Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Полярные координаты - определение и вычисление с примерами решения

Содержание:

Полярные координаты. параметрические уравнения линии

Полярные координаты

Основная идея метода координат состоит в том, что положение точки на плоскости однозначно определяется с помощью двух чисел. Конкретный геометрический смысл этих чисел дает ту или иную систему координат. Наиболее важной после прямоугольной системы, исключительно употреблявшейся нами до сих пор, является полярная система координат, к рассмотрению которой мы и переходим.

Возьмем на плоскости точку О, которую назовем полюсом. Проведем из полюса О направленную полупрямую Ох, называемую полярной осью (рис. 41).

Полярные координаты - определение и вычисление с примерами решения

Пусть М — произвольная точка плоскости. Соединим точку М с полюсом О отрезком ОМ. Длина отрезка ОМ = р называется полярным радиусом точки М, а угол Полярные координаты - определение и вычисление с примерами решения

Точка М с полярными координатами риф записывается следующим образом: М (р, ф), причем на первом месте ставится полярный радиус р, а на втором — полярный угол ф.

Что касается значений, принимаемых полярными координатами, то достаточно, очевидно, рассматривать значения р от 0 до Полярные координаты - определение и вычисление с примерами решения и значения ф от 0 до Полярные координаты - определение и вычисление с примерами решения, при этом, как мы условились, угол ф отсчитывается от полярной оси против хода часовой стрелки. Однако в некоторых вопросах приходится рассматривать углы, большие Полярные координаты - определение и вычисление с примерами решения, а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по направлению движения часовой стрелки.

Связь между прямоугольными и полярными координатами

Рассмотрим переход от полярных координат к прямоугольным и обратно.

Предположим, что полюс полярной системы совпадает с началом прямоугольной системы координат Оху, а полярная ось является положительной полуосью Ох (рис. 42).

Полярные координаты - определение и вычисление с примерами решения

Тогда для произвольной точки М имеем

Полярные координаты - определение и вычисление с примерами решения

Считая угол ф острым, из прямоугольного треугольника АОМ находим

Полярные координаты - определение и вычисление с примерами решения

Полученные формулы справедливы для любого угла ф. Так выражаются прямоугольные координаты точки М через ее полярные координаты. Далее, из этого же прямоугольного треугольника АОМ получаем

Полярные координаты - определение и вычисление с примерами решения

Так выражаются полярные координаты точки через ее прямоугольные координаты.

Заметим, что при определении полярного угла ф по tg ф нужно учитывать знаки координат х и у.

Ранее мы видели, что линии могут быть заданы с помощью уравнений, связывающих их текущие прямоугольные координаты. Покажем теперь на простейшем примере, что линии могут определяться и уравнениями относительно полярных координат.

Пример:

Рассмотрим кривую Полярные координаты - определение и вычисление с примерами решения, где а — некоторое положительное число. Эта кривая называется спиралью Архимеда. Для ее построения составляем таблицу соответственных значений ф и р:

Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения

По этой таблице наносим точки и соединяем их линией, уточняя, если в этом есть необходимость, положение промежуточных точек (рис. 43).

Параметрические уравнения линии

Иногда бывает удобнее вместо уравнения линии, связывающего прямоугольные координаты Полярные координаты - определение и вычисление с примерами решения, рассматривать так называемые параметрические уравнения линии, дающие выражения текущих координат х и у в виде функций от некоторой переменной величины t (параметра). Параметрические уравнения играют важную роль, например, в механике, где координаты х и у движущейся точки М (х, у) рассматриваются как функции времени (уравнения движения).

Пример:

Выведем параметрические уравнения окружности.

Пусть МПолярные координаты - определение и вычисление с примерами решения — произвольная точка окружности радиуса R с центром в начале координат (рис. 44). В определяемом ею прямоугольном треугольнике АОМ обозначим угол хОМ через t. Тогда, очевидно, будут иметь место равенства

Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения

Это и есть параметрические уравнения окружности.

Чтобы получить обычное уравнение окружности, нужно исключить параметр t. Для этого возводим уравнения (1) в квадрат и складываем их:

Полярные координаты - определение и вычисление с примерами решения

Пример:

Выведем параметрические уравнения эллипса.

Эллипс с полуосями а и b можно рассматривать как равномерно сжатую вдоль вертикального диаметра окружность радиуса а, где коэффициент сжатия k = b/a. Пусть М (х, у) — точка эллипса, N (X, У) — соответствующая точка окружности (рис. 45), где

Полярные координаты - определение и вычисление с примерами решения

Полярные координаты - определение и вычисление с примерами решения За параметр t примем угол, образованный радиусом ON окружности с положительным направлением оси Ох: Полярные координаты - определение и вычисление с примерами решения. Используя формулы (2), имеем

Полярные координаты - определение и вычисление с примерами решения

Таким образом, параметрические уравнения эллипса с полуосями а и b есть

Полярные координаты - определение и вычисление с примерами решения Исключив из уравнений (3) параметр получим каноническое уравнение эллипса

Полярные координаты - определение и вычисление с примерами решения

Имея параметрические уравнения линии, можно по точкам построить ее.

Пример:

Построить кривую

Полярные координаты - определение и вычисление с примерами решения

Решение:

Составляем таблицу значений:

Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения Нанося точки с соответствующими координатами (х, у) на плоскость Оху и соединяя их линией, получим искомую кривую (рис. 46).

Эта кривая— парабола. В самом деле, исключив параметр t из уравнений (4), получим Полярные координаты - определение и вычисление с примерами решения т. е. каноническое уравнение параболы.

Параметрические уравнения циклоиды

Определение: Циклоидой называется кривая, описываемая точкой окружности, катящейся без скольжения по прямой линии (рис. 47).

Выведем параметрические уравнения циклоиды, приняв прямую за ось Ох, предполагая, что радиус катящейся окружности равен айв начальном положении движущаяся точка М совпадает с началом координат. За параметр t примем угол поворота (в радианах) подвижного радиуса МС окружности относительно вертикального радиуса КС, где К — точка касания окружности с осью Ох (рис. 47). Так как качение окружности происходит без скольжения, то, очевидно, имеем

Полярные координаты - определение и вычисление с примерами решения

Полярные координаты - определение и вычисление с примерами решения

Отсюда на основании рис. 47 для координат текущей точки М циклоиды получаем следующие выражения:

Полярные координаты - определение и вычисление с примерами решения

Таким образом, параметрические уравнения циклоиды есть

Полярные координаты - определение и вычисление с примерами решения

-------

Полярная система координат

Определение 1. Рассмотрим плоскость с прямоугольной декартовой системой координат Оху . Пусть М(х, у) – точка на плоскости, M ≠ 0. Полярными координатами точки М называются числа r − длина ее радиус-вектора (полярный
радиус) и ϕ − угол, образованный радиус-вектором с положительным направлением оси Ох (полярный угол), Полярные координаты - определение и вычисление с примерами решения. Точка О при этом называется
полюсом, а полуось Ох – полярной осью.
Замечание. Зависимость между прямоугольными (х, у) и полярными ( , ) r ϕ
координатами точки М задается в виде: Полярные координаты - определение и вычисление с примерами решения    (1)

Полярные координаты - определение и вычисление с примерами решения

Рис.1. Полярные координаты точки.
Полярный полюс О и полярную ось можно выбрать на плоскости и не вводя
прямоугольную систему координат:

Полярные координаты - определение и вычисление с примерами решения

Пример 1.

Построим на плоскости линию, заданную уравнением:
Полярные координаты - определение и вычисление с примерами решения − лемниската.
Решение.

Полярные координаты - определение и вычисление с примерами решения
Вычислим значения r при различных значениях ϕ :
Полярные координаты - определение и вычисление с примерами решения
Проводим лучи из начала координат под углами ϕ к оси Ох и на них откладываем
отрезки длины r , получим :

Полярные координаты - определение и вычисление с примерами решения
Рис.3. Лемниската Полярные координаты - определение и вычисление с примерами решения

Пример 2.

а) Построим кривую Полярные координаты - определение и вычисление с примерами решения − кардиоида. Рассуждая, как в примере 1 получим:
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Замечание. Если в определении 1 отбросить требование 0 ≤  ϕ < 2π и не требовать  r > 0, то формулы (1) будут задавать непрерывное отображение точек плоскости (O, r, ϕ) на точки плоскости (x, O, y).

Полярные координаты - определение и вычисление с примерами решения
При этом, если r > 0, то векторы Полярные координаты - определение и вычисление с примерами решениясонаправлены, если r<0, то – противоположно направлены:

Полярные координаты - определение и вычисление с примерами решения
Тогда, с учетом (1), кривую r= r(ϕ) можно рассматривать как заданную параметрически в виде:
Полярные координаты - определение и вычисление с примерами решенияϕ - параметр.
В этом случае на кривой Полярные координаты - определение и вычисление с примерами решения получаются два дополнительных
лепестка, когда Полярные координаты - определение и вычисление с примерами решения соответствующие случаю r < 0 (см.пример 10 § 17). Фактически, такая кривая – это параметрическая кривая:
Полярные координаты - определение и вычисление с примерами решения (см.пример 9 § 30).
На кривой Полярные координаты - определение и вычисление с примерами решения каждый из лепестков проходится дважды и
задается параметрически формулами:
Полярные координаты - определение и вычисление с примерами решения(см.пример 10 § 30).

Пусть r = r(ϕ) – кривая в полярной системе координат, r (ϕ) – непрерывна при Полярные координаты - определение и вычисление с примерами решения. Рассмотрим на плоскости ( x, O, y) криволинейный сектор
Полярные координаты - определение и вычисление с примерами решения Найдем его площадь. Заметим, что сектору Ф
соответствует обычная криволинейная трапеция на плоскости (O, r, ϕ)

Полярные координаты - определение и вычисление с примерами решения
Разобьем фигуру Ф на n частичных фигур лучами Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения На плоскости (O, r, ϕ) получаем обычное разбиение
трапеции:

Полярные координаты - определение и вычисление с примерами решения
Рассмотрим, например, нижние суммы Дарбу:
Полярные координаты - определение и вычисление с примерами решения
Каждое слагаемое в нижней сумме Полярные координаты - определение и вычисление с примерами решения равно площади Полярные координаты - определение и вычисление с примерами решения обычного кругового
сектора радиуса Полярные координаты - определение и вычисление с примерами решения 
таким образом,
Полярные координаты - определение и вычисление с примерами решения (2) для нижних сумм и Полярные координаты - определение и вычисление с примерами решения(3)    для верхних сумм Дарбу, где Полярные координаты - определение и вычисление с примерами решения Суммы (2) и (3) – суммы Дарбу для функции Полярные координаты - определение и вычисление с примерами решения (см.формулы (5) § 24), поэтому Полярные координаты - определение и вычисление с примерами решения(4)
Пример 3.

Найти площадь ограниченную лемнискатой Полярные координаты - определение и вычисление с примерами решения (см.пример 1).
Решение.

По формуле (4):
Полярные координаты - определение и вычисление с примерами решенияплощадь одного лепестка.
Поэтому Полярные координаты - определение и вычисление с примерами решения
Пример 4.

Найти площадь фигуры ограниченной линиями: Полярные координаты - определение и вычисление с примерами решения и Полярные координаты - определение и вычисление с примерами решения (вне круга).
Полярные координаты - определение и вычисление с примерами решения
Решение. Найдем точки пересечения кривых: Полярные координаты - определение и вычисление с примерами решения Полярные координаты - определение и вычисление с примерами решения    По формуле (4):
Полярные координаты - определение и вычисление с примерами решения
Пример 3.

r=2cosϕ. Вычислим Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения − окружность радиуса 1 с центром в точке (1; 0).
Полярные координаты - определение и вычисление с примерами решения
При изменении ϕ от 0 до 2 π окружность проходится дважды и оба раза против
часовой стрелки, поэтому (см. § 30) найденное значение интеграла задает
удвоенную площадь круга.