Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Непрерывность функций и точки разрыва с примерами решения

Содержание:

Непрерывность функций и точки разрыва

Непрерывность функции

Определение: Функция Непрерывность функций и точки разрыва с примерами решения

  • - она определена в этой точке и ее некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности;
  • - существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.

Непрерывность функций и точки разрыва с примерами решения

- предел функции в точке Непрерывность функций и точки разрыва с примерами решения равен значению функции в исследуемой точке, т.е. Непрерывность функций и точки разрыва с примерами решения

Пример:

Найти область непрерывности функции Непрерывность функций и точки разрыва с примерами решения

Решение:

Данная функция непрерывна Непрерывность функций и точки разрыва с примерами решения так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.

Замечание: Всякая элементарная функция непрерывна в области своего определения.

Точки разрыва

Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.

Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.

Непрерывность функций и точки разрыва с примерами решения

Пример:

Доказать, что функция Непрерывность функций и точки разрыва с примерами решенияв точке Непрерывность функций и точки разрыва с примерами решения имеет разрыв первого рода.

Решение:

Нарисуем график функции в окрестности нуля (Рис. 64): Непрерывность функций и точки разрыва с примерами решенияРис. 64. График функции Непрерывность функций и точки разрыва с примерами решения Область определения функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка Непрерывность функций и точки разрыва с примерами решения является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.

Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).

Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.

Пример:

Доказать, что функцияНепрерывность функций и точки разрыва с примерами решения имеет в точке Непрерывность функций и точки разрыва с примерами решения устранимый разрыв.

Решение:

В точке Непрерывность функций и точки разрыва с примерами решения функция имеет неопределенность Непрерывность функций и точки разрыва с примерами решения поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы Непрерывность функций и точки разрыва с примерами решения убеждаемся, что данная точка является точкой устранимого разрыва.

Определение: Все остальные точки разрыва называются точками разрыва II рода.

Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы

один из односторонних пределов равен Непрерывность функций и точки разрыва с примерами решения т.е. в такой точке функция терпит бесконечный разрыв.

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Найдем область определения этой функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка

Непрерывность функций и точки разрыва с примерами решения является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Найдем область определения этой функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка Непрерывность функций и точки разрыва с примерами решенияявляется точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.

Операции над непрерывными функциями

Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.

Доказательство: Докажем приведенную теорему для суммы двух функций Непрерывность функций и точки разрыва с примерами решениякоторые определены в некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности точки Непрерывность функций и точки разрыва с примерами решения в которой лево- и правосторонние пределы равны между собой. Так как функции Непрерывность функций и точки разрыва с примерами решениянепрерывны в некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности точки Непрерывность функций и точки разрыва с примерами решения то выполняются равенства: Непрерывность функций и точки разрыва с примерами решения В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что Непрерывность функций и точки разрыва с примерами решения Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.

Теорема: Произведение непрерывных функций есть непрерывная функция.

Теорема: Частное двух непрерывных функций Непрерывность функций и точки разрыва с примерами решения при условии, что во всех точках общей области определения функция Непрерывность функций и точки разрыва с примерами решения, есть непрерывная функция.

Теорема: Сложная функция от непрерывных функций есть непрерывная функция.

Схема исследования функции на непрерывность

Исследование функции на непрерывность проводят по следующей схеме:

  • находят область определения функции; точки, в которых функция не определена, являются точками подозрительными на разрыв: если функция задана словесным образом, т.е. описывается разными формулами на разных интервалах, то точками подозрительными на разрыв являются точки, определяющие границы интервалов;
  • исследуют подозрительные на разрыв точки, для чего вычисляют лево- и правосторонние пределы; классифицируют точки разрыва;
  • при наличии точек разрыва строят график функции в малой Непрерывность функций и точки разрыва с примерами решения-окрестности точки Непрерывность функций и точки разрыва с примерами решения.

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Согласно схеме исследования функции на непрерывность имеем:

  • Непрерывность функций и точки разрыва с примерами решения точка Непрерывность функций и точки разрыва с примерами решения является точкой подозрительной на разрыв.
  • вычислим левосторонний Непрерывность функций и точки разрыва с примерами решения и правосторонний Непрерывность функций и точки разрыва с примерами решенияНепрерывность функций и точки разрыва с примерами решенияпределы; так как пределы бесконечные, то точка Непрерывность функций и точки разрыва с примерами решения является точкой разрыва второго рода;
  • построим график функции в небольшой окрестности точки разрыва (Рис. 65).

Непрерывность функций и точки разрыва с примерами решения

Рис. 65. Поведение графика функции Непрерывность функций и точки разрыва с примерами решения в малой окрестности точки разрыва второго рода Непрерывность функций и точки разрыва с примерами решения

Из рисунка видно, что график функции Непрерывность функций и точки разрыва с примерами решения —неограниченно приближается к вертикальной прямой Непрерывность функций и точки разрыва с примерами решения нигде не пересекая эту прямую.

Свойства непрерывных функций на отрезке (a; b)

Свойства непрерывных функций на отрезке Непрерывность функций и точки разрыва с примерами решения.

Определение: Замкнутый интервал Непрерывность функций и точки разрыва с примерами решения будем называть сегментом.

Приведем без доказательства свойства непрерывных функций на сегменте Непрерывность функций и точки разрыва с примерами решения.

Теорема: Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения, то она достигает своего наименьшего (Непрерывность функций и точки разрыва с примерами решения) и наибольшего (Непрерывность функций и точки разрыва с примерами решения) значения либо во внутренних точках сегмента, либо на его концах.

Пример:

Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).

Непрерывность функций и точки разрыва с примерами решения

Рис. 66. Графики функций, удовлетворяющих условиям теоремы.

Решение:

На графике а) функция достигает своего наименьшего Непрерывность функций и точки разрыва с примерами решения и наибольшего Непрерывность функций и точки разрыва с примерами решения значений на концах сегмента Непрерывность функций и точки разрыва с примерами решения На графике б) функция достигает своего наименьшего Непрерывность функций и точки разрыва с примерами решения и наибольшего значения Непрерывность функций и точки разрыва с примерами решения во внутренних точках сегмента Непрерывность функций и точки разрыва с примерами решения На графике в) функция достигает своего наименьшего значения Непрерывность функций и точки разрыва с примерами решения на левом конце сегмента Непрерывность функций и точки разрыва с примерами решения а наибольшего значения Непрерывность функций и точки разрыва с примерами решения во внутренней точке сегмента Непрерывность функций и точки разрыва с примерами решения

Тб. Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения и достигает своего наименьшего (Непрерывность функций и точки разрыва с примерами решения) и наибольшего (Непрерывность функций и точки разрыва с примерами решения) значений, то для любого вещественного числа С, удовлетворяющего неравенству Непрерывность функций и точки разрыва с примерами решения, найдется хотя бы одна точка Непрерывность функций и точки разрыва с примерами решения такая, что Непрерывность функций и точки разрыва с примерами решения.

Пример:

Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67). Непрерывность функций и точки разрыва с примерами решения

Рис. 67. Графики функций, удовлетворяющих условиям Тб.

Теорема: Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения и на его концах принимает значения разных знаков, то найдется хотя бы одна точка Непрерывность функций и точки разрыва с примерами решения такая, чтоНепрерывность функций и точки разрыва с примерами решения.

Пример:

Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).

Непрерывность функций и точки разрыва с примерами решения

Рис. 68. Графики функций, удовлетворяющих условиям теоремы.

На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.