Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Пересечение прямой с плоскостью в начертательной геометрии с примерами

Содержание:

Пересечение прямой с плоскостью:

Рассмотрим три варианта, а соответственно и три алгоритма решения задачи по определению точки пересечения прямой с плоскостью:

  1. прямая — проецирующая, плоскость — общего положения;
  2. прямая — общего положения, плоскость — проецирующая;
  3. прямая и плоскость — общего положения.

Пересечение проецирующей прямой с плоскостью общего положения

При решении задач на определение точки пересечения проецирую- щей прямой с плоскостью общего положения используется собирательное свойство вырожденной проекции проецирующей прямой. Вырожденная проекция прямой совпадает с одноименной проекцией искомой точки. Другая проекция точки пересечения прямой с плоскостью определяется по принадлежности точки заданной плоскости.

Задача:

На эпюре Монжа построить проекции точки пересечения проецирующей прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами

Алгоритм решения

Пересечение прямой с плоскостью в начертательной геометрии с примерами

  1. Так как прямая Пересечение прямой с плоскостью в начертательной геометрии с примерами — горизонтально- проецирующая, то вторая проекция точки пересечения заданной прямой с плоскостью совпадает с вы- рожденной проекцией прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами Отметим горизонтальную проекцию Пересечение прямой с плоскостью в начертательной геометрии с примерами
  2. Фронтальную проекцию Пересечение прямой с плоскостью в начертательной геометрии с примерами определим по принадлежности точки K плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами (задача 3).

Видимость прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами относительно плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами при проецировании на фронтальную плоскость проекций определим с помощью конкурирующих точек 3 и 4.

Пересечение прямой общего положения с проецирующей плоскостью

При решении задач на определение точки пересечения проецирующей плоскости с прямой общего положения используется собирательное свойство вырожденной проекции проецирующей плоскости. Одна из проекций искомой точки определяется на пересечении вырожденной проекции плоскости с одноименной проекцией заданной прямой. Другая проекция точки пересечения прямой с плоскостью определяется по принадлежности точки заданной прямой.

Задача:

На эпюре Монжа построить проекции точки пересечения прямой общего положения Пересечение прямой с плоскостью в начертательной геометрии с примерами с проецирующей плоскостью Пересечение прямой с плоскостью в начертательной геометрии с примерами (рис. 51).

Пересечение прямой с плоскостью в начертательной геометрии с примерами

Алгоритм решения

  1. Так как точка K — общий элемент прямой и плоскости, а плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами — фронтально- проецирующая, следовательно, проекция Пересечение прямой с плоскостью в начертательной геометрии с примерами определится на пересечении фронтальных проекций прямой и плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами
  2. Горизонтальную проекцию Пересечение прямой с плоскостью в начертательной геометрии с примерами определим по принадлежности точки K прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами (задача 1).

Видимость прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами относительно плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами при проецировании на горизонтальную плоскость проекций определим с помощью конкурирующих точек 1 и 2.

Пересечение прямой общего положения с плоскостью общего положения

Для построения точки пересечения прямой общего положения Пересечение прямой с плоскостью в начертательной геометрии с примерами с плоскостью общего положения Пересечение прямой с плоскостью в начертательной геометрии с примерами выполним следующие операции:

1. Заключим прямую Пересечение прямой с плоскостью в начертательной геометрии с примерами во вспомогательную плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами (рис. 52). Как правило, плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами — проецирующая плоскость.

Пересечение прямой с плоскостью в начертательной геометрии с примерами

2. Строим линию пересечения заданной плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами и вспомогательной плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами — прямую m. 3. Определим точку пересечения K прямой линии Пересечение прямой с плоскостью в начертательной геометрии с примерами с построенной линией m.

Так как линия m принадлежит заданной плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами следовательно, точка K будет искомой точкой пересечения прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами с плоскостьюПересечение прямой с плоскостью в начертательной геометрии с примерами

Перед решением задачи по определению точки пересечения прямой общего положения с плоскостью общего положения рассмотрим отдельно реализацию на эпюре Монжа п. 2 — построение линии пересечения проецирующей плоскости с плоскостью общего положения рис. 53, а.

Задача:

На эпюре Монжа построить проекции линии пересечения плоскости общего положения Пересечение прямой с плоскостью в начертательной геометрии с примерами (ABC) с проецирующей плоскостью Пересечение прямой с плоскостью в начертательной геометрии с примерами

Пересечение прямой с плоскостью в начертательной геометрии с примерами

При решении этой задачи используем собирательное свойство вырожденной проекции проецирующей плоскости.

Алгоритм решения

  1. Определим фронтальную проекцию линии m. Так как плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами — фронтально-проецирующая, то первая проекция линии m совпадает с вырожденной (фронтальной) проекцией плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами(рис. 53, б).
  2. Горизонтальную проекцию линии m построим, учитывая ее принадлежность плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами (задача 2).

Задача:

На эпюре Монжа построить проекции точки пересечения прямой общего положения l с плоскостью общего положения  (ABC) (рис. 54, а).

Алгоритм решения

1. Заключим прямую линию l во вспомогательную проецирующую плоскостьПересечение прямой с плоскостью в начертательной геометрии с примерами Так как плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами — фронтально-проецирующая, то первая проекция линии Пересечение прямой с плоскостью в начертательной геометрии с примерами совпадет с вырожденной проекцией плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами (рис. 54, б).

Пересечение прямой с плоскостью в начертательной геометрии с примерами

2. Построим проекции линии пересечения m заданной плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами и вспомогательной плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами в соответствии с алгоритмом решения задачи 6 (см. рис. 53).

3. Определим проекции точки пересечения K прямой линии Пересечение прямой с плоскостью в начертательной геометрии с примерами с построенной линией m (рис. 55, а) следующим образом:

  • отметим проекцию Пересечение прямой с плоскостью в начертательной геометрии с примерами
  • на пересечении Пересечение прямой с плоскостью в начертательной геометрии с примерами и линии проекционной связи отметим проекцию Пересечение прямой с плоскостью в начертательной геометрии с примерами (рис. 55, б).

4. Определим видимость прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами относительно плоскости Пересечение прямой с плоскостью в начертательной геометрии с примерами

Точка K делит прямуюПересечение прямой с плоскостью в начертательной геометрии с примерами на две части — видимую и невидимую (плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами считаем бесконечной и непрозрачной). Невидимая часть прямой может находиться за плоскостью при проецировании на Пересечение прямой с плоскостью в начертательной геометрии с примерами и под плоскостью при проецировании на Пересечение прямой с плоскостью в начертательной геометрии с примерами (рис. 56, а). Невидимая часть прямой отмечается на эпюре Монжа штриховой линией.

Пересечение прямой с плоскостью в начертательной геометрии с примерами

Определим видимость прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами при проецировании на плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерами по конкурирующим точкам 1 и 3 (рис. 56, б). По расположению горизонтальных проекций Пересечение прямой с плоскостью в начертательной геометрии с примерами можно сделать вывод, что точка 3, принадлежащая Пересечение прямой с плоскостью в начертательной геометрии с примерами — видимая (ближе к центру проецирования), следовательно, часть прямой, содержащая точку 3, тоже видимая. На плоскости проекций Пересечение прямой с плоскостью в начертательной геометрии с примерами эту часть прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами отметим основной линией, а другую часть прямой (за точкой пересечения K) — штриховой линией.

Пересечение прямой с плоскостью в начертательной геометрии с примерами

Видимость прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами при проецировании на плоскость Пересечение прямой с плоскостью в начертательной геометрии с примерамиопределим по конкурирующим точкам 4 и 5. По расположению фронтальных проекций Пересечение прямой с плоскостью в начертательной геометрии с примерами можно сделать вывод, что точка 4, принадлежащая Пересечение прямой с плоскостью в начертательной геометрии с примерами — видимая, следовательно, часть прямой, содержащая точку 4, тоже видимая. На плоскости проекций Пересечение прямой с плоскостью в начертательной геометрии с примерами этот участок прямой Пересечение прямой с плоскостью в начертательной геометрии с примерами отметим основной линией.