Доля населения региона, занятого в промышленности, равна 0,4. В каких пределах с вероятностью
Алгебра | ||
Решение задачи | ||
Выполнен, номер заказа №16224 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Доля населения региона, занятого в промышленности, равна 0,4. В каких пределах с вероятностью 0,95 находится число занятых в промышленности среди 10 000 случайно отобранных людей?
Решение
Применим формулу Лапласа: Вероятность того, что модуль отклонения случайной величины Х от своего математического ожидания 𝑎 меньше любого положительного 𝑚, равна где Ф(𝑥) – функция Лапласа. Математическое ожидание Дисперсия: Среднеквадратическое отклонение: Тогда По условию Из таблицы функции Лапласа Тогда интервал, в котором с вероятностью 0,95 находится число занятых в промышленности людей, имеет вид: Ответ:
- Два автомата производят детали. Вероятность изготовления стандартной детали первым автоматом равна 0,8, вторым – 0,9. Производительность
- Первый игрок бросает три, а второй 2 одинаковых монеты. Выигрывает и получает все 5 монет тот, у которого выпадает
- В страховом обществе застраховано 10 000 человек одного возраста и одной социальной группы. Вероятность смерти
- В урне 4 шара, на которых указаны очки: 2; 4; 5; 5. Наудачу вынимается шар. Найти закон распределения случайной величины 𝑋 – числа