Задана непрерывная случайная величина Х своей функцией распределения 𝐹(𝑥). Требуется: 1) определить коэффициент 𝐴; 2) найти плотность
Математический анализ | ||
Решение задачи | ||
Выполнен, номер заказа №16309 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Задана непрерывная случайная величина Х своей функцией распределения 𝐹(𝑥). Требуется: 1) определить коэффициент 𝐴; 2) найти плотность распределения вероятностей 𝑓(𝑥); 3) схематично построить графики функций 𝑓(𝑥) и 𝐹(𝑥); 4) вычислить математическое ожидание и дисперсию Х; 5) определить вероятность того, что Х примет значение из интервала (a, b).
Решение
1) Коэффициент 𝐴 найдем из условия Тогда функция распределения имеет вид: 2) Плотность распределения вероятности 𝑓(𝑥) найдем по формуле 3) Построим схематически графики функций 𝑓(𝑥) и 𝐹(𝑥). 4) Математическое ожидание Интеграл уже вычислен Дисперсия 𝐷(𝑋): 5) Вычислим вероятность того, что Х примет значение из интервала
- Случайная величина эксцентриситета детали характеризуется функцией распределения Рэлея: 𝐹(𝑥) = 1 − 𝑒 − 𝑥 2 2𝜎2 , (𝑥 ≥ 0) Найти: а) моду распределения
- Две независимые случайные величины 𝑋 и 𝑌 распределены равномерно на отрезке [2; 7]. Найти математическое ожид
- Приобретено 5 приборов. Для каждого из них вероятность невыхода из строя в течение
- Имеется 5 станций, с которыми поддерживается связь. Время от времени связь прерывается из-за атмосферных помех