Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Содержание:

Точечные оценки:

Пусть случайная величина имеет неизвестную характеристику а. Такой характеристикой может быть, например, закон распределения, математическое ожидание, дисперсия, параметр закона распределения, вероятность определенного значения случайной величины и т.д. Пронаблюдаем случайную величину n раз и получим выборку из ее возможных значений Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Существует два подхода к решению этой задачи. Можно по результатам наблюдений вычислить приближенное значение характеристики, а можно указать целый интервал ее значений, согласующихся с опытными данными. В первом случае говорят о точечной оценке, во втором – об интервальной.

Определение. Функция результатов наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Для одной и той же характеристики можно предложить разные точечные оценки. Необходимо иметь критерии сравнения оценок, для суждения об их качестве. Оценка Точечные оценки, свойства оценок - определение и вычисление с примерами решения как функция случайных результатов наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения сама является случайной величиной. Значения Точечные оценки, свойства оценок - определение и вычисление с примерами решения найденные по разным сериям наблюдений, могут отличаться от истинного значения характеристики Точечные оценки, свойства оценок - определение и вычисление с примерами решения в ту или другую сторону. Естественно потребовать, чтобы оценка систематически не завышала и не занижала оцениваемое значение, а с ростом числа наблюдений становилась более точной. Формализация названных требований приводит к следующим понятиям.

Определение. Оценка называется несмещенной, если ее математическое ожидание равно оцениваемой величине: Точечные оценки, свойства оценок - определение и вычисление с примерами решения В противном случае оценку называют смещенной.

Определение. Оценка называется состоятельной, если при увеличении числа наблюдений она сходится по вероятности к оцениваемой величине, т.е. для любого сколь угодно малого Точечные оценки, свойства оценок - определение и вычисление с примерами решения

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Если известно, что оценка Точечные оценки, свойства оценок - определение и вычисление с примерами решения несмещенная, то для ее состоятельности достаточно, чтобы

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Последнее условие удобно для проверки. В качестве меры разброса значений оценки Точечные оценки, свойства оценок - определение и вычисление с примерами решения относительно Точечные оценки, свойства оценок - определение и вычисление с примерами решения можно рассматривать величину Точечные оценки, свойства оценок - определение и вычисление с примерами решения Из двух оценок предпочтительней та, для которой эта величина меньше. Если оценка имеет наименьшую меру разброса среди всех оценок характеристики, построенных по Точечные оценки, свойства оценок - определение и вычисление с примерами решения наблюдениям, то оценку называют эффективной.

Следует отметить, что несмещенность и состоятельность являются желательными свойствами оценок, но не всегда разумно требовать наличия этих свойств у оценки. Например, может оказаться предпочтительней оценка хотя и обладающая небольшим смещением, но имеющая значительно меньший разброс значений, нежели несмещенная оценка. Более того, есть характеристики, для которых нет одновременно несмещенных и состоятельных оценок.

Оценки для математического ожидания и дисперсии

Пусть случайная величина имеет неизвестные математическое ожидание и дисперсию, причем Точечные оценки, свойства оценок - определение и вычисление с примерами решения Если Точечные оценки, свойства оценок - определение и вычисление с примерами решения– результаты Точечные оценки, свойства оценок - определение и вычисление с примерами решения независимых наблюдений случайной величины, то в качестве оценки для математического ожидания можно предложить среднее арифметическое наблюдаемых значений Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Несмещенность такой оценки следует из равенствТочечные оценки, свойства оценок - определение и вычисление с примерами решения

В силу независимости наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения

При условии Точечные оценки, свойства оценок - определение и вычисление с примерами решения имеем Точечные оценки, свойства оценок - определение и вычисление с примерами решения что означает состоятельность оценки Точечные оценки, свойства оценок - определение и вычисление с примерами решения.

Доказано, что для математического ожидания нормально распределенной случайной величины оценка Точечные оценки, свойства оценок - определение и вычисление с примерами решения еще и эффективна.

Оценка математического ожидания посредством среднего арифметического наблюдаемых значений наводит на мысль предложить в качестве оценки для дисперсии величину

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Преобразуем величину Точечные оценки, свойства оценок - определение и вычисление с примерами решения обозначая для краткости Точечные оценки, свойства оценок - определение и вычисление с примерами решения через Точечные оценки, свойства оценок - определение и вычисление с примерами решенияТочечные оценки, свойства оценок - определение и вычисление с примерами решения

В силу (3.1.2) имеем Точечные оценки, свойства оценок - определение и вычисление с примерами решения ПоэтомуТочечные оценки, свойства оценок - определение и вычисление с примерами решения 

Последняя запись означает, что оценка Точечные оценки, свойства оценок - определение и вычисление с примерами решения имеет смещение. Она систематически занижает истинное значение дисперсии. Для получения несмещенной оценки введем поправку в виде множителя Точечные оценки, свойства оценок - определение и вычисление с примерами решения и полученную оценку обозначим через Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Величина

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

является несмещенной и состоятельной оценкой дисперсии.

Пример:

Оценить математическое ожидание и дисперсию случайной величины Х по результатам ее независимых наблюдений: 7, 3, 4, 8, 4, 6, 3.

Решение. По формулам (3.1.1) и (3.1.3) имеем Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ. Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Данные 25 независимых наблюдений случайной величины представлены в сгруппированном виде: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Требуется оценить математическое ожидание и дисперсию этой случайной величины.

Решение. Представителем каждого интервала можно считать его середину. С учетом этого формулы (3.1.1) и (3.1.3) дают следующие оценки:Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ.  Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Метод наибольшего правдоподобия для оценки параметров распределений

В теории вероятностей и ее приложениях часто приходится иметь дело с законами распределения, которые определяются некоторыми параметрами. В качестве примера можно назвать нормальный закон распределения Точечные оценки, свойства оценок - определение и вычисление с примерами решения Его параметры Точечные оценки, свойства оценок - определение и вычисление с примерами решения и Точечные оценки, свойства оценок - определение и вычисление с примерами решения имеют смысл математического ожидания и дисперсии соответственно. Их можно оценить с помощью Точечные оценки, свойства оценок - определение и вычисление с примерами решения и Точечные оценки, свойства оценок - определение и вычисление с примерами решения В общем случае параметры законов распределения не всегда напрямую связаны со значениями числовых 179 характеристик. Поэтому практический интерес представляет следующая задача.

Пусть случайная величина Х имеет функцию распределения Точечные оценки, свойства оценок - определение и вычисление с примерами решения причем тип функции распределения F известен, но неизвестно значение параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения По данным результатов наблюдений нужно оценить значение параметра. Параметр может быть и многомерным.

Продемонстрируем идею метода наибольшего правдоподобия на упрощенном примере. Пусть по результатам наблюдений, отмеченных на рис. 3.1.1 звездочками, нужно отдать предпочтение одной из двух функций плотности вероятности Точечные оценки, свойства оценок - определение и вычисление с примерами решения или Точечные оценки, свойства оценок - определение и вычисление с примерами решения Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Из рисунка видно, что при значении параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения такие результаты наблюдений маловероятны и вряд ли бы реализовались. При значении же Точечные оценки, свойства оценок - определение и вычисление с примерами решения эти результаты наблюдений вполне возможны. Поэтому значение параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения более правдоподобно, чем значение Точечные оценки, свойства оценок - определение и вычисление с примерами решения. Такая аргументация позволяет сформулировать принцип наибольшего правдоподобия: в качестве оценки параметра выбирается то его значение, при котором данные результаты наблюдений наиболее вероятны.

Этот принцип приводит к следующему способу действий. Пусть закон распределения случайной величины Х зависит от неизвестного значения параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения Обозначим через Точечные оценки, свойства оценок - определение и вычисление с примерами решения для непрерывной случайной величины плотность вероятности в точке Точечные оценки, свойства оценок - определение и вычисление с примерами решения а для дискретной случайной величины – вероятность того, что Точечные оценки, свойства оценок - определение и вычисление с примерами решения Если в Точечные оценки, свойства оценок - определение и вычисление с примерами решения независимых наблюдениях реализовались значения случайной величины Точечные оценки, свойства оценок - определение и вычисление с примерами решения то выражение Точечные оценки, свойства оценок - определение и вычисление с примерами решения

называют функцией правдоподобия. Величина Точечные оценки, свойства оценок - определение и вычисление с примерами решения зависит только от параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения при фиксированных результатах наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения При каждом значении параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения функция Точечные оценки, свойства оценок - определение и вычисление с примерами решения равна вероятности именно тех значений дискретной случайной величины, которые получены в процессе наблюдений. Для непрерывной случайной величины Точечные оценки, свойства оценок - определение и вычисление с примерами решения равна плотности вероятности в точке выборочного пространства Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Сформулированный принцип предлагает в качестве оценки значения параметра выбрать такое Точечные оценки, свойства оценок - определение и вычисление с примерами решения при котором Точечные оценки, свойства оценок - определение и вычисление с примерами решения принимает наибольшее значение. Величина Точечные оценки, свойства оценок - определение и вычисление с примерами решения будучи функцией от результатов наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения называется оценкой наибольшего правдоподобия.

Во многих случаях, когда Точечные оценки, свойства оценок - определение и вычисление с примерами решения дифференцируема, оценка наибольшего правдоподобия находится как решение уравнения Точечные оценки, свойства оценок - определение и вычисление с примерами решения

которое следует из необходимого условия экстремума. Поскольку Точечные оценки, свойства оценок - определение и вычисление с примерами решения достигает максимума при том же значении Точечные оценки, свойства оценок - определение и вычисление с примерами решения, что и Точечные оценки, свойства оценок - определение и вычисление с примерами решения, то можно решать относительно Точечные оценки, свойства оценок - определение и вычисление с примерами решения эквивалентное уравнениеТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Это уравнение называют уравнением правдоподобия. Им пользоваться удобнее, чем уравнением (3.1.5), так как функция Точечные оценки, свойства оценок - определение и вычисление с примерами решения равна произведению, а Точечные оценки, свойства оценок - определение и вычисление с примерами решения– сумме, а дифференцировать Точечные оценки, свойства оценок - определение и вычисление с примерами решения проще.

Если параметров несколько (многомерный параметр), то следует взять частные производные от функции правдоподобия по всем параметрам, приравнять частные производные нулю и решить полученную систему уравнений.

Оценку, получаемую в результате поиска максимума функции правдоподобия, называют еще оценкой максимального правдоподобия.

Известно, что оценки максимального правдоподобия состоятельны. Кроме того, если для q существует эффективная оценка, то уравнение правдоподобия имеет единственное решение, совпадающее с этой оценкой. Оценка максимального правдоподобия может оказаться смещенной.

Метод моментов

Начальным моментом Точечные оценки, свойства оценок - определение и вычисление с примерами решенияго порядка случайной величины Х называется математическое ожидание Точечные оценки, свойства оценок - определение и вычисление с примерами решенияй степени этой величины, т.е. Точечные оценки, свойства оценок - определение и вычисление с примерами решения Само математическое ожидание считается начальным моментом первого порядка.

Центральным моментом Точечные оценки, свойства оценок - определение и вычисление с примерами решенияго порядка называется Точечные оценки, свойства оценок - определение и вычисление с примерами решения Очевидно, что дисперсия – это центральный момент второго порядка. Если закон распределения случайной величины зависит от некоторых параметров, то от этих параметров зависят и моменты случайной величины.

Для оценки параметров распределения по методу моментов находят на основе опытных данных оценки моментов в количестве, равном числу оцениваемых параметров. Эти оценки приравнивают к соответствующим теоретическим моментам, величины которых выражены через параметры. Из полученной системы уравнений можно определить искомые оценки. 

Например, если Х имеет плотность распределения Точечные оценки, свойства оценок - определение и вычисление с примерами решения то Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Если воспользоваться величиной Точечные оценки, свойства оценок - определение и вычисление с примерами решения как оценкой для Точечные оценки, свойства оценок - определение и вычисление с примерами решения на основе опытных данных, то оценкой Точечные оценки, свойства оценок - определение и вычисление с примерами решения по методу моментов будет решение уравнения Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Найти оценку параметра показательного закона распределения по методу моментов.

Решение. Плотность вероятности показательного закона распределения имеет вид Точечные оценки, свойства оценок - определение и вычисление с примерами решения Поэтому Точечные оценки, свойства оценок - определение и вычисление с примерами решенияТочечные оценки, свойства оценок - определение и вычисление с примерами решения Откуда Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ. Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Пусть имеется простейший поток событий неизвестной интенсивности Точечные оценки, свойства оценок - определение и вычисление с примерами решения. Для оценки параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения проведено наблюдение потока и зарегистрированы Точечные оценки, свойства оценок - определение и вычисление с примерами решения – длительности Точечные оценки, свойства оценок - определение и вычисление с примерами решенияпоследовательных интервалов времени между моментами наступления событий. Найти оценку для Точечные оценки, свойства оценок - определение и вычисление с примерами решения.

Решение. В простейшем потоке интервалы времени между последовательными моментами наступления событий потока имеют показательный закон распределения Точечные оценки, свойства оценок - определение и вычисление с примерами решения Так как плотность вероятности показательного закона распределения равна Точечные оценки, свойства оценок - определение и вычисление с примерами решения то функция правдоподобия (3.1.4) имеет видТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Тогда  Точечные оценки, свойства оценок - определение и вычисление с примерами решения и уравнение правдоподобия Точечные оценки, свойства оценок - определение и вычисление с примерами решения имеет решение Точечные оценки, свойства оценок - определение и вычисление с примерами решения

При таком значении Точечные оценки, свойства оценок - определение и вычисление с примерами решения функция правдоподобия действительно достигает наибольшего значения, так как Точечные оценки, свойства оценок - определение и вычисление с примерами решения

ОтветТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Определение. Пусть Точечные оценки, свойства оценок - определение и вычисление с примерами решения – результаты n независимых наблюдений случайной величины X. Если расставить эти результаты в порядке возрастания, то получится последовательность значений, которую называют вариационным рядом и обозначают: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения
В этой записи Точечные оценки, свойства оценок - определение и вычисление с примерами решения 

Величины Точечные оценки, свойства оценок - определение и вычисление с примерами решения называют порядковыми статистиками.

Пример:

Случайная величина Х имеет равномерное распределение на отрезке Точечные оценки, свойства оценок - определение и вычисление с примерами решения где Точечные оценки, свойства оценок - определение и вычисление с примерами решения и Точечные оценки, свойства оценок - определение и вычисление с примерами решения неизвестны. Пусть Точечные оценки, свойства оценок - определение и вычисление с примерами решения – результаты Точечные оценки, свойства оценок - определение и вычисление с примерами решения независимых наблюдений. Найти оценку параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения.

Решение. Функция плотности вероятности величины Х имеет видТочечные оценки, свойства оценок - определение и вычисление с примерами решения

В этом случае функция правдоподобия Точечные оценки, свойства оценок - определение и вычисление с примерами решения от Точечные оценки, свойства оценок - определение и вычисление с примерами решения явно не зависит. Дифференцировать по Точечные оценки, свойства оценок - определение и вычисление с примерами решения такую функцию нельзя и нет возможности записать уравнение правдоподобия. Однако легко видеть, что Точечные оценки, свойства оценок - определение и вычисление с примерами решения возрастает при уменьшении Точечные оценки, свойства оценок - определение и вычисление с примерами решения. Все результаты наблюдений лежат в Точечные оценки, свойства оценок - определение и вычисление с примерами решения поэтому можно записать:

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

где Точечные оценки, свойства оценок - определение и вычисление с примерами решения – наименьший, а Точечные оценки, свойства оценок - определение и вычисление с примерами решения – наибольший из результатов наблюдений. При минимально возможном Точечные оценки, свойства оценок - определение и вычисление с примерами решения 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

откуда Точечные оценки, свойства оценок - определение и вычисление с примерами решения или Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Оценкой наибольшего правдоподобия для параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения будет величинаТочечные оценки, свойства оценок - определение и вычисление с примерами решения

ОтветТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Случайная величина X имеет функцию распределенияТочечные оценки, свойства оценок - определение и вычисление с примерами решения

где Точечные оценки, свойства оценок - определение и вычисление с примерами решения неизвестный параметр.

Пусть Точечные оценки, свойства оценок - определение и вычисление с примерами решения – результаты Точечные оценки, свойства оценок - определение и вычисление с примерами решениянезависимых наблюдений случайной величины X. Требуется найти оценку наибольшего правдоподобия для параметра Точечные оценки, свойства оценок - определение и вычисление с примерами решения и найти оценку для M(X).

Решение. Для построения функции правдоподобия найдем сначала функцию плотности вероятности

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Тогда функция правдоподобия: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Логарифмическая функция правдоподобия: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Уравнение правдоподобия

 Точечные оценки, свойства оценок - определение и вычисление с примерами решения

не имеет решений. Критических точек нет. Наибольшее и наименьшее значения Точечные оценки, свойства оценок - определение и вычисление с примерами решения находятся на границе допустимых значений Точечные оценки, свойства оценок - определение и вычисление с примерами решения.

По виду функции Точечные оценки, свойства оценок - определение и вычисление с примерами решения можно заключить, что значение Точечные оценки, свойства оценок - определение и вычисление с примерами решения тем больше, чем меньше величина Точечные оценки, свойства оценок - определение и вычисление с примерами решения. Но Точечные оценки, свойства оценок - определение и вычисление с примерами решения не может быть меньше Точечные оценки, свойства оценок - определение и вычисление с примерами решения Поэтому наиболее правдоподобное значение Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Так как Точечные оценки, свойства оценок - определение и вычисление с примерами решения, то оценкой наибольшего правдоподобия для Точечные оценки, свойства оценок - определение и вычисление с примерами решения будет величина Точечные оценки, свойства оценок - определение и вычисление с примерами решения
Ответ. Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Случайная величина Х имеет нормальный закон распределения Точечные оценки, свойства оценок - определение и вычисление с примерами решения c неизвестными параметрами Точечные оценки, свойства оценок - определение и вычисление с примерами решения и Точечные оценки, свойства оценок - определение и вычисление с примерами решения По результатам независимых наблюдений Точечные оценки, свойства оценок - определение и вычисление с примерами решения найти наиболее правдоподобные значения этих параметров.

Решение. В соответствии с (3.1.4) функция правдоподобия имеет вид Точечные оценки, свойства оценок - определение и вычисление с примерами решения

а логарифмическая функция правдоподобия: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Необходимые условия экстремума дают систему двух уравнений: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Решения этой системы имеют вид: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Отметим, что обе оценки являются состоятельными, причем оценка для Точечные оценки, свойства оценок - определение и вычисление с примерами решения несмещенная, а для Точечные оценки, свойства оценок - определение и вычисление с примерами решения смещенная (сравните с формулой (3.1.3)).

Ответ. Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

По данным эксперимента построен статистический ряд: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Найти оценки математического ожидания, дисперсии и среднего квадратического отклонения случайной величины X.
Решение. 1) Число экспериментальных данных вычисляется по формуле:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Значит, объем выборки n = 50.

2) Вычислим среднее арифметическое значение эксперимента:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Значит, найдена оценка математического ожидания Точечные оценки, свойства оценок - определение и вычисление с примерами решения= 12,3.

3) Вычислим исправленную выборочную дисперсию:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Значит, найдена оценка дисперсии: Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 1,44.

5) Вычислим оценку среднего квадратического отклонения:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения
Ответ: Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

По данным эксперимента построен статистический ряд: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Найти оценки математического ожидания, дисперсии и среднего квадратического отклонения случайной величины X.
Решение. По формуле

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

перейдем к условным вариантам: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Для них произведем расчет точечных оценок параметров:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Следовательно, вычисляем искомые точечные оценки: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

ОтветТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

По данным эксперимента построен интервальный статистический ряд: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Найти оценки математического ожидания, дисперсии и среднего квадратического отклонения.
Решение. 1) От интервального ряда перейдем к статистическому ряду, заменив интервалы их серединами  Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

2) Объем выборки вычислим по формуле:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

3) Вычислим среднее арифметическое значений эксперимента:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

3) Вычислим исправленную выборочную дисперсию:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Можно было воспользоваться следующей формулой:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

5)  Вычислим оценку среднего квадратического отклонения: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

ОтветТочечные оценки, свойства оценок - определение и вычисление с примерами решения

Пример:

Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания M(X) нормально распределенной случайной величины X, если известно среднее квадратическое отклонение σ = 2, оценка математического ожидания Точечные оценки, свойства оценок - определение и вычисление с примерами решения объем выборки n = 25.
 

Решение. Доверительный интервал для истинного математического ожидания с доверительной вероятностью Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,95 при известной дисперсии σ находится по формуле:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

где m = M(X) – истинное математическое ожидание; 𝑥̅ − оценка M(X) по выборке; n – объем выборки; Точечные оценки, свойства оценок - определение и вычисление с примерами решения – находится по доверительной вероятности Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,95 из равенства:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Из табл. П 2.2 приложения 2 находим: Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 1,96. Следовательно, найден доверительный интервал для M(X): 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ: (9,216 ; 10,784).

Пример:

По данным эксперимента построен статистический ряд: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Найти доверительный интервал для математического ожидания M (X) с надежностью 0,95.
 

Решение. Воспользуемся формулой для доверительного интервала математического ожидания при неизвестной дисперсии:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

где n – объем выборки; 𝑥̅ оценка M(X);  s – оценка среднего квадратического отклонения; Точечные оценки, свойства оценок - определение и вычисление с примерами решения  − находится по доверительной вероятности Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,95.

По числам Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,95 и n = 20 находим: Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 2,093.
Теперь вычисляем оценки для M(X) и D(X):

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Следовательно, s ≈ 1,685. Поэтому искомый доверительный интервал математического ожидания задается формулой: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ: (– 0,76; 0,76).

Пример:

По данным десяти независимых измерений найдена оценка квадратического отклонения Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,5. Найти доверительный интервал точности измерительного прибора с надежностью 99 %.
 

Решение. Задача сводится к нахождению доверительного интервала для истинного квадратического отклонения, так как точность прибора характеризуется средним квадратическим отклонением случайных ошибок измерений.

Доверительный интервал для среднего квадратического отклонения находим по формуле:

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

где  Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,5 − оценка среднего квадратического отклонения; Точечные оценки, свойства оценок - определение и вычисление с примерами решения – число, определяемое из табл. П 2.4 приложения 2 по заданной доверительной вероятности  Точечные оценки, свойства оценок - определение и вычисление с примерами решения = 0,99 и заданному объему выборки  n = 10.
Находим:   Точечные оценки, свойства оценок - определение и вычисление с примерами решения
Тогда можно записать: 

Точечные оценки, свойства оценок - определение и вычисление с примерами решения

Ответ: (0; 1,04).