Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Скалярные и векторные величины и действия над ними в физике с примерами

Содержание:

Скалярные и векторные величины:

В 7-м и 8-м классах мы рассматривали различные физические величины. Для одних величин достаточно знать их числовое значение и единицу измерения. Например, масса Скалярные и векторные величины и действия над ними в физике с примерами

Скалярные и векторные величины и действия над ними в физике с примерами

На рисунках 14, а и 14, б девочка действует на санки силой, имеющей одно и то же числовое значение. Но в первом случае санки лишь немного погрузились в снег, а во втором — пришли в движение. Значит, сила определяется не только числовым значением, но и направлением. Сила — величина векторная.

Векторной величиной является и скорость движения тел (рис. 15), и многие другие физические величины.

Что нужно знать о векторных величинах (векторах)

Векторы характеризуются модулем и направлением в пространстве

Модулем вектора называется его числовое значение.

Вектор изображают в виде направленного отрезка (стрелки). Стрелка указывает, куда направлен вектор (рис. 14, 15). Длина стрелки характеризует модуль вектора (рис. 16). Над буквенным обозначением вектора ставят стрелку, например: Скалярные и векторные величины и действия над ними в физике с примерами 

Скалярные и векторные величины и действия над ними в физике с примерами

Модуль вектора обозначают той же буквой, но без стрелки над ней или символом Скалярные и векторные величины и действия над ними в физике с примерами Например, модуль вектора Скалярные и векторные величины и действия над ними в физике с примерами на рисунке 16 равен Скалярные и векторные величины и действия над ними в физике с примерами

Скалярные и векторные величины и действия над ними в физике с примерами

Модуль любого (не равного нулю) вектора — число положительное.

Векторы равны между собой, если равны их модули и одинаковы направления

Равные векторы лежат на одной и той же прямой или на параллельных прямых и направлены в одну и ту же сторону. На рисунке 17 Скалярные и векторные величины и действия над ними в физике с примерами Скалярные и векторные величины и действия над ними в физике с примерами Однако, несмотря на равенство модулей, Скалярные и векторные величины и действия над ними в физике с примерами так как у векторов Скалярные и векторные величины и действия над ними в физике с примерами различные направления.   Скалярные и векторные величины и действия над ними в физике с примерами

Угол между векторами

Чтобы найти угол Скалярные и векторные величины и действия над ними в физике с примерами между векторами (рис. 18, а), нужно совместить их начала (рис. 18, б). Если направления векторов одинаковы, то Скалярные и векторные величины и действия над ними в физике с примерами (рис. 18, в), если противоположны, то Скалярные и векторные величины и действия над ними в физике с примерами (рис. 18, г).

Скалярные и векторные величины и действия над ними в физике с примерами  

Умножение вектора на число

Произведение вектора Скалярные и векторные величины и действия над ними в физике с примерами на число Скалярные и векторные величины и действия над ними в физике с примерами есть вектор Скалярные и векторные величины и действия над ними в физике с примерами Чему в равен его модуль? Куда направлен вектор Скалярные и векторные величины и действия над ними в физике с примерами

Модуль вектора Скалярные и векторные величины и действия над ними в физике с примерами равен Скалярные и векторные величины и действия над ними в физике с примерами

Если Скалярные и векторные величины и действия над ними в физике с примерами то вектор Скалярные и векторные величины и действия над ними в физике с примерами направлен так же, как вектор Скалярные и векторные величины и действия над ними в физике с примерами а если Скалярные и векторные величины и действия над ними в физике с примерами то противоположно ему.

На рисунке 19 Скалярные и векторные величины и действия над ними в физике с примерами показаны результаты умножения вектора Скалярные и векторные величины и действия над ними в физике с примерами на 2, на 0,5, на (-3) и на (-1) соответственно. 

Скалярные и векторные величины и действия над ними в физике с примерами

Противоположные векторы

Вектор Скалярные и векторные величины и действия над ними в физике с примерами называется противоположным вектору Скалярные и векторные величины и действия над ними в физике с примерами если Скалярные и векторные величины и действия над ними в физике с примерами У векторов Скалярные и векторные величины и действия над ними в физике с примерами одинаковые модули, но противоположные направления (рис. 19, а, г).

Сложение векторов

В 7-м классе вы складывали силы, направленные или одинаково, или в противоположные стороны. Результатом сложения в первом случае была сила, модуль которой равен Скалярные и векторные величины и действия над ними в физике с примерами а во втором Скалярные и векторные величины и действия над ними в физике с примерами

Скалярные и векторные величины и действия над ними в физике с примерами

То же самое получается и при сложении векторов Скалярные и векторные величины и действия над ними в физике с примерами (рис. 20). Если они направлены одинаково (рис. 20, а), то их сумма Скалярные и векторные величины и действия над ними в физике с примерами имеет модуль Скалярные и векторные величины и действия над ними в физике с примерами Если же направления векторов Скалярные и векторные величины и действия над ними в физике с примерами противоположны (рис. 20, б), то модуль их суммы Скалярные и векторные величины и действия над ними в физике с примерами Обратите внимание: в последнем случае вектор Скалярные и векторные величины и действия над ними в физике с примерами направлен так, как вектор с большим модулем (т. е. как вектор Скалярные и векторные величины и действия над ними в физике с примерами).  

А как сложить векторы, направленные под любым углом друг к другу? Для этого можно использовать любое из двух следующих далее правил. 

Правило параллелограмма

Совместим начала векторов Скалярные и векторные величины и действия над ними в физике с примерами (рис. 21, а), сохраняя их направления (рис. 21, б). Построим параллелограмм ABCD, принимая векторы Скалярные и векторные величины и действия над ними в физике с примерами за его стороны. Сумма векторов Скалярные и векторные величины и действия над ними в физике с примерами есть вектор Скалярные и векторные величины и действия над ними в физике с примерами совпадающий с диагональю АС параллелограмма: Скалярные и векторные величины и действия над ними в физике с примерами (см. рис. 21, б).

Скалярные и векторные величины и действия над ними в физике с примерами

Правило треугольника

Совместим конец вектора Скалярные и векторные величины и действия над ними в физике с примерами с началом вектора Скалярные и векторные величины и действия над ними в физике с примерами сохраняя их направления (рис. 21, в). Вектор Скалярные и векторные величины и действия над ними в физике с примерами проведенный из начала вектора Скалярные и векторные величины и действия над ними в физике с примерами в конец вектора Скалярные и векторные величины и действия над ними в физике с примерами равен сумме Скалярные и векторные величины и действия над ними в физике с примерами(см. рис. 21, в).

Из рисунков 21, б и 21, в ясно, что правило треугольника и правило параллелограмма дают одинаковые результаты. А как найти разность векторов?

Вычитание векторов

Пусть начала векторов Скалярные и векторные величины и действия над ними в физике с примерами совмещены (рис. 22). Проведем вектор Скалярные и векторные величины и действия над ними в физике с примерами из конца вычитаемого вектора Скалярные и векторные величины и действия над ними в физике с примерами в конец уменьшаемого вектора Скалярные и векторные величины и действия над ними в физике с примерами Вектор Скалярные и векторные величины и действия над ними в физике с примерами есть искомая разность: Скалярные и векторные величины и действия над ними в физике с примерами Докажите с помощью построения, что Скалярные и векторные величины и действия над ними в физике с примерами Такой способ вычитания векторов очень удобен.

Скалярные и векторные величины и действия над ними в физике с примерами

Правило многоугольника

Чтобы найти сумму нескольких векторов (например, Скалярные и векторные величины и действия над ними в физике с примерами), каждый следующий вектор нужно проводить из конца предыдущего (рис. 23). Замыкающий вектор Скалярные и векторные величины и действия над ними в физике с примерами проведенный из начала первого вектора Скалярные и векторные величины и действия над ними в физике с примерами в конец последнего Скалярные и векторные величины и действия над ними в физике с примерами есть сумма данных векторов: Скалярные и векторные величины и действия над ними в физике с примерами

Скалярные и векторные величины и действия над ними в физике с примерами

Правило многоугольника следует из правила треугольника.

Модуль суммы векторов

Не путайте модуль суммы векторов, т. е. Скалярные и векторные величины и действия над ними в физике с примерами и сумму их модулей Скалярные и векторные величины и действия над ними в физике с примерами Равенство Скалярные и векторные величины и действия над ними в физике с примерами выполняется только для одинаково направленных векторов (см. рис. 20, а на с. 13). Во всех остальных случаях Скалярные и векторные величины и действия над ними в физике с примерами т. е. модуль суммы векторов меньше суммы их модулей. Так получается потому, что в любом треугольнике (см. рис. 21, в) длина одной стороны меньше суммы длин двух других сторон. Проверьте это на примерах.

Нуль-вектор

Пусть вектор Скалярные и векторные величины и действия над ними в физике с примерами равен вектору Скалярные и векторные величины и действия над ними в физике с примерами Тогда их разность Скалярные и векторные величины и действия над ними в физике с примерами т. е. нуль-вектору.

Главные выводы:

  1. Векторные величины характеризуются модулем и направлением, скалярные — только числовым значением.
  2. Сумму двух векторов находят по правилу параллелограмма или треугольника.
  3. Разность двух векторов находят, проводя вектор из конца вычитаемого вектора в конец уменьшаемого (при совмещенных началах векторов).
  4. Разность векторов Скалярные и векторные величины и действия над ними в физике с примерами можно найти как сумму Скалярные и векторные величины и действия над ними в физике с примерами
  5. Произведение вектора Скалярные и векторные величины и действия над ними в физике с примерами на число Скалярные и векторные величины и действия над ними в физике с примерами есть вектор Скалярные и векторные величины и действия над ними в физике с примерами При Скалярные и векторные величины и действия над ними в физике с примерами направления векторов Скалярные и векторные величины и действия над ними в физике с примерами совпадают, а при Скалярные и векторные величины и действия над ними в физике с примерами — противоположны. Модуль вектора Скалярные и векторные величины и действия над ними в физике с примерами равен Скалярные и векторные величины и действия над ними в физике с примерами

Скалярные и векторные величины

К пониманию того, что для описания природы нужно использовать язык математики, ученые пришли давно. Собственно, некоторые разделы математики и были созданы для того, чтобы описывать природу кратким и доступным языком. Так, для определения мгновенной скорости, работы переменной силы, объема тел неправильной формы и т. д. были созданы дифференциальное и интегральное исчисления. Для более наглядного описания физических процессов научились строить графики функций, а для быстрой обработки результатов эксперимента придумали методы приближенных вычислений. Вспомним скалярные и векторные величины, без которых вам не обойтись при изучении курса физики 10 класса.

Скалярные и векторные величины и действия над ними в физике с примерами

Физические величины, используемые в физике для количественной характеристики физических явлений и объектов, делятся на два больших класса: скалярные величины и векторные величины.

К скалярным величинам, или скалярам (от лат. scalaris — ступенчатый), относятся величины, которые определяются только значением. Например, масса тела — скалярная величина, и если мы говорим, что масса тела равна двум килограммам (m=2 кг), то полностью определяем эту величину. Сложить две скалярные физические величины означает сложить их значения, представленные в одинаковых единицах. Понятно, что складывать можно только однородные скаляры (например, нельзя складывать массу и время, плотность и работу и т. д.).

Для определения векторных величин важно знать не только их значения, но и направления. Вектор (от лат. vector — носитель) — это направленный отрезок, то есть отрезок, имеющий и длину, и направление. Длину направленного отрезка называют модулем вектора. Обозначают векторные величины буквами греческого и латинского алфавитов, над которыми ставят стрелки, или полужирными буквами. Например, скорость записывают так: v или Скалярные и векторные величины и действия над ними в физике с примерами; модуль вектора скорости соответственно обозначают как v.

Правила сложения (вычитания) векторов отличаются от правил сложения (вычитания) скалярных величин.

Скалярные и векторные величины и действия над ними в физике с примерамиСкалярные и векторные величины и действия над ними в физике с примерамиСкалярные и векторные величины и действия над ними в физике с примерами

Сумму двух векторов находят по правилу параллелограмма или по правилу треугольника (рис. 3.1, 3.2). Как найти сумму нескольких векторов, показано на рис. 3.3, как найти разность двух векторов, показано на рис. 3.4.

Скалярные и векторные величины и действия над ними в физике с примерами

В результате умножения векторной величины Скалярные и векторные величины и действия над ними в физике с примерами на скалярную величину k получается вектор Скалярные и векторные величины и действия над ними в физике с примерами (рис. 3.5).

Скалярные и векторные величины и действия над ними в физике с примерами

Обратите внимание! Единица произведения векторной и скалярной величин определяется как произведение единицы одной величины на единицу другой. Например, нужно найти перемещение самолета, который в течение 0,5 ч летит на север со скоростью 500 км/ч. Вектор перемещения: Скалярные и векторные величины и действия над ними в физике с примерами. Поскольку t > 0, то вектор перемещения Скалярные и векторные величины и действия над ними в физике с примерами будет направлен в ту же сторону, что и вектор скорости Скалярные и векторные величины и действия над ними в физике с примерами, а модуль вектора перемещения будет равен: s v = =t 500 км /ч⋅ = 0 5, ч к 250 м.

Как найти проекции вектора на оси координат

Осуществлять математические операции с векторами гораздо сложнее, чем со скалярами, поэтому, решая задачи, от векторных физических величин переходят к их проекциям на оси координат.

Пусть вектор Скалярные и векторные величины и действия над ними в физике с примерами лежит в плоскости XОY (рис. 3.6). Опустим из точки А (начало вектора Скалярные и векторные величины и действия над ними в физике с примерами) и точки В (конец вектора Скалярные и векторные величины и действия над ними в физике с примерами) перпендикуляры на ось ОX. Основания этих перпендикуляров — точки Скалярные и векторные величины и действия над ними в физике с примерамипроекции точек А и В на ось ОX, а отрезок Скалярные и векторные величины и действия над ними в физике с примерамипроекция вектора Скалярные и векторные величины и действия над ними в физике с примерами на ось ОX. Проекцию вектора обозначают той же буквой, что и вектор, с указанием оси в нижнем индексе, например: Скалярные и векторные величины и действия над ними в физике с примерами. Если из начала и конца вектора Скалярные и векторные величины и действия над ними в физике с примерами провести перпендикуляры к оси ОY, получим отрезок Скалярные и векторные величины и действия над ними в физике с примерами — проекцию вектора Скалярные и векторные величины и действия над ними в физике с примерами на ось ОY ( Скалярные и векторные величины и действия над ними в физике с примерами). Знак проекции вектора зависит от направлений вектора и оси координат. Если от проекции начала вектора до проекции его конца нужно двигаться в направлении оси координат, то проекция вектора на эту ось считается положительной, а если наоборот, то проекция вектора считается отрицательной (см. рис. 3.6).

Скалярные и векторные величины и действия над ними в физике с примерами

В общем случае проекцию вектора находят обычными геометрическими методами (рис. 3.7, а). На практике часто приходится иметь дело со случаями, когда вектор параллелен или перпендикулярен оси координат.

Скалярные и векторные величины и действия над ними в физике с примерами

Если вектор параллелен оси координат, а его направление совпадает с направлением оси, то его проекция на эту ось положительна и равна модулю вектора (рис. 3.7, б). Если направление вектора противоположно направлению оси координат, то его проекция на эту ось равна модулю вектора, взятому с противоположным знаком (рис. 3.7, в). Если же вектор перпендикулярен оси координат, то его проекция на эту ось равна нулю (рис. 3.7, г). Очень важным свойством проекций является то, что проекция суммы двух векторов (рис. 3.8) или нескольких векторов на координатную ось равна алгебраической сумме проекций этих векторов на данную ось.

Скалярные и векторные величины и действия над ними в физике с примерами

Именно это свойств позволяет заменять в уравнении векторные величины их проекциями — скалярными величинами и далее решать полученное уравнение обычными алгебраическими методами.