Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Математическая статистика
Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Решение задачи
Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти
Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Выполнен, номер заказа №16444
Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Прошла проверку преподавателем МГУ
Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти  245 руб. 

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти константу 𝑐, плотности распределения с.в. 𝑋 и 𝑌, проверить их независимость, 𝑚𝑋, 𝑚𝑌.

Решение

Константу 𝑐 определим, используя условие нормировки:  Тогда Тогда 𝑐 = 1 Тогда совместная плотность распределения 𝑝𝑋𝑌(𝑥, 𝑦) имеет вид:Найдем плотности распределения составляющих  0 Выясним, являются ли величины 𝑋 и 𝑌 зависимыми. Случайные величины 𝑋 и 𝑌 называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. Для независимых непрерывных случайных величин теорема умножения законов распределения принимает вид:  Для данного случая:  Поскольку равенство верно, то величины 𝑋 и 𝑌 являются независимыми. Найдем математические ожидания:

Совместное распределение случайных величин 𝑋 и 𝑌 задано плотностью распределения вероятностей: 𝑝𝑋𝑌(𝑥, 𝑦) = { 𝑐𝑒 −𝑥−𝑦 , 𝑥 ≥ 0, 𝑦 ≥ 0 0, 𝑥 < 0, 𝑦 < 0 Найти