Преобразование схем электрических цепей
Содержание:
Преобразование схем электрических цепей:
При расчете электрических цепей часто возникает целесообразность преобразования схем этих цепей в более простые и удобные для расчета. Так, при одном или нескольких источниках электрической энергии в ряде случаев удается преобразовать электрическую схему в одноконтурную или в схему с двумя узлами, что весьма упрощает последующий расчет.
Описываемые ниже приемы преобразования схем электрических цепей применимы для цепей постоянного и переменного тока-, ради общности изложения они приводятся в комплексной записи.
Одним из основных видов преобразования электрических схем, часто применяемых на практике, является преобразование схемы со смешанным соединением элементов. Смешанное соединение элементов представляет собой сочетание более простых соединений — последовательного и параллельного, рассмотрению которых и посвящен данный параграф.
Последовательное соединение
На рис. 4-1 изображена ветвь электрической цепи, в которой последовательно включены комплексные сопротивления
Напряжения на отдельных участках цепи обозначены через
По второму закону Кирхгофа
или, что то же,
Сумма комплексных сопротивлений всех последовательно соединенных участков цепи
называется эквивалентным комплексным сопротивлением.
Если мнимые части комплексов
представляют собой сопротивления одинакового характера— индуктивного или емкостного (рис. 4-2), то эквивалентное комплексное сопротивление Z находится в результате
арифметического сложения в отдельности сопротивлений индуктивностей или величин обратных емкостям:
или
где
Ток в цепи равен:
Напряжения на участках цепи, соединенных последовательно, относятся как комплексные сопротивления этих участков: напряжение на k-м участке равно произведению суммарного напряжения на отношение комплексного сопротивления участка к эквивалентному комплексному сопротивлению цепи:
Приведенные выше формулы справедливы при любых значениях
Параллельное соединение
На рис. 4-3 изображена схема электрической цепи с двумя узлами. Между этими узлами параллельно соединены ветви с комплексными проводимостями Напряжение на всех ветвях одинаковое, равное
Токи в ветвях обозначены через
По первому закону Кирхгофа
или, что то же,
Сумма комплексных проводимостей всех ветвей, соединенных параллельно,
называется эквивалентной комплексной проводимостью.
Если мнимые части комплексов представляют собой проводимости одинакового характера — емкостного или индуктивного (рис. 4-4), то эквивалентная
комплексная проводимость Y находится в результате арифметического сложения отдельных активных проводимостей , емкостей или величин обратных индуктивностям:
или
где
Суммарный ток в цепи равен:
Токи в ветвях относятся, как их комплексные проводимости: ток в ветви равен произведению суммарного тока всех ветвей на отношение комплексной проводимости ветви к эквивалентной комплексной проводимости:
Данным выражением особенно удобно пользоваться при n > 2. При этом значения могут быть любыми.
В случае параллельного соединения двух ветвей (n = 2) обычно пользуются выражениями, в которые входят сопротивления ветвей; эквивалентное комплексное сопротивление равно: v 1 1 Z,Z2
Токи в параллельных ветвях:
t. e. ток одной из двух параллельных ветвей равен суммарному току, умноженному на сопротивление другой ветви и деленному на сумму сопротивлений обеих ветвей.
Смешанное соединение
Электрические схемы, имеющие смешанное соединение, могут быть преобразованы в более простую электрическую схему путем замены параллельных ветвей одной ветвью и соответственно последовательно соединенных участков цепи — одним участком.
На рис. 4-5 показан пример электрической цепи со смешанным соединением. Эта схема легко приводится к одноконтурной. Первоначально вычисляется эквивалентная комплексная проводимость параллельных ветвей; затем находится величина, обратная проводимости, т. е. общее комплексное сопротивление параллельных ветвей; найденное комплексное сопротивление суммируется с комплексным сопротивлением последовательно включенного участка. Полученное суммарное
комплексное сопротивление эквивалентно сопротивлению исходной цепи со смешанным соединением.
Расчетные выражения для рассматриваемого случая будут следующие:
Суммарное комплексное сопротивление всей цепи равно:
а суммарный ток
Токи в ветвях относятся, как комплексные проводимости ветвей:
Таким юбразом, многоконтурная электрическая схема со смешанным соединением приводится к одноконтурной,
имеющей суммарное комплексное сопротивление Z или соответственно суммарную комплексную проводимость Y. Распределение токов и напряжений в смешанной цепи подчиняется правилам, указанным в предыдущем параграфе.
Описанный выше порядок преобразования схемы и нахождения распределения токов принципиально применим и для так называемой цепной схемы, показанной на рис. 4-6. Просуммировав комплексные сопротивления в последней ветви, найдем комплексную проводимость ветви, которую алгебраически сложим с и получим суммарную комплексную проводимость двух последних ветвей; вычислив обратную величину, т. е. комплексное сопротивление, прибавим к ней Продолжая
таким образом дальше, получим в итоге результирующее комплексное сопротивление цепи и соответственно суммарный ток который может быть путем последовательных вычислений распределен между всеми ветвями сложной цепи.
Однако такой способ расчета цепной схемы является достаточно трудоемким и утомительным. Более целесообразно в этом случае воспользоваться другим методом, который известен под названием метода подобия или единичного тока.
Задавшись током в последней ветви, равным единице находим напряжение на комплексном сопротивлении равное При этом ток .
Следовательно,
Прибавив к напряжению на падение напряжения от тока в комплексном сопротивлении получим напряжение на Продолжая таким образом дальше, найдем в конечном итоге ток и напряжение Ввиду того что ток был произвольно выбран равным единице, полученное напряжение не будет равно заданному напряжению на выводах цепи. Для нахождения действительного распределения токов в схеме необходимо все вычисленные значения токов умножить на отношение
Эквивалентные участки цепи с последовательным и параллельным соединениями
Обозначим комплексное сопротивление участка цепи, состоящего из двух последовательно соединенных элементов, через Комплексная проводимость данного участка цепи равна причем активная и реактивная проводимости:
Если два элемента с проводимостями g и b, вычисленными по этим формулам, соединить параллельно, то суммарная комплексная проводимость будет равна Y и соответственно комплексное сопротивление будет равно Z,
Такие две цепи с последовательным и параллельным соединениями, имеющие одинаковые сопротивления на выводах, называются эквивалентными.
Ввиду того что реактивное сопротивление х, входящее в расчетные формулы, в общем случае зависит от частоты, условие эквивалентности этих цепей выполняется только при той частоте, для которой вычислено х.
Пусть, например, задана схема с последовательным соединением сопротивления и индуктивности (рис. 4-7, а). Преобразуем ее в схему с параллельным соединением элементов (рис. 4-7, б).
Активная и реактивная проводимости исходной цепи:
Из условия эквивалентности цепей следует, что параметры новой цепи будут:
Вычислив по этим формулам получим схему цепи, эквивалентной исходной при данной частоте При других значениях частоты параметры будут иметь другие значения, следовательно эквивалентность цепей нарушится.
При например, при достаточно высокой частоте:
Если исходной является схема рис. 4-7, б и заданными параметрами являются то параметры эквивалентной цепи (рис. 4-7, а) определятся из выражений:
Из полученных выражений видно, что числовые значения эквивалентной цепи зависят от частоты.
Условия эквивалентности для цепей с последовательным и параллельным соединением сопротивления и емкости имеют вид:
При достаточно высокой частоте и тогда
Преобразование треугольника в эквивалентную звезду
Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи
сохраняются неизменными. Иначе говоря, эквивалентность треугольника и звезды понимается в том смысле, что при одинаковых напряжениях между одноименными выводами токи, входящие в одноименные выводы, одинаковы. Это равносильно тому, что мощности в этих цепях одинаковы.
На рис. 4-8 показан случай, когда преобразование треугольника в эквивалентную звезду дает возможность преобразовать многоконтурную схему в одноконтурную.
Для вывода расчетных выражений, служащих для преобразования треугольника в эквивалентную звезду, ниже приняты следующие обозначения (рис. 4-9):
- — сопротивления сторон треугольника;
- — сопротивления лучей звезды;
- — токи, подходящие к выводам 1, 2, 3\
- — Токи в ветвях треугольника.
Выразим токи в ветвях треугольника через приходящие токи.
По второму закону Кирхгофа сумма напряжений в контуре треугольника равна нулю:
По первому закону Кирхгофа для узлов 2 и 1
Решение этих уравнений относительно Дает:
Напряжение между выводами 1 и 2 схемы рис. 4-9, а будет:
a в схеме рис. 4-9, б оно равно:
Для эквивалентности необходимо равенство напряжений при всяких токах
Это возможно при условии:
Третье выражение получается в результате круговой замены индексов.
Итак, комплексное сопротивление луча звезды равно произведению комплексных сопротивлений прилегающих сторон треугольника, деленному на сумму комплексных сопротивлений трех сторон треугольника.
Выше было получено выражение для тока в стороне 1—2 треугольника в зависимости от токов Круговой заменой индексов можно получить токи в двух других сторонах треугольника:
Преобразование звезды в эквивалентный треугольник
В расчетах также возникает необходимость замены звезды эквивалентным треугольником. На рис. 4-10 показан, например, случай, когда такая замена позволяет
преобразовать сложную электрическую схему в одноконтурную.
При переходе от звезды к треугольнику заданными являются сопротивления звезды Выражения для искомых сопротивлений треугольника находятся в результате совместного решения трех уравнений (4-1).
Деление третьего уравнения на первое, а затем на второе дает:
Выражая отсюда и подставляя их в первое уравнение (4-1), получим:
откуда
Аналогично круговой заменой индексов получим:
И
Отедовательно, комплексное сопротивление стороны треугольника равно сумме комплексных сопротивлений прилегающих лучей звезды и произведения их, деленного на сопротивление третьего луча.
Токи в лучах звезды легко выражаются через токи в сторонах треугольника. С учетом положительных направлений на рис. 4-9 имеем:
Эквивалентные источники э. д. с. и тока
Два разнородных источника электрической энергии — источник э. д. с. и источник тока — считаются эквивалентными,, если при замене одного источника другим токи и напряжения во внешней электрической цепи, с которой эти источники соединяются, остаются неизменными. На рис. 4-11 изображены эквивалентные источники тока, посылающие во внешнюю цепь ток и поддерживающие на своих выводах одинаковое напряжение
Условием эквивалентности источников, именуемым в дальнейшем правилом об эквивалентных источниках э.д.с. и тока, служит следующее соотношение между э. д. с. Ё источника э. д. с. и током
источника тока:
где Z — внутреннее комплексное сопротивление как источника э. д. с., так и источника тока.
Действительно, напряжение на источнике э. д. с. получается в результате вычитания из э. д. с. падения напряжения от тока в комплексном сопротивлении Z источника (рис. 4-11, а).
Соответственно напряжение на источнике тока при том же токе посылаемом во внешнюю цепь, равно падению напряжения от тока в комплексном сопротивлении Z источника (рис. 4-11,6).
В обоих случаях напряжения на выводах обоих источников одинаковы:
т. е. получается условие (4-3), не зависящее от тока нагрузки.
При отсоединении эквивалентных источников э. д. с.
и тока от внешней цепи напряжение на выводах обоих источников равно Ё. Именно это обстоятельство и равенство внутренних комплексных сопротивлений обоих источников и обеспечивают их эквивалентность при любом режиме работы.
Следует заметить, что мощности, расходуемые во внутренних сопротивлениях эквивалентных источников э. д. с. и тока, неодинаковы. В первом случае полная мощность, расходуемая в источнике, равна во втором случае
Например, при отсоединении источников от внешней цепи в первом случае мощность в источнике не расходуется, а во втором случае она составляет
Поэтому эквивалентность источников следует понимать только в смысле неизменности токов, напряжений и мощностей во внешней электрической цепи, присоединенной к источникам.
Если внутреннее сопротивление источника э. д. с. равно нулю, то непосредственное применение формулы (4-3) для нахождения эквивалентного источника тока по, заданной э. д. с. источника не представляется возможным. В таких случаях сопротивление внешней цепи, включенной последовательно с э. д. с., можно рассматривать в качестве внутреннего сопротивления источника, что позволит применить формулу (4-3).
В случае сложной электрической цепи замена источника э. д. с. эквивалентным источником тока или обратно может иногда упростить расчет.
Целесообразность такой замены проиллюстрирована, в частности, в следующем параграфе.
Преобразование схем с двумя узлами
Применим правило об эквивалентных источниках э. д. с. и тока к преобразованию схемы с параллельным соединением n ветвей, содержащих источники э. д. с. (рис. 4-12, а).
Заменяя заданные источники э. д. с. источниками тока, получаем схему рис. 4-12, б. Источники тока в совокупности образуют эквивалентный источник тока (рис. 4-12, в), причем
и
Пользуясь этим соотношением, можно в конечном итоге перейти от схемы рис. 4-12, в к схеме рис. 4-12, s, являющейся эквивалентом исходной схемы рис. 4-21, а. Здесь
Таким образом, n параллельных ветвей с источниками э. д. с. между двумя узлами могут быть заменены одним источником тока (рис. 4-12, в) или источником э. д. с. (рис. 4-12, s).
Ток во внешней цепи (в ветви с сопротивлением равен:
Напряжение между двумя узлами находится по формуле
Выведенные здесь выражения широко используются для расчета электрических цепей с двумя узлами, а также более сложных цепей, приводящихся к двум узлам.
Перенос источников в схеме
Расчет электрической цепи облегчается в ряде случаев в результате переноса в схеме источников э. д. с. или тока. Как это видно из уравнений Кирхгофа, токи в схеме определяются заданными величинами суммарных э. д. с. в контурах независимо от того, из каких отдельных слагающих они состоят. Поэтому изменение расположения в схеме источников э. д. с., при котором суммарные э. д. с. во всех контурах сохраняются неизменными, не влияет на токи в ветвях. Аналогично напряжения на ветвях определяются заданными суммарными токами источников тока в узлах, и поэтому изменение расположения в схеме источников тока, при котором их суммарные токи во всех узлах сохраняются неизменными, не влияет на напряжения в схеме.
Если, например, требуется исключить источник э. д. с. из какой-либо ветви, то в данную ветвь вводится компенсирующая э. д. с., причем точно такая же э. д. с. вводится одновременно во все остальные ветви, сходящиеся
в одном из узлов данной ветви. Компенсирующая и дополнительные э. д. с. имеют одинаковое направление по отношению к рассматриваемому узлу. В результате этого источник э. д. с. из ветви исключается и появляются источники э. д. с. в других ветвях схемы. Суммарные э. д. с. во всех контурах и соответственно токи в ветвях остаются прежними.
Итак, источник э. д. с. может быть перенесен из какой-либо ветви схемы во все другие ветви, присоединенные к узлу данной ветви, без изменения токов в схеме.
Справедливо и обратное положение: если во всех ветвях, кроме одной, сходящихся в узле, имеются одинаковые источники э. д. с. (рис. 4-13, а), направленные все к одному узлу или все от узла, то они могут быть заменены одним источником э. д. с. в ветви, в которой источник отсутствовал (рис. 4-13, б).
Это положение подтверждается тем, что суммарные э. д. с. в контурах схем на рис. 4-13, а и б одинаковы.
Имеется и другое доказательство данного положения: ввиду равенства э. д. с. всех источников вторые выводы
их могут быть объединены, как имеющие одинаковый потенциал. В результате такого объединения, показанного на рис. 4-13, а пунктиром, получается схема рис. 4-13, б.
В случае переноса источников тока они присоединяются к узлам схемы так, чтобы оставались неизменными их суммарные токи в узлах.
Так, например, несмотря на то, что источники тока размещены в схемах рис.
4-14, а и б различно, суммарные токи источников в узлах обеих схем одинаковы. Поэтому и напряжения между узлами не изменились.
Итак, источник тока может быть заменен источниками тока, подключенными. параллельно всем
ветвям, которые составляли контур с рассматриваемым источником.
• Перенос источников в схеме успешно сочетается на практике с различными методами преобразований и расчетов (см. пример 4-1).
Пример 4-1.
Вычислить ток в диагональной ветви мостовой схемы рис. 4-15, а.
Дано:
Заданный источник тока может быть заменен двумя источниками, подключенными параллельно сопротивлениям (рис. 4-15, б). Пользуясь условием эквивалентности источников э, д, с, и тока, получаем схему рис, 4-15, в с двумя узлами. По формуле (4-4) напряжение на ветви равно
В. Искомый ток
Преобразование симметричных схем
Схема электрической цепи, в которой имеется ось симметрии, называется симметричной. Например, схема рис. 4-16, а симметрична относительно вертикальной оси. В симметричных схемах легко выявляются точки или узлы с одинаковым потенциалом. В ветвях, присоединенных к таким узлам, токи равны нулю. Поэтому эти ветви
можно разрезать, не нарушая распределения токов и напряжений в схеме. Точки, имеющие одинаковый потенциал, могут быть объединены. Рассечение ветвей, по которым не проходит ток, и объединение точек равного потенциала упрощают схему и облегчают расчет.
Так, в симметричной схеме рис. 4-16, б токи в соединениях, пересекающих ось симметрии, отсутствуют. Разрезав схему по оси симметрии, получим с обеих сторон одноконтурную схему рис. 4-16, в, которая легко рассчитывается.
Допустим теперь, что полярность источников в симметричной схеме неодинакова (рис. 4-17, а). В этом случае (равенство э. д. с. источников и различие их полярности) токи в симметричных ветвях (например, и напряжения между соответствующими парами выводов, симметрично расположенными относительно оси, равны и противоположны по знаку. Отсюда следует, что напряжения между всеми точками, лежащими на оси симметрии, равны нулю Поэтому все точки схемы на оси симметрии могут быть замкнуты накоротко (рис. 4-17, б).
Таким образом, расчет сложных симметричных схем приводится к расчету более простых схем.
На рис. 4-18, а и б показана симметричная мостовая схема, имеющая две оси симметрии — вертикальную и
горизонтальную. В продольных ветвях ток отсутствует; потенциалы средних точек поперечных (перекрещенных) ветвей одинаковы.
Поэтому продольные ветви могут быть рассечены, а средние точки поперечных ветвей — объединены. В результате с обеих сторон получится одноконтурная схема (рис. 4-18, в), расчет которой крайне прост.
Если изменить полярность одного из источников (рис. 4-19, а), то роли продольных и поперечных ветвей поменяются и преобразованная часть схемы примет вид, показанный на рис. 4-19, б.
В разобранных выше примерах э. д. с. источников были равны. В случае неравенства э. д. с. источников преобразование симметричной схемы удобно сочетается с методом наложения (см. пример 7-5).
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |