Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Теория вероятностей
Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Решение задачи
Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15
Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Выполнен, номер заказа №16412
Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Прошла проверку преподавателем МГУ
Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15  245 руб. 

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо: 1) задать статистическое распределение выборки в виде интервальной таблицы частот и интервальной таблицы относительных частот; 2) построить гистограмму частот; 3) найти выборочную среднюю, выборочную дисперсию и исправленную выборочную дисперсию, выборочное среднее квадратическое отклонение и исправленное выборочное среднее квадратическое отклонение. 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15 16 17 20 17 17 20 20 18 22 23 13 15 10 10 12 12 18 18 19 21 23 20 22 23 17 16 14 15 18 15 11 16 17 15 13 16 17 18 14 15 20

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15

Решение

Зададим статистическое распределение выборки в виде интервальной таблицы частот и интервальной таблицы относительных частот. Построим вариационный ряд – выборку в порядке возрастания:  Найдем размах выборки  Число интервалов 𝑁, на которые следует разбить интервал значений признака, найдём по формуле Стерджесса:  объём выборки, то есть число единиц наблюдения. В данном случае. Получим:  Рассчитаем шаг (длину частичного интервала) ℎ по формуле:  Округление шага производится, как правило, в большую сторону. Таким образом, принимаем . За начало первого интервала принимаем такое значение из интервала чтобы середина полученного интервала оказалась удобным для расчетов числом. В данном случае за нижнюю границу интервала возьмём 9,5. В результате получим следующие границы интервалов: Подсчитаем частоту 𝑛𝑖 каждого интервала, то есть число вариант, попавших в этот интервал. Варианты, совпадающие с границами частичных интервалов, включают в левый интервал. Относительные частоты (частости) 𝑓𝑖 определим по формуле: Номер интервала Интервал Середина интервала Частота 𝑛𝑖 Относительная частота 2) Построим гистограмму частот. 3) Найдем выборочную среднюю, выборочную дисперсию и исправленную выборочную дисперсию, выборочное среднее квадратическое отклонение и исправленное выборочное среднее квадратическое отклонение. Выборочная средняя:  Несмещенная (исправленная) дисперсия: Выборочное среднее квадратическое отклонение  Исправленное среднеквадратичное отклонение

Для изучения некоторого количественного признака 𝑋 генеральной совокупности получена выборка. Необходимо 16 13 11 15 18 19 21 18 11 15 14 16 18 17 21 22 13 12 15