Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.
Даны законы распределения двух независимых случайных величин 𝑋 и 𝑌. Составить закон распределения случайной величины 𝑍,
Математическая статистика | ||
Решение задачи | ||
Выполнен, номер заказа №16444 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Описание заказа и 38% решения ( + фото):
Даны законы распределения двух независимых случайных величин 𝑋 и 𝑌. Составить закон распределения случайной величины 𝑍, найти ее числовые характеристики: 𝑀(𝑧), 𝐷(𝑧), 𝜎(𝑧).
𝑍 = 𝑋 + 𝑌
Решение
Определим возможные значения 𝑍 = 𝑋 + 𝑌 и вероятности этих значений: Ряд распределения случайной величиныНайдем математическое ожидание 𝑀(𝑧) и дисперсию 𝐷(𝑧) по полученному ряду распределения: Среднее квадратическое отклонение 𝜎(𝑧) равно
- Даны результаты взвешивания 50 животных (Ц), отобранных из стада: 4,2 4,5 3,1 5,1 4,3 4,7 3,5 4,4 5,3 3,7 4,0 4,8 4,6 3,0 3,2 5,2 4,2 3,9 4,8
- Случайная величина 𝑋 в интервале (−1; 1) задана плотностью распределения 𝑓(𝑥) = 1 𝜋√1−𝑥 2 ; вне этого интервала 𝑓(𝑥) = 0. Найти: а) моду; б) медиану 𝑋.
- Наблюдения за значением случайной величины в 50 испытаниях дали следующие результаты: 3,86 3,99 3,71 4,03 4,06 3,69 3,81 4,14 3,67 3,76 4,02 3,72 3,97
- Две независимые ДСВ, заданные следующими таблицами распределения вероятностей:Найти дисперсию случайной величины 𝐴 = 𝑋 + 2𝑌