Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно

Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Математический анализ
Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Решение задачи
Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно
Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Выполнен, номер заказа №16309
Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Прошла проверку преподавателем МГУ
Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно  245 руб. 

Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):

Случайная величина 𝑋 в интервале Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно находя предварительно плотности распределения 𝑌.

Решение

Изобразим схематически график функции Так как функция монотонна на участке то применяется формула: где 𝜓 − функция, обратная функции 𝜑. Определим диапазон значений 𝑌 по графику: В зависимости от числа обратных функций 𝑘 выделим следующие интервалы для 𝑌: В интервалах обратные функции не существуют, следовательно, плотность вероятности Решение задачи оформим в виде двух столбцов: в левом будут помещены обозначения функции, принятые в общем решении задачи, в правом – конкретные функции, соответствующие данному примеру: Таким образом, плотность распределения вероятности величины 𝑌 равна: Математическое ожидание случайной величины 𝑌 равно: Воспользуемся заменой тогда Найдем отдельно неопределенный интеграл вида используя формулу интегрирования по частям Тогда: Воспользуемся заменой тогда При получим При получим Найдем отдельно неопределенный интеграл вида используя формулу интегрирования по частям Дисперсия равна: Ответ: 𝐷(𝑌) = 0,2608

Случайная величина 𝑋 в интервале (0; 𝜋 2 ) задана плотностью распределения 𝑓(𝑥) = 𝑐𝑜𝑠𝑥; вне этого интервала 𝑓(𝑥) = 0. Найти дисперсию функции 𝑌 = 𝜑(𝑋) = 𝑋 2 находя предварительно