Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. 141 174 235 155 181 202 185 218 283 268 253 294 276 309 281 262 272 236 257 240
Теория вероятностей | ||
Решение задачи | ||
Выполнен, номер заказа №16412 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. Для этого произведена выборка объема n = 40. Результаты испытаний приведены в таблице.
Решение
Построим вариационный ряд – выборку в порядке возрастания: Найдем размах выборки Число интервалов 𝑁, на которые следует разбить интервал значений признака, примем равным Рассчитаем шаг (длину частичного интервала) ℎ по формуле: Округление шага производится, как правило, в большую сторону. Таким образом, принимаем За начало первого интервала принимаем такое значение из интервала чтобы середина полученного интервала оказалась удобным для расчетов числом. В нашем случае за нижнюю границу интервала возьмём 140. В результате получим следующие границы интервалов: Подсчитаем частоту каждого интервала, то есть число вариант, попавших в этот интервал. Варианты, совпадающие с границами частичных интервалов, включают в правый интервал. Относительные частоты определим по формуле: Номер интервала Интервал Середина интервала Частота 𝑚 Относительная частота Найдем оценки вариации: выборочное среднее, дисперсию, среднее квадратическое отклонение, коэффициент асимметрии и эксцесс. Выборочное среднее вычисляется по формуле: Выборочная дисперсия вычисляется по формуле: Среднее квадратическое отклонение равно: Исправленная дисперсия: Исправленное среднее квадратическое отклонение равно: Определим центральный момент третьего порядка: Коэффициент асимметрии равен: Определим центральный момент четвертого порядка: Эксцесс равен: По асимметрии распределение значительно отличается от нормального, а по эксцессу – незначительно. Выдвинем и проверим с уровнем значимости гипотезу о нормальном законе распределения генеральной совокупности. Критерий Пирсона применяется при условии, что все группы ряда включают частоты не меньшие 5 (т.е.). Если частота группы ряда менее 5, то эту группу следует объединить с соседней. Вычислим вероятности попаданий СВ в каждый интервал Интервалы Получили Число степеней свободы По таблице при уровне значимости находим Так как то нет оснований отвергать гипотезу о нормальном распределении при заданном уровне значимости. Построим полигон частот и теоретическую кривую Гаусса
- Используя критерий Пирсона, при уровне значимости 0, 05 проверить, согласуется ли гипотеза о нормальном распределени
- В течение 10 ч регистрировали прибытие автомашин к бензоколонке и получили эмпирическое распределение, приведенное в таблице (в первом
- В таблице представлены данные об удое коров на молочной ферме за лактационный период (ц) для 100 коров.
- В таблице 4 представлены измерения у 10 телят по глубине груди 𝑋 (см) и живой массе