Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Нормальный закон распределения - определение и вычисление с примерами решения

Содержание:

Нормальный закон распределения:

Нормальный закон распределения имеет плотность вероятности

Нормальный закон распределения - определение и вычисление с примерами решения

где Нормальный закон распределения - определение и вычисление с примерами решения

График функции плотности вероятности (2.9.1) имеет максимум в точке Нормальный закон распределения - определение и вычисление с примерами решения а точки перегиба отстоят от точки Нормальный закон распределения - определение и вычисление с примерами решения на расстояние Нормальный закон распределения - определение и вычисление с примерами решения При Нормальный закон распределения - определение и вычисление с примерами решения функция (2.9.1) асимптотически приближается к нулю (ее график изображен на рис. 2.9.1).

Нормальный закон распределения - определение и вычисление с примерами решения

Помимо геометрического смысла, параметры нормального закона распределения имеют и вероятностный смысл. Параметр Нормальный закон распределения - определение и вычисление с примерами решения равен математическому ожиданию нормально распределенной случайной величины, а дисперсия Нормальный закон распределения - определение и вычисление с примерами решения Если Нормальный закон распределения - определение и вычисление с примерами решения т.е. X имеет нормальный закон распределения с параметрами Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения то Нормальный закон распределения - определение и вычисление с примерами решения

где Нормальный закон распределения - определение и вычисление с примерами решения– функция Лапласа

Значения функции Нормальный закон распределения - определение и вычисление с примерами решения можно найти по таблице (см. прил., табл. П2). Функция Лапласа нечетна, т.е. Нормальный закон распределения - определение и вычисление с примерами решения Поэтому ее таблица дана только для неотрицательныхНормальный закон распределения - определение и вычисление с примерами решения График функции Лапласа изображен на рис. 2.9.2. При значениях Нормальный закон распределения - определение и вычисление с примерами решения она практически остается постоянной. Поэтому в таблице даны значения функции только для Нормальный закон распределения - определение и вычисление с примерами решения При значениях Нормальный закон распределения - определение и вычисление с примерами решения можно считать, что Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения

Если Нормальный закон распределения - определение и вычисление с примерами решения то

Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Случайная величина X имеет нормальный закон распределения Нормальный закон распределения - определение и вычисление с примерами решения Известно, что Нормальный закон распределения - определение и вычисление с примерами решения а Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения Найти значения параметров Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения

Решение. Воспользуемся формулой (2.9.2): Нормальный закон распределения - определение и вычисление с примерами решения

Так как Нормальный закон распределения - определение и вычисление с примерами решения По таблице функции Лапласа (см. прил., табл. П2) находим, что Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения Поэтому Нормальный закон распределения - определение и вычисление с примерами решения или Нормальный закон распределения - определение и вычисление с примерами решения

Аналогично Нормальный закон распределения - определение и вычисление с примерами решения Так как Нормальный закон распределения - определение и вычисление с примерами решения то Нормальный закон распределения - определение и вычисление с примерами решения По таблице функции Лапласа (см. прил., табл. П2) находим, что Нормальный закон распределения - определение и вычисление с примерами решения Поэтому Нормальный закон распределения - определение и вычисление с примерами решения или Нормальный закон распределения - определение и вычисление с примерами решения Из системы двух уравнений Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения находим, что Нормальный закон распределения - определение и вычисление с примерами решения а  Нормальный закон распределения - определение и вычисление с примерами решения т.е. Нормальный закон распределения - определение и вычисление с примерами решения Итак, случайная величина X имеет нормальный закон распределения N(3;4).

График функции плотности вероятности этого закона распределения изображен на рис. 2.9.3.

Нормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Ошибка измерения X имеет нормальный закон распределения, причем систематическая ошибка равна 1 мк, а дисперсия ошибки равна 4 мк2. Какова вероятность того, что в трех независимых измерениях ошибка ни разу не превзойдет по модулю 2 мк?

Решение. По условиям задачи Нормальный закон распределения - определение и вычисление с примерами решения Вычислим сначала вероятность того, что в одном измерении ошибка не превзойдет 2 мк. По формуле (2.9.2)Нормальный закон распределения - определение и вычисление с примерами решения

Вычисленная вероятность численно равна заштрихованной площади на рис. 2.9.4.

Нормальный закон распределения - определение и вычисление с примерами решения

Каждое измерение можно рассматривать как независимый опыт. Поэтому по формуле Бернулли (2.6.1) вероятность того, что в трех независимых измерениях ошибка ни разу не превзойдет 2 мк, равна Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Функция плотности вероятности случайной величины X имеет вид Нормальный закон распределения - определение и вычисление с примерами решения

Требуется определить коэффициент Нормальный закон распределения - определение и вычисление с примерами решения найти Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения определить тип закона распределения, нарисовать график функции Нормальный закон распределения - определение и вычисление с примерами решения вычислить вероятность Нормальный закон распределения - определение и вычисление с примерами решения

Замечание. Если каждый закон распределения из некоторого семейства законов распределения имеет функцию распределения , Нормальный закон распределения - определение и вычисление с примерами решения где Нормальный закон распределения - определение и вычисление с примерами решения– фиксированная функция распределения, a Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения то говорят, что эти законы распределения принадлежат к одному виду или типу распределений. Параметр Нормальный закон распределения - определение и вычисление с примерами решения называют параметром сдвига, Нормальный закон распределения - определение и вычисление с примерами решения – параметром масштаба.

Решение. Так как (2.9.4) функция плотности вероятности, то интеграл от нее по всей числовой оси должен быть равен единице: Нормальный закон распределения - определение и вычисление с примерами решения

Преобразуем выражение в показателе степени, выделяя полный квадрат: Нормальный закон распределения - определение и вычисление с примерами решения

Тогда (2.9.5) можно записать в виде Нормальный закон распределения - определение и вычисление с примерами решения

Сделаем замену переменных так, чтобы Нормальный закон распределения - определение и вычисление с примерами решения т.е. Нормальный закон распределения - определение и вычисление с примерами решения Пределы интегрирования при этом останутся прежними. Тогда (2.9.6) преобразуется к виду

Нормальный закон распределения - определение и вычисление с примерами решения

Умножим и разделим левую часть равенства на Нормальный закон распределения - определение и вычисление с примерами решения Получим равенство Нормальный закон распределения - определение и вычисление с примерами решения

Так как Нормальный закон распределения - определение и вычисление с примерами решения  как интеграл по всей числовой оси от функции плотности вероятности стандартного нормального закона распределения N(0,1), то приходим к выводу, что

Нормальный закон распределения - определение и вычисление с примерами решения

Поэтому

Нормальный закон распределения - определение и вычисление с примерами решения

Последняя запись означает, что случайная величина имеет нормальный закон распределения с параметрами Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения График функции плотности вероятности этого закона изображен на рис. 2.9.5. Распределение случайной величины X принадлежит к семейству нормальных законов распределения. По формуле (2.9.2)

Нормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Цех на заводе выпускает транзисторы с емкостью коллекторного перехода Нормальный закон распределения - определение и вычисление с примерами решения Сколько транзисторов попадет в группу Нормальный закон распределения - определение и вычисление с примерами решения если в нее попадают транзисторы с емкостью коллекторного перехода от 1,80 до 2,00 пФ. Цех выпустил партию в 1000 штук.

Решение.

Статистическими исследованиями в цеху установлено, что Нормальный закон распределения - определение и вычисление с примерами решения можно трактовать как случайную величину, подчиняющуюся нормальному закону.

Чтобы вычислить количество транзисторов, попадающих в группу Нормальный закон распределения - определение и вычисление с примерами решения необходимо учитывать, что вся партия транзисторов имеет разброс параметров, накрывающий всю (условно говоря) числовую ось. То есть кривая Гаусса охватывает всю числовую ось, центр ее совпадает с Нормальный закон распределения - определение и вычисление с примерами решения (т. к. все установки в цеху настроены на выпуск транзисторов именно с этой емкостью). Вероятность попадания отклонений параметров всех транзисторов на всю числовую ось равна 1. Поэтому нам необходимо фактически определить вероятность попадания случайной величины Нормальный закон распределения - определение и вычисление с примерами решения в интервал Нормальный закон распределения - определение и вычисление с примерами решения а затем пересчитать количество пропорциональной вероятности.

Для расчета этой вероятности надо построить математическую модель. Экспериментальные данные говорят о том, что нормальное распределение можно принять в качестве математической модели. Эмпирическая оценка (установлена статистическими исследованиями в цеху) среднего значения Нормальный закон распределения - определение и вычисление с примерами решения

дает Нормальный закон распределения - определение и вычисление с примерами решения оценка среднего квадратического отклонения Нормальный закон распределения - определение и вычисление с примерами решения

Обозначая Нормальный закон распределения - определение и вычисление с примерами решения подставим приведенные значения в (6.3):
Нормальный закон распределения - определение и вычисление с примерами решения

Тогда количество транзисторов Нормальный закон распределения - определение и вычисление с примерами решения попавших в интервал [1,8; 2,0] пФ, можно найти так: Нормальный закон распределения - определение и вычисление с примерами решения Таким образом можно планировать и рассчитывать количество транзисторов, попадающих в ту или иную группу.

Нормальное распределение и его свойства

Если выйти на улицу любого города и случайным образом выбранных прохожих спросить о том, какой у них рост, вес, возраст, доход, и т.п., а потом построить график любой из этих величин, например, роста... Но не будем спешить, сначала посмотрим, как можно построить такой график.

Сначала, мы просто запишем результаты своего исследования. Потом, мы отсортируем всех людей по группам, так чтобы каждый попал в свой диапазон роста, например, "от 180 до 181 включительно".

После этого мы должны посчитать количество людей в каждой подгруппе-диапазоне, это будет частота попадания роста жителей города в данный диапазон. Обычно эту часть удобно оформить в виде таблички. Если затем эти частоты построить по оси у, а диапазоны отложить по оси х, можно получить так называемую гистограмму, упорядоченный набор столбиков, ширина которых равна, в данном случае, одному сантиметру, а длина будет равна той частоте, которая соответствует каждому диапазону роста. Если

Вам попалось достаточно много жителей, то Ваша схема будет выглядеть примерно так:

Нормальный закон распределения - определение и вычисление с примерами решения

Дальше можно уточнить задачу. Каждый диапазон разбить на десять, жителей рассортировать по росту с точностью до миллиметра. Диаграмма станет глаже, но уменьшится по высоте, "оплывет" вниз, т.к. в каждом маленьком диапазоне количество жителей уменьшается. Чтобы избежать этого, просто увеличим масштаб по вертикальной оси в 10 раз. Если гипотетически повторить эту процедуру несколько раз, будет вырисовываться та знаменитая колоколообразная фигура, которая характерна для нормального (или Гауссова) распределения. В результате, относительная частота встречаемости каждого конкретного диапазона роста может быть посчитана как отношение площади "ломтика" кривой, приходящегося на этот диапазон к площади подо всей кривой. Стандартизированные кривые нормального распределения, значения функций которых приводятся в таблицах книг по статистике, всегда имеют суммарную площадь под кривой равную единице. Это связано с тем, что, как Вы помните из курса теории вероятности, вероятность достоверного события всегда равна 100% (или единице), а для любого человека иметь хоть какое-то значение роста - достоверное событие. А вот вероятность того, что рост произвольного человека попадет в определенный выбранный нами диапазон, будет зависеть от трех факторов.

Во-первых, от величины такого диапазона - чем точнее наши требования, тем меньше вероятности, что нам повезет.

Во-вторых, от того, насколько "популярен" выбранный нами рост. Напомним, что мода - самое часто встречающееся значение роста. Кстати для нормального распределения мода, медиана и среднее значение совпадают. Кривая нормального распределения симметрична относительно среднего значения.

И, в-третьих, вероятность попадания роста в определенный диапазон зависит от характеристики рассеивания случайной величины. Отчасти это связано с единицами измерения (представьте, что мы бы измеряли людей в дюймах, а не в миллиметрах, но сами люди и их рост были бы теми же). Но дело не только в этом. Просто некоторые процессы кучнее группируются возле среднего значения, в то время как другие более разбросаны.

Например, рост собак и рост домашних кошек имеют разный разброс значений, их кривые нормального распределения будут выглядеть по-разному (напомним еще раз, что площадь под обеими кривыми будет единичной).

Так, кривая для роста кошек будет более узкой и высокой, а для роста собак кривая будет ниже и шире. Для характеристики разброса конечного ряда данных в прошлом разделе мы использовали величину среднего квадратического отклонения. Аналогичная величина используется для характеристики кривой нормального распределения. Она обозначается буквой s и называется в этом случае стандартным отклонением. Это очень важная величина для кривой нормального распределения. Кривая нормального распределения полностью задана, если известно среднее значение Нормальный закон распределения - определение и вычисление с примерами решения и отклонение s. Кроме того, любой житель города с вероятностью 68% попадет в диапазон роста Нормальный закон распределения - определение и вычисление с примерами решения с вероятностью 95% - в диапазон Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения и с вероятностью 99,7% - в диапазон Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения

Для вычисления других значений вероятности, которые могут Вам понадобиться, можно воспользоваться приведенной таблицей:

Таблица вероятности попадания случайной величины в отмеченный (заштрихованный) диапазон

Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения

Нормальный закон распределения случайных величин, который иногда называют законом Гаусса или законом ошибок, занимает особое положение в теории вероятностей, так как 95 % изученных случайных величин подчиняются этому закону. Природа этих случайных величин такова, что их значение в проводимом эксперименте связано с проявлением огромного числа взаимно независимых случайных факторов, действие каждого из которых составляет малую долю их совокупного действия. Например, длина детали, изготавливаемой на станке с программным управлением, зависит от случайных колебаний резца в момент отрезания, от веса и толщины детали, ее формы и температуры, а также от других случайных факторов. По нормальному закону распределения изменяются рост и вес мужчин и женщин, дальность выстрела из орудия, ошибки различных измерений и другие случайные величины.

Определение: Случайная величина X называется нормальной, если она подчиняется нормальному закону распределения, т.е. ее плотность распределения задается формулойНормальный закон распределения - определение и вычисление с примерами решения - средне-квадратичное отклонение, a m = М[Х] - математическое ожидание.

Приведенная дифференциальная функция распределения удовлетворяет всем свойствам плотности вероятности, проверим, например, свойство 4.:

Нормальный закон распределения - определение и вычисление с примерами решения

Выясним геометрический смысл параметров Нормальный закон распределения - определение и вычисление с примерами решения Зафиксируем параметр Нормальный закон распределения - определение и вычисление с примерами решения и будем изменять параметр m. Построим графики соответствующих кривых (Рис. 8). Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 8. Изменение графика плотности вероятности в зависимости от изменения математического ожидания при фиксированном значении средне-квадратичного отклонения. Из рисунка видно, кривая Нормальный закон распределения - определение и вычисление с примерами решения получается путем смещения кривой Нормальный закон распределения - определение и вычисление с примерами решения вдоль оси абсцисс на величину m, поэтому параметр m определяет центр тяжести данного распределения. Кроме того, из рисунка видно, что функция Нормальный закон распределения - определение и вычисление с примерами решения достигает своего максимального значения в точке Нормальный закон распределения - определение и вычисление с примерами решения Из этой формулы видно, что при уменьшении параметра Нормальный закон распределения - определение и вычисление с примерами решения значение максимума возрастает. Так как площадь под кривой плотности распределения всегда равна 1, то с уменьшением параметра Нормальный закон распределения - определение и вычисление с примерами решения кривая вытягивается вдоль оси ординат, а с увеличением параметра Нормальный закон распределения - определение и вычисление с примерами решения кривая прижимается к оси абсцисс. Построим график нормальной плотности распределения при m = 0 и разных значениях параметра Нормальный закон распределения - определение и вычисление с примерами решения (Рис. 9): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 9. Изменение графика плотности вероятности в зависимости от изменения средне-квадратичного отклонения при фиксированном значении математического ожидания.

Интегральная функция нормального распределения имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения

График функции распределения имеет вид (Рис. 10): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 10. Графика интегральной функции распределения нормальной случайной величины.

Вероятность попадания нормальной случайной величины в заданный интервал

Пусть требуется определить вероятность того, что нормальная случайная величина попадает в интервал Нормальный закон распределения - определение и вычисление с примерами решения Согласно определениюНормальный закон распределения - определение и вычисление с примерами решения пересчитаем пределы интегрирования Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения Следовательно,Нормальный закон распределения - определение и вычисление с примерами решения

Рассмотрим основные свойства функции Лапласа Ф(х):

  1. Ф(0) = 0 - график функции Лапласа проходит через начало координат.
  2. Ф (-х) = - Ф(х) - функция Лапласа является нечетной функцией, поэтому
  3. таблицы для функции Лапласа приведены только для неотрицательных значений аргумента.
  4. Нормальный закон распределения - определение и вычисление с примерами решения - график функции Лапласа имеет горизонтальные асимптотыНормальный закон распределения - определение и вычисление с примерами решения

Следовательно, график функции Лапласа имеет вид (Рис. 11): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 11. График функции Лапласа.

Пример №1

Закон распределения нормальной случайной величины X имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения Определить вероятность попадания случайной величины X в интервал (-1;8).

Решение:

Согласно условиям задачи Нормальный закон распределения - определение и вычисление с примерами решения Поэтому искомая вероятность равна: Нормальный закон распределения - определение и вычисление с примерами решения 0,4772 + 0,3413 = 0,8185.

Вычисление вероятности заданного отклонения

Вычисление вероятности заданного отклонения. Правило Нормальный закон распределения - определение и вычисление с примерами решения.

Если интервал, в который попадает нормальная случайная величина X, симметричен относительно математического ожидания Нормальный закон распределения - определение и вычисление с примерами решения то, используя свойство нечетности функции Лапласа, получим

Нормальный закон распределения - определение и вычисление с примерами решения

Данная формула показывает, что отклонение случайной величины Х от ее математического ожидания на заданную величину l равна удвоенному значению функции Лапласа от отношения / к среднему квадратичному отклонению. Если положить Нормальный закон распределения - определение и вычисление с примерами решенияслучаях нормальная случайная величина X отличается от своего математического ожидания на величину равную среднему квадратичному отклонению. Если Нормальный закон распределения - определение и вычисление с примерами решения то вероятность отклонения равна Нормальный закон распределения - определение и вычисление с примерами решения Наконец, в случае Нормальный закон распределения - определение и вычисление с примерами решения то вероятность отклонения равна Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения Из последнего равенства видно, что только приблизительно в 0.3 % случаях отклонение нормальной случайной величины X от своего математического ожидания превышает Нормальный закон распределения - определение и вычисление с примерами решения Это свойство нормальной случайной величины X называется правилом “трех сигм”. На практике это правило применяется следующим образом: если отклонение случайной величины X от своего математического ожидания не превышает Нормальный закон распределения - определение и вычисление с примерами решения то эта случайная величина распределена по нормальному закону.

Показательный закон распределения

Определение: Закон распределения, определяемый фу нкцией распределения:

Нормальный закон распределения - определение и вычисление с примерами решения называется экспоненциальным или показательным.

График экспоненциального закона распределения имеет вид (Рис. 12): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 12. График функции распределения для случая экспоненциального закона.

Дифференциальная функция распределения (плотность вероятности) имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения а ее график показан на (Рис. 13): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 13. График плотности вероятности для случая экспоненциального закона.

Пример №2

Случайная величина X подчиняется дифференциальной функции распределения Нормальный закон распределения - определение и вычисление с примерами решения Найти вероятность того, что случайная величина X попадет в интервал (2; 4), математическое ожидание M[Х], дисперсию D[X] и среднее квадратичное отклонение Нормальный закон распределения - определение и вычисление с примерами решения Проверить выполнение правила “трех сигм” для показательного распределения.

Решение:

Интегральная функция распределения Нормальный закон распределения - определение и вычисление с примерами решения следовательно, вероятность того, что случайная величина X попадет в интервал (2; 4), равна: Нормальный закон распределения - определение и вычисление с примерами решения Математическое ожидание Нормальный закон распределения - определение и вычисление с примерами решения Вычислим значение величины МНормальный закон распределения - определение и вычисление с примерами решения тогда дисперсия случайной величины X равна Нормальный закон распределения - определение и вычисление с примерами решения а средне-квадратичное

отклонение Нормальный закон распределения - определение и вычисление с примерами решения Для проверки правила “трех сигм” вычислим вероятность заданного отклонения:

Нормальный закон распределения - определение и вычисление с примерами решения