получить выражения для других равноценных вариантов включения двух ваттметров.

Следует иметь в виду', что если стрелка одного ваттметра отклоняется по шкале в обратную сторону, то, изменив направление напряжения или тока, подводимого к данному ваттметру, записывают полученное показание со знаком минус. При симметричном режиме работы трехфазной цепи такое положение имеет место при

Трехфазные несимметричные цепи

что видно непосредственно из векторной диаграммы (рис. 12-18, б).

При симметричном режиме показания двух ваттметров в схеме рис. 12-18, б будут следующие:

Трехфазные несимметричные цепи

Сумма и разность показаний ваттметров соответственно равны:

Трехфазные несимметричные цепи

Следовательно, при симметричном режиме работы трехфазной цепи тангенс угла сдвига фаз может быть вычислен по формуле

Трехфазные несимметричные цепи