Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Синусоидальные Э.Д.С. и ток

Содержание:

Синусоидальные э.д.с. и ток:

Получение, передача и использование электрической энергии осуществляются в основном с помощью устройств и сооружений переменного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Наиболее широко применяют приемники электрической энергии, работающие на переменном токе.
Переменным электрическим током называется электрический ток, изменяющийся с течением времени (см. рис. 2.1, кривые 2, 3).

Периодический электрический ток, являющийся синусоидальной функцией времени, называется синусоидальным электрическим током.

Такой ток в практике обычно имеют в виду, когда говорят о переменном токе. В некоторых случаях ток изменяется по периодическому несинусоидальному закону.

В линейных электрических цепях переменный синусоидальный ток возникает под действием э. д. с. такой же формы. Поэтому для изучения электрических устройств и цепей переменного тока необходимо прежде рассмотреть способы получения синусоидальной э. д. с. и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.
 

Получение синусоидальной э.д.с.

Для получения э. д. с. синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности. Однако принципиально синусоидальную зависимость э. д. с. от времени можно получить, вращая с постоянной частотой в равномерном магнитном поле проводник в виде прямоугольной рамки (рис. 12.1).

Синусоидальные Э.Д.С. и ток

Рис. 12.1. Прямоугольная рамка в магнитном поле

Вращение витка в равномерном магнитном поле

Согласно формуле (10.5), э. д. с. в рамке, имеющей два активных проводника длиной l, Синусоидальные Э.Д.С. и ток

При равномерном вращении рамки линейная скорость проводника не изменяется:
Синусоидальные Э.Д.С. и ток
а угол между направлением скорости и направлением магнитного поля изменяется пропорционально времени:
Синусоидальные Э.Д.С. и ток
Угол β определяет положение вращающейся рамки относительно плоскости, перпендикулярной направлению магнитной индукции. (Положение рамки в момент начала отсчета времени t = 0 характеризуется углом β = 0.) Поэтому э. д. с. в рамке является синусоидальной функцией времени
Синусоидальные Э.Д.С. и ток
Наибольшей величины э. д. с. достигает при угле Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток
В рассмотренном случае синусоидальное изменение э. д. с. достигается за счет непрерывного изменения угла, под которым проводники пересекают линии магнитной индукции. Однако такой способ получения э. д. с. в практике не применяется, так как трудно создать равномерное поле в достаточно большом объеме.

Генератор переменного тока

В электромашинных генераторах переменного тока промышленного типа синусоидальная э. д. с. получается при постоянном угле, но в неравномерном магнитном поле.

Магнитное поле генератора (радиальное) в воздушном зазоре между статором и ротором направлено по радиусам окружности ротора (рис. 12.2, а). Магнитная индукция вдоль воздушного зазора распределена по закону, близкому к синусоидальному. Такое распределение достигается соответствующей формой полюсных наконечников. Синусоидальный закон распределения магнитной индукции вдоль воздушного зазора показан на рис. 12.2, б в развернутом виде.

Синусоидальные Э.Д.С. и ток

Рис. 12.2. Схема генератора переменного тока. Распределение магнитной индукции вдоль воздушного зазора

Синусоидальные Э.Д.С. и ток

Рис. 12.3. Схема генератора переменного тока с двумя парами полюсов на роторе

Синусоидальные Э.Д.С. и ток

Рис. 12.4. Схема генератора с тремя витками (обмотками)

В любой точке воздушного зазора, положение которой определяется углом β, отсчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением
Синусоидальные Э.Д.С. и ток

Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна относится к северному полюсу, а другая — к южному.

Наибольшую величину магнитная индукция имеет под серединой полюсов, т. е. при углах Синусоидальные Э.Д.С. и ток и Синусоидальные Э.Д.С. и ток
На нейтрали (при β = 0 и β = 180°) магнитная индукция равна нулю (В = 0).
На рис. 12.3 показана конструктивная схема генератора переменного тока с двумя парами полюсов, расположенных на роторе, а проводники обмотки, где наводится э. д. с., помещены в пазах сердечника статора.

Отметим еще одну разновидность генераторов переменного тока — генератор с тремя обмотками (трехфазный генератор), которые на схеме рис. 12.4 представлены тремя витками на роторе (у турбогенераторов и гидрогенераторов эти обмотки находятся на статоре). Плоскости витков находятся под углом 120° друг к другу.

Э.Д.С. в обмотке генератора

При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой (10.4),
Синусоидальные Э.Д.С. и ток
Подставляя выражение магнитной индукции (12.3), получим

Синусоидальные Э.Д.С. и ток
При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая э. д. с.
Синусоидальные Э.Д.С. и ток
Уравнение э. д. с. можно записать так:
Синусоидальные Э.Д.С. и ток
Учитывая формулу (12.1), получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t = 0), когда его плоскость совпадает с нейтралью:
Синусоидальные Э.Д.С. и ток
Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.

Синусоидальные Э.Д.С. и ток

Рис. 12.5. График синусоидальной э. д. с.

В прямоугольной системе координат э. д. с. можно изобразить в функции угла Синусоидальные Э.Д.С. и ток или в функции времени t. Зависимость Синусоидальные Э.Д.С. и ток и Синусоидальные Э.Д.С. и ток можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.
Если обмотку генератора замкнуть через сопротивление, то в образовавшейся цепи возникает синусоидальный ток, повторяющий по форме кривую э. д. с.
Полагая сопротивление цепи линейным, равным R, получим для тока такое выражение:
Синусоидальные Э.Д.С. и ток
гдеСинусоидальные Э.Д.С. и ток — наибольшая величина тока.
Напряжение и ток синусоидальной формы можно получить при помощи генераторов, не имеющих вращающихся частей и магнитных полюсов, например ламповых генераторов.

Задача 12.1.

Э. д. с. электромашинного генератора выражается уравнением Синусоидальные Э.Д.С. и ток.
Определить число пар полюсов этого генератора, если известна частота вращения ротора n = 75 об/мин.
На какой угол в пространстве поворачивается ротор генератора за 1/4 периода?
Решение. Период э. д. с., наводимой в обмотке генератора (см. рис. 12.2), имеющего одну пару полюсов, равен времени полного оборота ротора. Угловую скорость вращения ротора можно определить отношением полного угла, соответствующего одному обороту ротора, к периоду:
Синусоидальные Э.Д.С. и ток
Однако генератор может иметь не одну, а p пар полюсов (на рис. 12.3 p = 2). Полный цикл изменения э. д. с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с p = 1), поэтому при одинаковой частоте вращения ротора период э.д. с. будет в p раз короче, а частота в р раз больше.
Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая частоту вращения ротора.
Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в секунду, а при р > 1
Синусоидальные Э.Д.С. и ток
где n — частота вращения ротора, об/мин.
Из уравнения э. д. с. известна угловая частота ω = 314 рад/с; при этом
Синусоидальные Э.Д.С. и ток
При частоте вращения ротора n = 75 об/мин

Синусоидальные Э.Д.С. и ток
При р = 1 за 1/4 периода ротор повернется на 1/4 окружности, т. е. в угловой мере на 90º. При р = 40 угол поворота ротора за 1/4 периода будет в р раз меньше:
Синусоидальные Э.Д.С. и ток

Уравнения и графики синусоидальных величин

Анализ электрических цепей переменного тока невозможно проводить без выражения э. д. с. токов, напряжений их уравнениями. Для наглядности применяются графики этих величин в прямоугольной системе координат. Поэтому рассмотрим уравнения и графики синусоидальных величин более подробно.

Уравнения и графики

Уравнение (12.4) записано для случая, когда начало отсчета времени (t = 0) совпадает с моментом прохождения витка через нейтраль (на рис. 12.2, а положение 1, в котором плоскость витка совпадает с нейтралью).

На рис. 12.4 положение витков тоже соответствует началу отсчета времени (t = 0) и определяется для каждого из них углом, отсчитанным от нейтрали до плоскости витка: для первого витка этот угол Синусоидальные Э.Д.С. и ток для второго — Синусоидальные Э.Д.С. и ток и третьего — Синусоидальные Э.Д.С. и ток
При вращении ротора э. д. с. будет наводиться во всех витках, но уравнения э.д.с. не будут одинаковыми. Действительно, при = 0 э. д. с. в витках:
Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток
Эта зависимость э. д. с. от начального положения витка учитывается введением в уравнение начального угла.
С учетом начального угла э. д. с. витка С выражается уравнением
Синусоидальные Э.Д.С. и ток

э. д. с. витка B

Синусоидальные Э.Д.С. и ток

Таким образом, в общем виде, уравнение э. д. с. должно быть записано так:
Синусоидальные Э.Д.С. и ток

Из этого уравнения можно определить величину э. д. с. в любой момент при произвольном начальном положении витка.
На рис. 12.6 в соответствии с уравнением (12.6) построены графики э.д.с.трех витков, отличающихся в момент начала отсчета времени расположением относительно нейтральной плоскости (eA при Синусоидальные Э.Д.С. и ток eC при Синусоидальные Э.Д.С. и ток eB при Синусоидальные Э.Д.С. и ток).

Синусоидальные Э.Д.С. и ток

Рис. 12.6. Графики э. д. с., сдвинутых по фазе

Характеристики синусоидальных величин

Уравнением и графиком задаются все характеристики синусоидально изменяющейся величины: амплитуда, угловая частота, начальная фаза, период, частота и для любого момента времени мгновенная величина.

Далее приведены определения этих характеристик, и они показаны на рис. 12.7 применительно к синусоидальной э. д. с. Определения распространяются на все величины, изменяющиеся по синусоидальному закону (ток, напряжение и др.).

Синусоидальные Э.Д.С. и ток

Рис. 12.7. К вопросу о характеристиках периодической э. д. с.

Мгновенная величина (или мгновенное значение) э. д. с. е — величина э. д. с. в рассматриваемый момент времени. Мгновенная э. д. с. определяется уравнением (12.6) при подстановке в него времени t, прошедшего от начала отсчета до данного момента.

Период Т — наименьший интервал времени, по истечении которого мгновенные величины периодической э. д. с.. повторяются. Если аргумент синусоидальной функции выражается в углах, то период выражается постоянной величиной 2π.
Частота f — величина, обратная периоду:
Синусоидальные Э.Д.С. и ток
т. е. частота равна числу периодов переменной э. д. с. в секунду. Частота выражается в герцах (Гц): 1 Гц = 1/с.
Амплитуда Еm — наибольшая величина, которую принимает э. д. с. в течение периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу Синусоидальные Э.Д.С. и ток равному Синусоидальные Э.Д.С. и ток, где k — любое целое число или нуль.
Фаза (фазовый угол Синусоидальные Э.Д.С. и ток) — аргумент синусоидальной э.д.с., отсчитываемый от ближайшей предшествующей точки перехода э. д. с. через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной э. д. с.
Начальная фаза ψ — фаза синусоидальной э.д.с. в начальный момент времени.
Две синусоидальные величины, имеющие разные начальные фазы, называются сдвинутыми по фазе.
Угловая частота ω — скорость изменения фазы. За время одного периода Т фазовый угол равномерно изменяется на 2π, поэтому
Синусоидальные Э.Д.С. и ток

Задача 12.4.

Переменный электрический ток задан уравнением

Синусоидальные Э.Д.С. и ток
Определить период, частоту этого тока и мгновенные величины его при t = 0; t1 = 0,152 с. Построить график тока.
Решение. Уравнение синусоидального тока в общем случае имеет вид
Синусоидальные Э.Д.С. и ток
Сопоставляя это уравнение с заданным частным уравнением тока, устанавливаем, что амплитуда Im = 100 А, угловая частота ω = 628 рад/с, начальная фаза ψ = —60°. Период
Синусоидальные Э.Д.С. и ток
Частота
Синусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.8. К задаче 12.4

Мгновенные величины тока найдем, подставив в уравнение тока заданные значения времени:

при t = 0
Синусоидальные Э.Д.С. и ток
при t1 = 0,152 с
Синусоидальные Э.Д.С. и ток
Синусоидальная величина через 360° повторяется, поэтому мгновенный ток при угле Синусоидальные Э.Д.С. и ток будет таким же, как и при угле Синусоидальные Э.Д.С. и ток:
Синусоидальные Э.Д.С. и ток
Для построения графика Синусоидальные Э.Д.С. и ток нужно определить ряд мгновенных токов, соответствующих различным моментам времени (рис. 12.8).

Векторные диаграммы

До сих пор величины, изменяющиеся по синусоидальному закону, задавали уравнениями и изображали графиками в прямоугольной системе координат. При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.

Обоснование векторной диаграммы

Предположим, что ток задан уравнением
Синусоидальные Э.Д.С. и ток
Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:
Синусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.10. К вопросу о векторной диаграмме

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени: Синусоидальные Э.Д.С. и ток
Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом Синусоидальные Э.Д.С. и ток
Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.
Например, для t = t1
Синусоидальные Э.Д.С. и ток
в общем случае
Синусоидальные Э.Д.С. и ток
Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж: в начальном положении.

Построение векторной диаграммы

Вращая вектор Im' против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.

При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.

В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.
 

Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент  времени, называется векторной диаграммой. Например, напряжение и ток в электрической цепи выражаются уравнениями
Синусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток
Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока
Синусоидальные Э.Д.С. и токСинусоидальные Э.Д.С. и ток
то
Синусоидальные Э.Д.С. и токСинусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.11. Векторная диаграмма тока и напряжения

Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.

Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.

Сложение и вычитание векторов

Простота и наглядность векторных диаграмм — не единственное и не главное достоинство способа изображения синусоидальных величин. Требуется сложить, например, два тока, заданных уравнениями
Синусоидальные Э.Д.С. и ток
Выражение суммы
Синусоидальные Э.Д.С. и ток
оказывается громоздким, из него не видны амплитуда и начальная фаза результирующего тока.

Можно графически сложить два заданных тока, построив их в одной системе координат и для ряда аргументов, найдя сумму двух ординат. Через полученные точки проведем кривую суммы, увидим, что эта кривая тоже синусоида с таким же периодом, как и слагаемые. По кривой общего тока можно найти амплитуду и начальную фазу. Громоздкость и неудобство такого сложения очевидны.

Очень просто сложение и вычитание синусоидальных величин осуществляется по правилам сложения и вычитания векторов.

Синусоидальные Э.Д.С. и ток

Рис. 12.12. Сложение векторов

Сложим два заданных тока i1 и i1 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:
Синусоидальные Э.Д.С. и ток

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллельно самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.
Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора — уменьшаемого и обратного — вычитаемого (рис. 12.13):

Синусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.13. Вычитание векторов

Синусоидальные Э.Д.С. и ток

Рис. 12.14. Частные случаи сложения векторов

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Задача 12.7. Два тока заданы уравнениями

Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток
Найти уравнения токов:
Синусоидальные Э.Д.С. и ток
Решение. Решение задачи проще всего выполнять графически в векторной форме. Для этого изобразим векторы заданных токов. Масштаб тока выбираем так, чтобы наибольший вектор поместился на имеющемся листе бумаги, одновременно учитывая возможность отчетливого изображения наименьшего вектора.
При разборе решения рекомендуется провести построения по рис. 12.15 на листе миллиметровой бумаги в масштабе Синусоидальные Э.Д.С. и ток В этом масштабе длина векторов
Синусоидальные Э.Д.С. и токСинусоидальные Э.Д.С. и ток

Длину вектора суммы определяют графически (рис. 12.15, а):

Синусоидальные Э.Д.С. и токСинусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.15. К задаче 12.7

Начальная фаза этого вектора по чертежу Синусоидальные Э.Д.С. и ток
Уравнение суммы токов
Синусоидальные Э.Д.С. и ток
В таком же порядке найдены векторы разностей токов (рис. 12.15, б, в). Вычитаемые векторы взяты в противофазе с заданными.
После измерения длин векторов и начальных фаз напишем уравнения разностей токов:
Синусоидальные Э.Д.С. и ток
Синусоидальные Э.Д.С. и ток

Действующая и средняя величины переменного тока

О переменном токе все известно, если задано его уравнение или график. Однако в практике пользоваться уравнениями или графиками токов затруднительно.
Переменный ток обычно характеризуется его действующей величиной I. При изучении выпрямительных устройств и электрических машин пользуются средними величинами э. д. с., тока, напряжения.

Действующая величина переменного тока

При определении действующей величины переменного тока можно исходить из какого-либо его действия в электрической цепи (теплового, механического взаимодействия проводов с токами).

На рис. 12.18 изображены графики двух токов: постоянного 1 и переменного 2, причем величина постоянного тока равна амплитуде переменного.
Постоянный ток, равный амплитуде переменного, выделит больше тепла в одном и том же элементе цепи за однj и то же время, так как переменный ток в течение полупериода меньше постоянного, и лишь одно мгновение эти токи равны.
 

Действующая величина переменного тока I численно равна величине постоянного тока, который в одном и том же элементе цепи за время периода Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток.

Действующая величина переменного тока I меньше амплитуды (прямая 3 на рис. 12.18).

Синусоидальные Э.Д.С. и ток

Рис. 12.18. К определению действующей величины переменного тока

Определим количество тепла, выделяемого за период Т постоянным током, равным I, и переменным током Синусоидальные Э.Д.С. и ток (см. рис. 12.18) в элементе цепи с сопротивлением R:
Синусоидальные Э.Д.С. и ток
Приравнивая Синусоидальные Э.Д.С. и ток найдем
Синусоидальные Э.Д.С. и ток
 

Действующая величина периодического тока является его средней квадратичной за период.

Ее можно найти из уравнения (12.9), но для наглядности воспользуемся графическим решением поставленной задачи.

Среднеквадратичную величину переменного тока за период можно представить в виде квадратного корня из суммы очень большого числа ординат кривой i2(t), разделенной на число ординат n:
Синусоидальные Э.Д.С. и ток
где в числителе подкоренного выражения представлена сумма квадратов ряда мгновенных токов в течение периода, n — число этих значений, стремящееся к ∞.
На рис. 12.19 показаны ряд положений вращающегося с угловой скоростью ω вектора тока Im и соответствующие им мгновенные токи i. Эти положения отмечены точками 0, 1, 2 и т. д. на окружности, которую описывает конец вектора Im.

Рассмотрим два положения вектора Im (отмечены точками 2 и 8), отстоящие по окружности на 90°, т. е. находящиеся соответственно в первой и второй четвертях окружности. Прямоугольные треугольники 6'-2-2' и 6'-8-8' равны, так как равны их стороны: 2-2' = 6'-8' и 2'-6' = 8-8'. Из этих треугольников следует: Синусоидальные Э.Д.С. и ток

Синусоидальные Э.Д.С. и ток

Рис. 12.19. К определению действующей и средней величины синусоидального тока

Каждому положению вектора Im в первой четверти соответствует другое его положение во второй, для которых можно написать аналогичное выражение. Такие рассуждения можно провести для другой полуокружности, т. е. распространить их на второй полупериод тока, причем квадраты отрицательных мгновенных токов будут положительны, поэтому
Синусоидальные Э.Д.С. и ток
Подставляя это выражение в (12.10), получим
Синусоидальные Э.Д.С. и ток
Таким образом, действующая величина синусоидального тока меньше его амплитуды в Синусоидальные Э.Д.С. и ток раза.

Понятие о действующей величине можно распространить на все синусоидальные функции и, следовательно, говорить о действующей величине напряжения, э. д. с.

Действующие величины тока, напряжения измеряются электроизмерительными приборами. Номинальные токи и напряжения электротехнических устройств выражаются действующими величинами. Введя понятие о действующей величине, в дальнейшем векторные диаграммы будем строить для действующих величин напряжений и токов.

Отношение амплитуды к действующей величине называется коэффициентом амплитуды Ка. Для синусоидальной функции этот коэффициент равен Синусоидальные Э.Д.С. и ток; если кривая тока или напряжения имеет более острую форму, чем синусоида, то Ка > Синусоидальные Э.Д.С. и ток, в противном случае Ка < Синусоидальные Э.Д.С. и ток(при прямоугольной форме Ка = 1).

Средняя величина переменного тока

Средней величиной переменного тока (э. д. с., напряжения) называется среднее арифметическое из всех мгновенных величин за полупериод.

Средняя величина равна высоте прямоугольника с основанием π (в угловой мере), площадь которого равна площади S, ограниченной положительной полуволной тока и осью абсцисс (см. рис. 12.19), Синусоидальные Э.Д.С. и ток
Для определения площади S нужно сложить в пределах полупериода элементарные площади dS, одна из которых на рисунке показана при некотором угле ωt и мгновенной величине тока i.
При малом изменении угла Синусоидальные Э.Д.С. и ток значение тока можно считать постоянным, поэтому
Синусоидальные Э.Д.С. и ток
Изменению угла на dωt соответствует поворот на такой же угол вектора Im, конец которого опишет дугу 2-3 длиной
Синусоидальные Э.Д.С. и ток
поэтому
Синусоидальные Э.Д.С. и ток
Длину дуги dl можно считать равной гипотенузе прямоугольного треугольника 2-3-3". Этот треугольник имеет взаимно перпендикулярные стороны с треугольником 2-6'-2', поэтому углы при вершинах 3 и 6' равны ωt. Сторона 2-3" треугольника 2-3-3" равна проекции гипотенузы 2-3 на горизонтальную ось:
Синусоидальные Э.Д.С. и ток
Такие же рассуждения можно привести для последующих и предыдущих изменений угла ωt на dωt. Следовательно, сумму S элементарных площадей dS, взятую за полупериод, можно приравнять проекции полуокружности на ее диаметр: Синусоидальные Э.Д.С. и ток
Таким образом, Синусоидальные Э.Д.С. и ток
Средняя величина синусоидального тока
Синусоидальные Э.Д.С. и ток
Средняя величина синусоидальной функции за период равна нулю, так как площади положительной и отрицательной полуволн равны.
Отношение действующей величины к средней называется коэффициентом формы кривой Кф:
Синусоидальные Э.Д.С. и ток
Для синусоиды
Синусоидальные Э.Д.С. и ток
Найдем среднюю и действующую величины э. д. с., наводимой в прямоугольном витке (см. рис. 12.1) при вращении его в равномерном магнитном поле с постоянной угловой скоростью. Для этого в формуле (12.2) обозначим: Синусоидальные Э.Д.С. и ток — площадь витка; Синусоидальные Э.Д.С. и ток — наибольшая величина магнитного потока, сцепленного с витком.
Амплитуда э. д. с. при наличии N витков
Синусоидальные Э.Д.С. и ток
Средняя величина э. д. с.
Синусоидальные Э.Д.С. и ток
Действующая величина э. д. с.
Синусоидальные Э.Д.С. и ток
 

Задача 12.10.

Определить действующую величину э. д. с., наводимой в прямоугольной рамке, имеющей N = 10 витков, при вращении ее в равномерном магнитном поле В = 1,2 Тл с постоянной угловой скоростью ω = 314 рад/с (см. рис. 12.1). Размеры рамки: ширина D = 20 см, активная длина одной стороны l = 30 см.

Синусоидальные Э.Д.С. и ток

Рис. 12.20. К задаче 12.10

Решение. Начальным положением рамки будем считать положение, когда плоскость рамки перпендикулярна направлению поля (β = 0). Магнитный поток, сцепленный с витками рамки, в этом положении наибольший:
Синусоидальные Э.Д.С. и ток
По мере поворота рамки против движения часовой стрелки магнитный поток уменьшается и при β = 90° становится равным нулю.
Уравнение магнитного потока следующее:
Синусоидальные Э.Д.С. и ток
где ωt = β — переменный угол, определяющий положение рамки относительно плоскости, перпендикулярной направлению магнитного поля.
Средняя з. д. с.
Синусоидальные Э.Д.С. и ток
Действующая величина э. д. с.
Синусоидальные Э.Д.С. и ток