Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Наибольшее и наименьшее значения функции с примерами решения

От максимумов и минимумов функции следует отличать её наибольшее и наименьшее значения на промежутке. Функция может иметь несколько максимумов (минимумов) на некотором промежутке (рис. 91), но не более одного наибольшего (наименьшего) значения. Функция может не иметь максимума (минимума) на промежутке, но иметь наибольшее (наименьшее) значение.

Например функция, график которой изображён на рисунке 91, наибольшее значение имеет в точке Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции тесно связаны с её областью значений. Если область значений непрерывной функции — промежуток  Наибольшее и наименьшее значения функции с примерами решения наименьшее значение данной функции, Наибольшее и наименьшее значения функции с примерами решения — наибольшее её значение.

Поскольку непрерывная функция наибольшее и наименьшее значения может иметь только в точках экстремума или на концах отрезка, то для нахождения этих значений пользуются таким правилом.

Чтобы найти наибольшее и наименьшее значения непрерывной функции Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения нужно вычислить её значения Наибольшее и наименьшее значения функции с примерами решения на концах данного промежутка и в критических точках, принадлежащих этому промежутку, а потом выбрать из них наибольшее и наименьшее.

Записывают так: Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения

Пример №1

Найдите наибольшее и наименьшее значения функции Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения

Решение:

 Наибольшее и наименьшее значения функции с примерами решения Критические точки: Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения

Из этих четырёх значений функции наименьшим является -15, а наибольшим — 66.

Ответ, Наибольшее и наименьшее значения функции с примерами решения

Пример №2

Найдите наибольшее и наименьшее значения функции Наибольшее и наименьшее значения функции с примерами решения

Решение:

Областью определения функции является промежуток Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения
Если Наибольшее и наименьшее значения функции с примерами решения отсюда Наибольшее и наименьшее значения функции с примерами решения

Если Наибольшее и наименьшее значения функции с примерами решения а если Наибольшее и наименьшее значения функции с примерами решения Следовательно, Наибольшее и наименьшее значения функции с примерами решения — точка максимума.

Поскольку на промежутке Наибольшее и наименьшее значения функции с примерами решения функция имеет только одну критическую точку Наибольшее и наименьшее значения функции с примерами решения и эта точка является точкой максимума, то наибольшее значение функция принимает именно в этой точке и оно равно Наибольшее и наименьшее значения функции с примерами решения Наименьшего значения функция не имеет.

Ответ, Наибольшее и наименьшее значения функции с примерами решения Наименьшего значения функция не имеет.

К нахождению наибольшего или наименьшего значений функции сводится решение многих прикладных задач.

Пример №3

Есть квадратный лист жести со стороной 60 см. Найдите размеры квадратов, которые надо вырезать в углах данного листа, чтобы из полученной заготовки сделать коробку наибольшего объёма {рис. 93).

Решение:

Чтобы получить коробку (в форме прямоугольного параллелепипеда), надо вырезать равные квадраты в углах листа. Пусть Наибольшее и наименьшее значения функции с примерами решения — длина стороны такого квадрата. Тогда высота коробки равна Наибольшее и наименьшее значения функции с примерами решения а сторона основания Наибольшее и наименьшее значения функции с примерами решения Объём коробки Наибольшее и наименьшее значения функции с примерами решения — функция от Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения

Надо исследовать математическую модель задачи: при каком значении Наибольшее и наименьшее значения функции с примерами решения: функция Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения принимает наибольшее значение.

Наибольшее и наименьшее значения функции с примерами решения

Значение Наибольшее и наименьшее значения функции с примерами решения не принадлежит промежутку Наибольшее и наименьшее значения функции с примерами решения Поэтому Наибольшее и наименьшее значения функции с примерами решения

Поскольку при Наибольшее и наименьшее значения функции с примерами решения а при Наибольшее и наименьшее значения функции с примерами решения — точка максимума. Итак, в этой точке функция Наибольшее и наименьшее значения функции с примерами решения принимает наибольшее значение.

Ответ. Надо вырезать квадраты, стороны которых равны 10 см.

Пример №4

Найдите область значений функции Наибольшее и наименьшее значения функции с примерами решения если Наибольшее и наименьшее значения функции с примерами решения

Решение:

 Наибольшее и наименьшее значения функции с примерами решения Найдём критические точки: Наибольшее и наименьшее значения функции с примерами решения отсюда Наибольшее и наименьшее значения функции с примерами решения

Найдём значение функции на концах промежутка Наибольшее и наименьшее значения функции с примерами решения и в критических точках: Наибольшее и наименьшее значения функции с примерами решения

Заданная функция непрерывна, её наибольшее значение 93, а наименьшее -115, значит, область её значений — отрезок Наибольшее и наименьшее значения функции с примерами решения

Ответ. Наибольшее и наименьшее значения функции с примерами решения

Пример №5

Найдите кратчайшее расстояние от точки Наибольшее и наименьшее значения функции с примерами решения до графика функции Наибольшее и наименьшее значения функции с примерами решения

Решение:

Пусть ближайшая к Наибольшее и наименьшее значения функции с примерами решения точка Наибольшее и наименьшее значения функции с примерами решения графика функции имеет абсциссу Наибольшее и наименьшее значения функции с примерами решения её ордината равна Наибольшее и наименьшее значения функции с примерами решения (рис. 94). Найдём квадрат расстояния между точками Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения Длина расстояния Наибольшее и наименьшее значения функции с примерами решения наименьшая, когда её квадрат наименьший. Итак, найдём наименьшее значение функции Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения

Уравнение Наибольшее и наименьшее значения функции с примерами решения действительных корней не имеет, поэтому функция Наибольшее и наименьшее значения функции с примерами решения имеет одну критическую точку Наибольшее и наименьшее значения функции с примерами решения Если Наибольшее и наименьшее значения функции с примерами решения Следовательно, Наибольшее и наименьшее значения функции с примерами решения — точка минимума. В этой точке функция Наибольшее и наименьшее значения функции с примерами решения принимает наименьшее значение.

Наименьшее значение квадрата расстояния

Наибольшее и наименьшее значения функции с примерами решения

Ответ. Наибольшее и наименьшее значения функции с примерами решения