Площадь параллелограмма - определение и вычисление с примерами решения
Теорема (о площади параллелограмма). Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.
Доказательство:
Пусть
1) Проведем высоту к прямой, содержащей сторону параллелограмма.
2) (как соответственные углы при параллельных прямых и и секущей Поэтому (по гипотенузе и острому углу).
3) Параллелограмм состоит из трапеции и треугольника а прямоугольник - из трапеции и треугольника Так как треугольники и равны, то равны и их площади, а потому равными будут площади параллелограмма и прямоугольника
4) Но и поэтому Следовательно,
Заметим, что если основание высоты - точка -совпадает с точкой или лежит на продолжении стороны то доказательство теоремы будет аналогичным.
В общем виде формулу площади параллелограмма можно записать так:
где - сторона параллелограмма, - высота, к ней проведенная.
Пример:
Докажите, что высоты ромба, проведенные из одной вершины, равны.
Доказательство:
Пусть - данный ромб, и - его высоты (рис. 232).
Ромб является параллелограммом, поэтому Но а значит
Пример:
Периметр параллелограмма равен 36 см, а его высоты - 4 см и 5 см. Найдите площадь параллелограмма.
Решение:
1) Пусть - данный параллелограмм, и - его высоты (рис. 232),
2) По условию поэтому
3) Пусть см, тогда см.
4) Так как по формуле площади параллелограмма или имеем уравнение: То есть откуда (см).
5) Тогда
Ответ. 40
Площадь параллелограмма
С помощью формулы площади прямоугольника можно доказать формулу площади произвольного параллелограмма.
Теорема (формула площади параллелограмма)
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне:
где — сторона параллелограмма, — проведенная к ней высота.
Доказательство:
Пусть — данный параллелограмм, не являющийся прямоугольником (рис. 145, а). Проведем его высоты и докажем, что Четырехугольник является прямоугольной трапецией, площадь которой можно вычислить двумя способами — как сумму площадей параллелограмма и треугольника или как сумму площадей прямоугольника и треугольника Треугольники равны по гипотенузе и катету как противолежащие стороны параллелограмма, как расстояния между параллельными прямыми). Следовательно, эти треугольники имеют равные площади. Тогда площади параллелограмма и прямоугольника также равны, т.е. Случаи, когда точка не является внутренней точкой отрезка (рис. 145, б, в), рассмотрите самостоятельно.
Пример:
Площадь параллелограмма равна а длины его высот — 3 см и 4 см. Найдите периметр параллелограмма.
Решение:
Пусть дан параллелограмм с площадью и высотами (рис. 146).
Поскольку
Следовательно, периметр параллелограмма равен
Ответ: 42 см.
Решая приведенную задачу, можно заметить интересную закономерность: чем больше сторона параллелограмма, тем меньше проведенная к ней высота.
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |