Тени в ортогональных проекциях в начертательной геометрии с примерами
Содержание:
Проекционные чертежи архитектурных объектов выполненные в одних линиях, не дают достаточно полного представления о запроектированном объекте.
Для придания объемности и наглядности ортогональным чертежам зданий и сооружений выполняется построение теней.
Тени строятся от естественного освещения, т.е. солнца. Так как солнце практически бесконечно удаленная точка, то лучи принимаются параллельными. За направление лучей принимается диагональ куба грани которого совпадают с плоскостями проекций, а её проекции являются диагоналями граней куба, т.е. квадратов (см. рисунок 4.1). Истинный угол наклона будет равен 35°, а проекции лучей располагаются под углом 45° к оси (см. рисунок 4.1).
Тень точки - способ следа луча, способ выноса
Тенью точки на плоскости является точка пересечения светового луча, проведенного через данную точку, с плоскостью. Если тень точки падает на плоскость проекций, то для её построения используется способ следа луча. Т.е. через проекции точки проводим проекции лучей и строим след. На рисунке 4.2 след луча фронтальный, следовательно тень падает на фронтальную плоскость —
Кроме этого может быть использован метод выноса. Особенно важен этот метод при построении теней на фасадах зданий.
Вынос - это расстояние от точки до фронтальной плоскости или плоскости фасада, если тень строится на фасаде. На рисунке 4.3 у - эго вынос.
Тень примой общего положении
Тенью прямой на плоскость является линия пересечения лучевой плоскости, проведенной через прямую с заданной плоскостью. Т.е. тенью прямой на плоскость является прямая линия. Поэтому для построения тени прямой на плоскость, достаточно построить тени двух ее точек.
Если же тень от прямой падает на две плоскости, то она имеет точку излома, лежащую на линии пересечения плоскостей. В данном случае точка излома лежит на оси (рисунок 4.4). Для ее нахождения, необходимо строить мнимую тень т.е. определить горизонтальный след луча проведенного через точку В.
Тени прямых частного положении
Тени прямых частного положения на плоскостях проекций располагаются всегда определенно и часто служат «опорными» при построении теней различных деталей, включающих такие прямые. Рассмотрим эти случаи.
Тень от прямой, на плоскость ей параллельную, располагается параллельно прямой, т.е. параллельно проекции прямой на эту плоскость и равна ей по величине (рисунок 4.5).
Тень от прямой на плоскость, ей перпендикулярную, располагается по проекции луча, т.е. под углом 45° (рисунок 4.6).
Если точка лежит на плоскости, то тень совпадает с самой точкой и такая точка называется сама себе тень. В нашем случае это точка В. Тень на фронтальной плоскости от горизонтальной прямой, расположенной под углом 45° к ней, вертикальна (рисунок 4.7)
Тени плоских фигур
Чтобы построить тень от плоской фигуры, например треугольника, падающую на плоскости проекций достаточно построить тени от вершин (рисунок 4.8). Т.к. тень падает на две плоскости необходимо определять линию излома тени, а, следовательно, построить мнимую тень от вершины В.
Тень от плоской фигуры, на плоскость ей параллельную, изображается фигурой равной ей по величине. Поэтому достаточно построить тень от одной точки и вычертить тень в виде той же фигуры. Так, для построения тени от окружности (рисунок 4.9) достаточно определить тень от центра и вычертить тень в виде такой же окружности.
Тень окружности
Тень окружности обычно строится по восьми точкам. Из них четыре -точки касания окружности к сторонам описанного около окружности квадрата, и четыре - точки пересечения окружности с диагоналями этого квадрата (рисунок 4.10).
Тень от квадрата - параллелограмм, диагональ которого BD вертикальна. Точки 1,3,5,7 точки касания к параллелограмму. Точки, лежащие на диагоналях, делят радиус в отношении 0,707. Они могут быть получены без горизонтальной проекции. Для этого на
радиусе строим равнобедренный треугольник с углами при основании 45° и дугой окружности определяем положение точек 2,8 и 4,6. Проведем из них лучи до пересечения с диагоналями. Полученные восемь точек соединяем плавной линией, которая будет эллипсом. Практически тень окружности по восьми точкам строят без горизонтальной проекции, которая здесь приведена только для пояснения.
Тени поверхностей. Понятие собственной и падающей тени
Для поверхностей характерны следующие понятия: Собственная тень (ф) - неосвещенна часть поверхности (предмета) рисунок 4.11.
Контур собственной тени (ш)-граница между освещенной и неосвещенной частью поверхности (предмета).
Падающая тень- тень падающая от одного предмета на другой, или на плоскость.
Контур падающей тени- контур, ограничивающий падающую тень.
Фактически контур падающей тени -это тень от контура собственной тени. Поэтому, обычно, сначала определяют контур собственной тени, а затем уже строят падающую.
Рассмотрим примеры построения теней трехгранной призмы (рисунок 4.12) и прямого кругового конуса (рисунок 4.13).
Проведя лучи на горизонтальной проекции касательные к крайним ребрам призмы, определяем контур собственной тени. Она является пространственной ломаной 1,2,3,4,5. Т.к. точки 1 и 5 лежат на плоскости они являются тенями.
Поэтому для построения контура падающей тени, достаточно построить тени точек 2,3,4.
Проанализировав построенную тень, мы видим, что тени от ребер 1,2 и 5,4 совпадают с направлением лучей, т.к. они перпендикулярны к плоскости А тени от ребер 2,3 и 3,4 параллельны этим ребрам и равны но величине, т.к. они параллельны плоскости.
Учитывая это, построение контуров падающих теней многогранников может быть значительно упрощено.
Для конуса логично сначала построить падающую тень, а затем собственную (рисунок 4.13). Для построения падающей тени, строим тень от вершины конуса
Из полученной точки проводим касательные к окружности основания. Эти касательные образуют, контур падающей тени (она является тенями от образующих конуса). Поэтому, соединив точки А и В с вершиной конуса S получим границы собственной тени конуса. А затем уже строим фронтальную проекцию контура собственной тени. Аналогично строятся тени пирамидальных поверхностей.
Тени в ортогональных проекциях. Метод лучевых сечений, метод обратных лучей. Тени фрагментов зданий
Тень точки и прямой на плоскость общего положения (способ лучевых сечений, способ обратных лучей).
Тени схематизированного здания, состоящего из призматических форм.
Тени фрагментов зданий.
Тень точки на плоскость общего положения. Способ лучевых сечений
Для построения тени точки М на плоскость (рисунок 5.1), проведем через точку М луч и определим точку пересечения луча с плоскостью а. Задача сводится к нахождению точки пересечения прямой (луча) с плоскостью.
Через луч проводим горизонтально-проецирующую лучевую плоскость о. Строим линию пересечения 1-2 плоскости а и заданной плоскости Определяем точку пересечения луча с полученной линией пересечения. Эта точка и будет тенью точки М на плоскости а.
Способ обратного луча
Рассмотрим построение тени от двух прямых SF и SB на непрозрачную пластинку ECDF. (рисунок 5.2).
Тень от проецирующей прямой SA строится, аналогично предыдущему примеру (рисунок 5.1), методом лучевых сечений. На горизонтальной проекции тень совпадает с направлением луча, на фронтальной - идет по лучевому сечению. Тень от точки S на пластину ESDF не надает. Для построения тени от наклонной прямой SB на пластину ESDF, необходимо построить сначала тень падающую на плоскость Для чего строим тень от точки S падающую на и полученную точку соединяем с точкой т.к. точка В лежит на плоскости
Далее строим тень от пластины ESDF на плоскость для чего строим тени точек С и D и соединяем их с точками лежащими на плоскостиПолученные тени пересекаются в точке . Из точки пересечения теней проводим обратный луч под углом 45° на прямую По вертикальной линии связи находим фронтальную проекцию этой точки. Обратите внимание, что точки 1 и 3, являются точками излома теней падающих на горизонтальную плоскость и на наклонную плоскость а.
Необходимо отметить что данную задачу можно решить используя построение мнимой тени от точки S на пластину ESDF (рисунок 5.3).
Тени схематизированною здании, состоящею из призматических форм
Здание состоит из двух призматических форм (рисунок 5.4). Обычно сначала строятся тени от двух этих форм падающие на плоскость (т.е. на землю).
Дли построении падающих теней определяем контур собственной тени каждой из призм (рисунок 5.46). Высотная часть здания представляет прямую призму, контур собственной тени которой 1,2,3,4,5, причем точки 1 и 5 лежат на плоскости, поэтому тени строим от трех точек 2,3,4. Контур собственной тени второй призмы - 6,7,8,9. Точка 6 лежит на , поэтому строим тени от точек 7,8,9 (рисунок 5.4а). Т.к. две полученные тени пересекаются, определяем общий контур тени. Видим, что точки являются мнимыми. Поэтому тень от точки 2 очевидно упадет на пристройку, а точка 9 будет в тени и фактически тень не отбросит.
Для построения тени падающей от высотной части здания на пристройку используем метод лучевых сечений. Заключаем луч, проведенный через точку 2 в плоскость Строим сечение призмы - пристройки плоскостью Луч, проведенный из точки 2, пересекает линию сечения в точке Т.е. тень падает на наклонную плоскость. Тень от вертикальной прямой 1,2, на горизонтальной проекции совпадает с направлением луча, на фронтальной идет по сечению. Тень от прямой 2,3 на фронтальной проекции совпадает с направлением луча, на горизонтальной идет по сечению.
При построении теней зданий очень важно помнить положение теней прямых частного положения, это значительно упрощает процесс построения.
Тени фрагментов зданий
К фрагментам зданий относятся ниши, козырьки, трубы, лестницы и т.п. Рассмотрим построение теней некоторых из них.
Тени в нишах
Две изображенные ниши относятся к нишам с плоским днищем, т.е. контур ниши отбрасывает тень на плоскость днища ниши параллельной контуру. Поэтому тени в нишах с - плоским днищем повторяют контур ниши. Для построения таких теней достаточно построить тень одной точки, как показано на примере (рисунок 5.5). Если дан лишь фасад здания, необходимо знать глубину ниши и тень построить методом выноса.
В цилиндрической нише (рисунок 5.6) сначала определяем собственную тень. Для чего удобнее провести нормаль (т.е. радиус под углом 45°). Получим контурную образующую собственной тени.
Падающую тень будет отбрасывать две прямые кромки ниши - вертикальная и продольная. Тень от вертикальной прямой надает на ось ниши. Тень от продольной прямой будет представлять четверть окружности.
Из этого чертежа можно сделать вывод: тень от продольной прямой на фасаде с вертикальными образующими зеркально повторяется план. Этот вывод позволяет построить тень на фасаде от свеса крыши, построив тень одной точки (тень точки 1 на рисунке 5.7). Остальной контур тени зеркально повторяет план.
Тень падающая от трубы на крышу
На рисунке 5.8 дана труба призматической формы.
Тень строится методом лучевых сечений. Если отсутствует план здания, то нужно иметь ввиду, что тени от вертикальных прямых на фасаде имеют угол наклона равный углу наклона ската крыши
Тень от барьера на ступенях лестницы
Контур собственной тени барьера (рисунок 5.9), отбрасывающий тень на ступени представляет собой две прямые - горизонтально-проецирующую 1,2 и фронтально-проецирующую 2,3. Из точек 1 и 3 начинается тень. Следовательно, необходимо построить тень точки 2. Для построения падающей тени используется метод лучевых секущих плоскостей.
Тени в ортогональных проекциях
Строительство зданий и сооружений ведется по чертежам, выполненным в ортогональных проекциях. Представление о внешнем виде здания, в основном, создается по изображению фасада. Это изображение имеет существенный недостаток - в нем отсутствует объемность. Тени, построенные на ортогональных чертежах, дают возможность представить по чертежу расположение отдельных элементов, их освещенность, а также помогают находить наилучшие пропорции проектируемых зданий и сооружений.
При освещении лучами света каких-либо объектов на них образуются тени. Для образования тени необходим источник света и плоскость, на которую падает тень.
Освещение может быть центральным (факельным) или параллельным (солнечным). Освещение называется центральным в случае, когда световые лучи идут из одной точки (лампа, свеча); параллельным, если источник света (солнце) удален в бесконечность, и световые лучи практически будут параллельны между собой.
Основной геометрической задачей построения теней является определение контуров собственных и падающих теней (рис. 17.1).
Неосвещенная часть поверхности тела называется собственной тенью. Линия разграничивающая освещенную часть поверхности тела и собственную тень называется контуром собственной тени. Пространственное тело, преграждая путь световым лучам, образует на некоторой поверхности падающую тень Линия ограничивающая падающую тень называется контуром падающей тени. Контур падающей тени есть тень от контура собственной тени
Для построения падающей тени необходимо знать направление лучей света. Направление световых лучей принимается параллельным диагонали куба, прислоненного своими гранями к плоскостям проекций. Проекции такого светового луча на плоскости проекций составляют угол с соответствующими координатными осями (рис. 17.2).
Тень от точки на плоскость проекций
Тенью от точки на плоскость проекций является след светового луча проходящего через точку на этой плоскости. Поэтому построение проекций тени от точки на чертеже аналогично построению следов прямой На рис. 17.3 плоскость проекций пересекается лучом в точке Точка для луча является фронтальным следом, а для точки через которую проходит этот луч, - тенью её на плоскость проекций Аналогично, точка для луча служит горизонтальным следом, а для точки - тенью на - реальная тень, - мнимая тень точки так как луч пересекает плоскость раньше, чем На рис. 17.4 показано построение тени точки на эпюре.
Тень от точки на плоскую фигуру
Чтобы построить тень от точки на плоскость общего положения (рис. 17.5), необходимо найти точку пересечения луча света, проходящего через заданную точку с плоскостью заданной четырехугольником Для этой цели через проекции точки проводятся проекции светового луча, световой луч заключается в горизонтально-проецирующую плоскость определяется линия пересечения плоскости с плоскостью Точка пересечения светового луча с линией определяет точку пересечения светового луча с плоскостью т.е. тень от точки на плоскость четырехугольника - точка
Тень от прямой линии
Построение тени от отрезка прямой линии сводится к определению тени двух или нескольких его точек. Тень от прямой можно рассматривать как след лучевой плоскости, проходящей через данную прямую. В зависимости от положения прямой, лучевая плоскость может быть общего и частного положения. Линия пересечения её с плоскостями или поверхностями определит форму тени от отрезка прямой.
Тени на плоскости проекций от прямые частного положения
Построение тени от отрезка прямой перпендикулярной плоскости проекций показано на рис. 17.6.
Тень от точки совпадает с самой точкой, т.к. точка расположена на плоскости проекций Следовательно, для построения тени отрезка достаточно построить тень от точки Соединив точки и прямой линией, получим тень от отрезка
Вывод. Тень от прямой, перпендикулярной плоскости проекций, совпадает с проекцией светового луча на эту плоскость.
На рис. 17.7 показано построение тени от отрезка прямой параллельной плоскости проекций
Вывод. Тень от отрезка прямой, параллельной плоскости проекций, на этой плоскости равна и параллельна самому отрезку.
Тени на плоскости проекций от прямых общего положения
На рис. 17.8 показано построение тени от отрезка прямой общего положения. Строим падающие тени от точек Тень от точки падает на фронтальную плоскость проекций, а тень от точки - на горизонтальную. Следовательно, тень отрезка прямой будет преломляться в точке на оси проекций. Эта точка называется точкой перелома тени. Для нахождения точки перелома тени построим тень от отрезка прямой предположив, что тень от него падает только на горизонтальную плоскость. Мысленно уберем плоскость проекций и построим мнимую тень от точки Соединив точки получим на оси точку перелома Таким образом, тень от отрезка будет ломаная линия Точку перелома можно получить также, если взять на отрезке какую-нибудь дополнительную точку и построить от неё тень. На рис. 17.8 это будет точка 1.
Тень от прямой на произвольную плоскость
Для построения тени от прямой на плоскость общего положения достаточно определить тени на эту плоскость от двух любых точек прямой (см. построение тени от точки на плоскую фигуру, рис. 17.5).
Тень от плоской фигуры
Падающая тень от плоской фигуры на плоскости проекций может быть построена как совокупность теней от её вершин и сторон. Таким образом, построение тени от плоской фигуры на плоскость проекций может быть сведено к известному определению теней от точек и прямых.
На рис. 17.9 показано построение тени от треугольника на плоскости проекций. Известным способом построены тени от вершин треугольника Тени от вершин падают на разные плоскости, и для определения действительной тени треугольника построена мнимая тень вершины (см. рис. 17.9).
На рис. 17.10 построена тень от круглой пластины, перпендикулярной плоскости проекций Вокруг заданной пластины опишем квадрат и проведем в нём диагонали. Построим тени от сторон, диагоналей и вспомогательных прямых этого квадрата. Точки делят тени каждой стороны пополам, а точки располагаются на пересечении теней от диагоналей и вспомогательных прямых
Соединив полученные точки, получим контур падающей тени круглой пластины, перпендикулярной плоскости
Метод обратных лучей
Метод обратных лучей применяется при построении теней, падающих от одного предмета на другой. Суть метода заключается в том, что строят тени заданных геометрических фигур на одну из плоскостей проекций и определяют точки пересечения теней. Через отмеченные точки проводят луч, направление которого противоположно световым лучам. Каждый из обратных лучей, пересекая данные геометрические фигуры, определяет нужные для построения тени точки.
На рис. 17.11 показано применение этого метода на примере построения тени прямой на плоскость треугольника. Построены падающие тени треугольника и отрезка Обе тени падают на горизонтальную плоскость проекций и пересекаются в точках Проведем обратные лучи из точек до пересечения с горизонтальными проекциями сторон треугольника Прямая является тенью отрезка на плоскости треугольника
Вывод. Если падающие тени двух геометрических образов пересекаются, то тень от одного из них будет падать на другой
Тени геометрических тел
При построении теней геометрических тел вначале определяют контур собственной тени, затем находят контур падающей тени путем построения падающих теней от вершин и сторон ломаной линии (или точек кривой линии), являющейся контуром собственной падающей тени
В отдельных случаях бывает целесообразно определять контур собственной тени по уже построенной падающей тени.
Рассмотрим процесс построения теней от основных геометрических тел.
Тени призмы
Контур тени от призмы определяется тенями от рёбер (рис. 18.1). Освещенность призмы легко определить по горизонтальной проекции, где видно, что обращенными к свету являются две грани - и верхнее основание призмы. Следовательно, контуром собственной тени будет ломаная линия Тень, построенная от этой линии, представляет собой падающую тень призмы.
Тени пирамиды
Построим тени пятиугольной пирамиды (рис. 18.2). Строим падающую тень от вершины и определяем падающую тень от боковых ребер. Соединим точки с точкой (на чертеже прямые не показаны). Линиями контура падающей тени оказались прямые Поэтому в собственной тени будут находиться грани и основание пирамиды
Тени цилиндра
Для определения контура собственной тени прямого кругового цилиндра необходимо провести две горизонтально-проецирующие лучевые плоскости касательные к поверхности цилиндра и составляющие с плоскостью проекций угол Образующие по которым плоскости касаются цилиндра, и полуокружности нижнего и верхнего оснований определяют контур собственной тени Контур падающей тени от цилиндра состоит из падающих теней от образующих и полуокружностей (рис. 18.3). Цилиндр расположен так, что тень от него одновременно падает на обе плоскости проекций, и тень от полуокружности на плоскость проекций строится по произвольно выбранным на этой полуокружности точкам 1, 2.
Тени конуса
На рнс. 18.4 показано построение собственной и падающей теней прямого кругового конуса. Вначале определяем мнимую тень от вершины конуса на плоскости его основания Затем из точки проводим прямые, касательные к основанию конуса, и определяем точки касания Через точки касания проводим образующие конуса которые вместе с дугой основания образуют контур собственной тени конуса. Падающая тень конуса имеет точки излома на оси
Тени элементов зданий
При построении проекций теней на фасадах зданий используются те же приемы, что и при построении теней геометрических тел.
Рассмотрим примеры построения теней некоторых частей здания
На рис. 18.5 показан пример построения теней в плоской нише. Определение границы падающей тени заключается в построении тени от ломаной линии на заднюю плоскость ниши. От вертикального ребра тень падает на горизонтальную плоскость проекций и на фронтальную плоскость задней стенки ниши. От горизонтального ребра тень падает частично на заднюю фронтальную стенку ниши в виде прямой, параллельной ребру и частично - на правую боковую грань ниши (на чертеже не изображена).
На рис. 18.6 приведен пример построения тени в прямоугольной нише с цилиндрической аркой В этом примере надо найти тень от точки (пяты арки) и от центра Из полученной точки (тени) центра арки проводим дугу в пределах ниши радиусом, равным радиусу самой арки.
На рис. 18.7 построена тень от козырька (или балкона) здания Построения понятны из чертежа.
На рис. 18.8 показано построение теней на лестнице (крыльце). В собственной тени находятся правые грани вертикальных стенок. Падающая тень от правой стенки лестницы на плоскость стены здания и на землю строится как тень от плоской фигуры на плоскости проекций Падающая тень от левой стенки на ступени лестницы строится методом секущих лучевых плоскостей. Этот способ заключается в том, что через заданную прямую проводится лучевая плоскость. Линия пересечения этой лучевой плоскости с произвольной поверхностью будет падающей тенью от прямой на поверхность. Через отрезок параллельно световому лучу проводим лучевую плоскость Так как отрезок то плоскость проходящая через него, будет горизонтально-проецирующей Горизонтальный след этой плоскости параллелен горизонтальной проекции светового луча: Ломаная линия является линией пересечения многогранной поверхности лестницы плоскостью и тенью от прямой на ступени лестницы Через отрезок проводим фронтально-проецирующую плоскость Фронтальный след этой плоскости параллелен фронтальной проекции светового луча: Ломаная линия является линией пересечения многогранной поверхности лестницы плоскостью и тенью от прямой на ступени лестницы
На рис. 1S.9 показано построение контура падающей тени от трубы на скат крыши здания Задача сводится к определению теней от точек и прямых на произвольно расположенную плоскость (скат крыши). Построения выполнены способом вспомогательных секущих лучевых плоскостей которые пересекают скат крыши по прямым 12 и 34.
Тени в перспективе
При построении теней в перспективе в качестве источника света рассматривается естественный источник - солнце. Правила построения теней в перспективе точно такие же, как и в ортогональных проекциях.
Для упрощения построения считают, что световые лучи параллельны плоскости картины, тогда на картине перспективы оснований лучей будут параллельны основанию картины
Если на картине задана перспектива точки и перспектива ее основания то для построения тени от точки на предметной плоскости (рис. 18.10) необходимо на картине через перспективу точки провести перспективу луча света, а через перспективу ее основания - перспективу основания луча. В месте пересечения луча и его основания получим точку, которая и будет искомой тенью от точки на предметной плоскости.
Построение тени от прямой сводится к построению тени от двух ее точек. При этом, если прямая перпендикулярна предметной плоскости (рис. 18.11), то тень от нее на этой плоскости совпадает с основанием луча, проведенного через основание прямой.
Тень от вертикальной прямой на вертикальной плоскости вертикальна.
Если прямая параллельна предметной плоскости (горизонтальная прямая), то тень от нее на этой плоскости будет параллельна данной прямой (рис. 18.12) и направлена в точку схода.
Тени в перспективе могут быть построены с различных точек расположения источника света. Направление лучей света может быть выбрано в зависимости от характера объекта и от желания показать его освещенным с той или другой стороны. Так, например, если источник света будет находиться позади предмета (рис. 18.13) или перед зрителем, но позади предмета (рис. 18.14), то для построения перспективы тени точки на плоскость необходимо выполнить следующие действия: через точку и точку схода лучей провести перспективу луча (прямую а через ее вторичную проекцию - вторичную проекцию луча (прямую Пересечение перспективы луча его вторичной проекцией определит тень точки на плоскость
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |