Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n

В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n Высшая математика
В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n Решение задачи
В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n
В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n Выполнен, номер заказа №16189
В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n Прошла проверку преподавателем МГУ
В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n  245 руб. 

В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):
  • В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из 𝑛 независимых испытаний, если 𝑝 − вероятность наступления этого события в одном испытании; в третьем пункте (п. в) при тех же условиях найти 𝑃𝑛 (𝑘1, 𝑘2 ) − вероятность наступления события не менее 𝑘1 раз и не более 𝑘2 раз. а) 𝑝 = 0,002; 𝑘 = 4; 𝑛 = 4000 б) 𝑝 = 0,85; 𝑘 = 3; 𝑛 = 7 в) 𝑝 = 0,3; 𝑘1 = 90; 𝑘2 = 140; 𝑛 = 336

Решение

а) Применим формулу Пуассона. Если производится достаточно большое число испытаний (𝑛 – велико), в каждом из которых вероятность наступления события А постоянна, но мала, то вероятность того, что в 𝑛 испытаниях событие А наступит 𝑚 раз, определяется приближенно формулой  где 𝜆 = 𝑛𝑝 В данном случае Вероятность события 𝐵 – при 4000 испытаниях событие 𝐴 наступи ровно 4 раза, равна:  б) Воспользуемся формулой Бернулли. Если производится 𝑛 независимых испытаний, при каждом из которых вероятность осуществления события 𝐴 постоянна и равна 𝑝, а вероятность противоположного события равна 𝑞 = 1 − 𝑝, то вероятность того, что при этом событие 𝐴 осуществляется ровно 𝑚 раз, вычисляется по формуле где 𝐶𝑛 𝑚 — число сочетаний из 𝑛 элементов по 𝑚. Для данного случая . Вероятность события 𝐶 – при 7 испытаниях событие 𝐴 наступи ровно 3 раза, равна:  в) Применим интегральную теорему Лапласа. Если вероятность 𝑝 наступления события 𝐴 в каждом из 𝑛 независимых испытаний постоянна и отлична от нуля и единицы, то вероятность того, что в 𝑛 независимых испытаниях событие 𝐴 наступит не менее чем 𝑚1 раз и не более чем 𝑚2 раза, определяется по формуле:В данном случае Ответ: 𝑃(𝐵) = 0,0573; 𝑃(𝐶) = 0,0109; 𝑃(𝐷) = 0,9015

В двух первых пунктах (п. а и б) вычислить 𝑃𝑛 (𝑘) − вероятность наступления события 𝐴 ровно 𝑘 раз в серии из n