Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Алгебра
Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Решение задачи
Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева
Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Выполнен, номер заказа №16224
Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Прошла проверку преподавателем МГУ
Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева  245 руб. 

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева, оценить вероятность того, что частота этого события отклонится от его вероятности по абсолютной величине не более чем на 0,01, если произведено 𝑛 = 9000 испытаний; сравнить с вероятностью, полученной с помощью применения интегральной теоремы Муавра-Лапласа.

Решение

Математическое ожидание случайной величины 𝑋 – число появлений события 𝐴 в серии 𝑛 независимых испытаний, равно:  Дисперсия:  Для частоты 𝑌 числа появлений события 𝐴 в серии 𝑛 независимых испытаний:  Применим неравенство Чебышева: Вероятность того, что отклонение случайной величины от ее математического ожидания превзойдет по абсолютной величине положительное число 𝜀, не больше дроби, числитель которой – дисперсия случайной величины, а знаменатель – квадрат Тогда  2) Уточним вероятность того же события, используя следствие из интегральной теоремы Муавра-Лапласа. Вероятность того, что модуль отклонения случайной величины 𝑋 от своего математического ожидания 𝑎 меньше любого положительного 𝑚, равна  где Ф(𝑥) – функция Лапласа, 𝜎 = √𝐷(𝑌) – среднее квадратическое отклонение. Тогда  Ответ:

Вероятность некоторого события 𝐴 в каждом испытании из серии 𝑛 независимых испытаний равна 𝑝 = 1 3 . Используя неравенство Чебышева