Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Статистические оценки - определение и вычисление с примерами решения

Содержание:

Оценки и методы их получения:

Приближенные значения параметров, входящих в законы распределения, определяемые каким-либо способом по выборкам, называются оценками или статистиками. Оценки бывают точечными и интервальными. Точечные оцен­ки представляются одним числом, интервальные - двумя числами Статистические оценки - определение и вычисление с примерами решения

Метод моментов

Пусть генеральная случайная величина X имеет плотность распределения Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения                                   (8.1)

Статистические оценки - определение и вычисление с примерами решения                              (8.2)

По выборке Статистические оценки - определение и вычисление с примерами решения определяем выборочные начальные и центральные моменты:

Статистические оценки - определение и вычисление с примерами решения                (8.3)

Статистические оценки - определение и вычисление с примерами решения           (8.4 )

Метод моментов состоит в том, что генеральные моменты (8.1, 8.2), в которые входят оцениваемые параметры, приблизительно приравниваются к со­ответствующим выборочным моментам (8.3), (8.4). Составляется система уравнений:
Статистические оценки - определение и вычисление с примерами решения                             (8.5)
Статистические оценки - определение и вычисление с примерами решения                                (8.6)

Решая систему (8.5), (8.6), находим оцениваемые параметры.
Особо важную роль играет Статистические оценки - определение и вычисление с примерами решения - выборочный начальный момент 1-го по­ рядка, он называется выборочным средним и обозначается Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения    (8.7)

Следующим по важности выборочным моментом является выборочный центральный момент 2-го порядка Статистические оценки - определение и вычисление с примерами решения который называется выборочной дисперсией и обозначается Статистические оценки - определение и вычисление с примерами решения
Статистические оценки - определение и вычисление с примерами решения                                    (8.8)


Наиболее часто используются две формулы метода моментов.
Статистические оценки - определение и вычисление с примерами решения                                        (8.9)

Статистические оценки - определение и вычисление с примерами решения         (8.10)

Сформулируем метод моментов в общем виде.
 

Пусть Статистические оценки - определение и вычисление с примерами решенияплотность распределения случайной величины Статистические оценки - определение и вычисление с примерами решения где Статистические оценки - определение и вычисление с примерами решения - неизвестные параметры. Чтобы найти оценки Статистические оценки - определение и вычисление с примерами решения выражаем первые Статистические оценки - определение и вычисление с примерами решения начальных или центральных моментов случайной величины X через параметры Статистические оценки - определение и вычисление с примерами решения затем генеральные моменты аппроксимируем соответствующими выборочными. В результате имеем систему из Статистические оценки - определение и вычисление с примерами решения уравнений с Статистические оценки - определение и вычисление с примерами решениянеизвестными, откуда и получаем Статистические оценки - определение и вычисление с примерами решения
 

Пример:

Пусть генеральная случайная величина X имеет показательный закон распределения с плотностью Статистические оценки - определение и вычисление с примерами решения По выборке Статистические оценки - определение и вычисление с примерами решения методом моментов найти оценку параметра Статистические оценки - определение и вычисление с примерами решения

 1. Определяем Статистические оценки - определение и вычисление с примерами решения используя (8.1): 

Статистические оценки - определение и вычисление с примерами решения

2. По (8.3) или (8.7) находим выборочный начальный момент 1-го поряд­ка или Статистические оценки - определение и вычисление с примерами решения и составляем выражение вида (8.5) или (8.9):

Статистические оценки - определение и вычисление с примерами решения
3. Заменяя в п. 2 Статистические оценки - определение и вычисление с примерами решения на оценку Статистические оценки - определение и вычисление с примерами решения составим уравнение: Статистические оценки - определение и вычисление с примерами решения

4. Откуда определим оценку параметра Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения
 

Метод наибольшего правдоподобия

Этот метод предложен математиком Фишером в 1912 г.
 

Пусть Статистические оценки - определение и вычисление с примерами решения - плотность распределения генеральной случайной величины X, где Статистические оценки - определение и вычисление с примерами решения - неизвестные параметры. Согласно методу, наилучшими оценками Статистические оценки - определение и вычисление с примерами решения параметров Статистические оценки - определение и вычисление с примерами решения являются такие, для которых функция правдоподобия L принимает наибольшее значение.

Для непрерывной случайной величины

Статистические оценки - определение и вычисление с примерами решения   (8.11)

Для дискретной случайной величины

Статистические оценки - определение и вычисление с примерами решения                  (8.12)
Здесь Статистические оценки - определение и вычисление с примерами решения- выборка из генеральной случайной величины X.
Априорные выборочные значения Статистические оценки - определение и вычисление с примерами решения - являются независимыми случайными величинами, закон распределения которых совпадает с законом распределения генеральной случайной величины X. Тогда правую часть (8.11) на основании теоремы умножения законов распределений (см. раздел 3.5) можно рассматривать как плотность распределения вероятности Статистические оценки - определение и вычисление с примерами решениямерного вектора Статистические оценки - определение и вычисление с примерами решения Согласно методу, для наилучших оценок Статистические оценки - определение и вычисление с примерами решения случайный вектор Статистические оценки - определение и вычисление с примерами решения будет иметь наибольшую плотность распределения. То есть надо найти такие оценки Статистические оценки - определение и вычисление с примерами решения для которых функция правдоподобия L - максимальна. Для этого составляют и решают такую систему уравнений:
Статистические оценки - определение и вычисление с примерами решения                                   (8.13)

Так как функция и ее логарифм достигают экстремума в одной точке, то часто для упрощения решения задачи используют логарифмическую функцию правдоподобия. В случае логарифмической функции правдоподобия составляется система следующих уравнений:
Статистические оценки - определение и вычисление с примерами решения                            (8.14)
 

Пример:

Пусть генеральная случайная величина X имеет показательный закон распределения с плотностью Статистические оценки - определение и вычисление с примерами решения По выборке Статистические оценки - определение и вычисление с примерами решенияметодом наибольшего правдоподобия найти оценку параметра Статистические оценки - определение и вычисление с примерами решения

 1. Так как нам необходимо оценить один параметр Статистические оценки - определение и вычисление с примерами решения то надо составить и решить одно уравнение. Найдем функцию правдоподобия, используя (8.11):

Статистические оценки - определение и вычисление с примерами решения

2. Составим логарифмическую функцию правдоподобия:

Статистические оценки - определение и вычисление с примерами решения

3. Для определения максимума логарифмической функции правдоподо­бия составляем и решаем следующее уравнение:

Статистические оценки - определение и вычисление с примерами решения

Откуда оценка 0 параметра 0 определяется так:
Статистические оценки - определение и вычисление с примерами решения
При сравнение это выражение с оценкой Статистические оценки - определение и вычисление с примерами решения полученной по методу моментов (см. раздел 8.1), мы понимаем, что они одинаковы. Методы, рассмотренные нами, как видим, абсолютно разные. Это свидетельствует о их достоверности.

Свойства оценок

Пусть Статистические оценки - определение и вычисление с примерами решения - выборка из генеральной совокупности. Обозначим оценку параметра Статистические оценки - определение и вычисление с примерами решения через Статистические оценки - определение и вычисление с примерами решения Ранее мы показали, что эта оценка определяется с помощью различных методов по полученной выборке , т. е. являляется функцией от Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения

Так как любая выборка типа Статистические оценки - определение и вычисление с примерами решения- случайна, то и выборочные функции Статистические оценки - определение и вычисление с примерами решения - тоже являются случайными. Следовательно, она тоже имеет свои характеристики.
 

1. Оценка Статистические оценки - определение и вычисление с примерами решения называется несмещенной, если ее математическое ожида­ние совпадает с самим оцениваемым параметром:
Статистические оценки - определение и вычисление с примерами решения

В противном случае оценка называется смещенной.
Статистические оценки - определение и вычисление с примерами решения
 

Полную погрешность Статистические оценки - определение и вычисление с примерами решения возникшую от замены 0 на 0, можно пред­ставить так:

Статистические оценки - определение и вычисление с примерами решения

Таким образом, если оценка несмещенная, то систематическая погреш­ность равна нулю, т. е. Статистические оценки - определение и вычисление с примерами решения

Наиболее опасна систематическая ошибка, если она заранее неизвестна или среднее квадратичное отклонение не очень большое. Среднее значение случайной ошибки Статистические оценки - определение и вычисление с примерами решения

Мы уже отмечали, что Статистические оценки - определение и вычисление с примерами решения- независимые случайные величины, имеющие тот же закон распределения, что и Статистические оценки - определение и вычисление с примерами решения генеральная случайная величина, в частности, выборочное математическое ожидание и дисперсия имеет те же числовые характеристики, т. е. справедливы тождества:

Статистические оценки - определение и вычисление с примерами решения                                   (*)

Проверим смещенность оценки математического ожидания выборочной средней Статистические оценки - определение и вычисление с примерами решения Используя обычные свойства математического ожидания, найдем Статистические оценки - определение и вычисление с примерами решения
Статистические оценки - определение и вычисление с примерами решения
 

Обозначим Статистические оценки - определение и вычисление с примерами решения видим, чтоСтатистические оценки - определение и вычисление с примерами решения значит, выборочное среднее Статистические оценки - определение и вычисление с примерами решения является несмещенной оценкой математического ожидания.

Проверим смещенность оценки дисперсии выборочной дисперсией Статистические оценки - определение и вычисление с примерами решения Найдем математическое ожидание от выборочной дисперсии:

Статистические оценки - определение и вычисление с примерами решения

То есть дисперсия выборочной средней в Статистические оценки - определение и вычисление с примерами решения раз меньше дисперсии генеральной случайной величины. Тогда

Статистические оценки - определение и вычисление с примерами решения

Обозначим Статистические оценки - определение и вычисление с примерами решения значит, выборочная дисперсия Статистические оценки - определение и вычисление с примерами решения является смещенной оценкой дисперсии. Можно отметить, что выборочная дисперсия Статистические оценки - определение и вычисление с примерами решения является асимптотически несмещенной оценкой, т. к. при Статистические оценки - определение и вычисление с примерами решения стремящемся к бесконечности, смещение стремится к нулю.

При решении практических задач часто используется несмещенная оцен­ка дисперсии - это модифицированная выборочная дисперсия:

Статистические оценки - определение и вычисление с примерами решения

Найдем математическое ожидание от Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения

Обозначим Статистические оценки - определение и вычисление с примерами решения как видим, Статистические оценки - определение и вычисление с примерами решения значит, оценка Статистические оценки - определение и вычисление с примерами решения уже несмещенная. При малых Статистические оценки - определение и вычисление с примерами решения этой формулой пользоваться лучше (при и > 30 оценки совпадают). На практике используют еще одну несмещенную оценку дисперсии - когда известно математическое ожидание:

Статистические оценки - определение и вычисление с примерами решения

Найдем Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения

Обозначим Статистические оценки - определение и вычисление с примерами решения значит, оценка Статистические оценки - определение и вычисление с примерами решения несмещенная.
 

2. Оценка Статистические оценки - определение и вычисление с примерами решения параметра Статистические оценки - определение и вычисление с примерами решения называется состоятельной, если она сходит­ся по вероятности к параметру Статистические оценки - определение и вычисление с примерами решения, т. е. если Статистические оценки - определение и вычисление с примерами решения выполняется:

Статистические оценки - определение и вычисление с примерами решения                            Статистические оценки - определение и вычисление с примерами решения

Условие Статистические оценки - определение и вычисление с примерами решенияна практике проверить трудно. Поэтому для проверки состоятельности оценок применяют более простые условия:

а) Статистические оценки - определение и вычисление с примерами решения

б) Статистические оценки - определение и вычисление с примерами решения

Как видим, оценка Статистические оценки - определение и вычисление с примерами решения будет состоятельной, если при Статистические оценки - определение и вычисление с примерами решения смещение устраняется и дисперсия оценки стремится к нулю.
 

Пример:

Проверим состоятельность оценки математического ожидания выборочной средней Статистические оценки - определение и вычисление с примерами решения. Ранее мы показали, что Статистические оценки - определение и вычисление с примерами решения является несмещенной оценкой математического ожидания, т. е. условие а) выполняется и без вычисления предела. Проверим условие б), найдем  Статистические оценки - определение и вычисление с примерами решения

Статистические оценки - определение и вычисление с примерами решения

Видим, что при Статистические оценки - определение и вычисление с примерами решения предел Статистические оценки - определение и вычисление с примерами решения будет стремиться к нулю, значит условие б) выполняется. Следовательно, Статистические оценки - определение и вычисление с примерами решения является состоятельной оценкой математического ожидания.

3. Несмещенная оценка Статистические оценки - определение и вычисление с примерами решения параметра Статистические оценки - определение и вычисление с примерами решения называется эффективной, если она имеет наименьшую дисперсию среди всех оценок при одном и том же объеме выборки Статистические оценки - определение и вычисление с примерами решения
Для определения наименьшей дисперсии эффективной оценки Статистические оценки - определение и вычисление с примерами решения параметра Статистические оценки - определение и вычисление с примерами решения применяется формула Рао-Крамера:

Статистические оценки - определение и вычисление с примерами решения                   (8.15)

где Статистические оценки - определение и вычисление с примерами решения - плотность распределения генеральной случайной величины X.
Отметим, если оценка Статистические оценки - определение и вычисление с примерами решения смещенная, то малость ее дисперсии еще не говорит о ее эффективности. Например, если в качестве оценки Статистические оценки - определение и вычисление с примерами решения взять любую постоянную величину с, то ее дисперсия будет равна нулю, а ошибка может быть какой угодно большой.
 

Пример:

Задана нормальная случайная величина Статистические оценки - определение и вычисление с примерами решения с плотностью распределения

Статистические оценки - определение и вычисление с примерами решения

Проверим эффективность оценки математического ожидания выборочной средней Статистические оценки - определение и вычисление с примерами решения.

Найдем дисперсию эффективной оценки параметра Статистические оценки - определение и вычисление с примерами решения Обозначим эффективную оценкуСтатистические оценки - определение и вычисление с примерами решения Чтобы воспользоваться формулой Рао-Крамера (8.15), вычислим

Статистические оценки - определение и вычисление с примерами решения

Найдем производную:

Статистические оценки - определение и вычисление с примерами решения

Подставим полученное выражение в (8.15): 

Статистические оценки - определение и вычисление с примерами решения

Ранее мы показали, что такую же дисперсию имеет Статистические оценки - определение и вычисление с примерами решения (см. формулу Статистические оценки - определение и вычисление с примерами решения
Видим, что правые части формул (8.16) и Статистические оценки - определение и вычисление с примерами решения совпадают, следовательно, выборочное среднее Статистические оценки - определение и вычисление с примерами решения является эффективной оценкой параметра Статистические оценки - определение и вычисление с примерами решения

Отметим, что оценки, полученные методом наибольшего правдоподобия, являются состоятельными. Если существуют эффективная оценка, то метод наибольшего правдоподобия позволяет найти ее, но не всегда оценки, полученные этим методом, являются несмещенными.