Вероятность появления события в каждом из 2100 независимых испытаний равна 0,7. Найти вероятность того
Алгебра | ||
Решение задачи | ||
Выполнен, номер заказа №16224 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Вероятность появления события в каждом из 2100 независимых испытаний равна 0,7. Найти вероятность того, что событие появится: а) не менее 1470 и не более 1500 раз; б) не менее 1470 раз; в) не более 1469 раз.
Решение
Применим локальную теорему Лапласа. Если производится 𝑛 независимых испытаний (𝑛 − велико), и вероятность наступления события 𝐴 в каждом испытании постоянна и равна 𝑝, то вероятность того, что в 𝑛 независимых испытаниях событие 𝐴 наступит 𝑚 раз, определяется по формуле: а) В данном случае б) В данном случае в) События «событие появится не менее 1470 раз» и «событие появится не более 1469 раз» противоположны, значит: Ответ:
- При автоматической штамповке деталей 60% продукции выпускается высшим сортом. Требуется: 1) Построить ряд
- Две правильные монеты подбрасываются 5 раз. Случайная величина 𝜉 – число бросков, закончившихся выпадением одинаковых
- Вероятность того, что желание, загаданное на Новый год, сбудется, равна 0,7. Найти вероятность того
- Футболист бьет 5 раз пенальти. Вероятность забить при одном ударе равна 0,7. Составить ряд распределения случайной