Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.
Найти вероятность попадания в заданный интервал (α,β) нормально распределенной случайной величины Х, если известны
Теория вероятностей | ||
Решение задачи | ||
Выполнен, номер заказа №16360 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Описание заказа и 38% решения ( + фото):
Найти вероятность попадания в заданный интервал (α,β) нормально распределенной случайной величины Х, если известны ее математическое ожидание и среднее квадратическое отклонение: а = 8, σ =2, α = 4, β = 6.
Решение
Для нормального закона распределения случайной величины вероятность попадания в заданный интервал равна: где Ф(𝑥) – функция Лапласа, 𝑎 = 8 − математическое ожидание; σ = 2 − среднее квадратическое отклонение. Тогда:
- Найти вероятность того, что среди взятых наудачу пяти деталей две стандартные
- Вероятность брака изделия на некотором производстве 𝑝 = 0,3. Найти вероятность того
- Найти вероятность того, что нормально распределенная случайная величина 𝑋 ≈ 𝑁(4; 3) примет значение в интервале
- Дан перечень возможных значений дискретной случайной величины 𝑋: 𝑥1 = −1, 𝑥2 = 0, 𝑥3 = 1, а также