Наибольшее и наименьшее значения функции с примерами решения
От максимумов и минимумов функции следует отличать её наибольшее и наименьшее значения на промежутке. Функция может иметь несколько максимумов (минимумов) на некотором промежутке (рис. 91), но не более одного наибольшего (наименьшего) значения. Функция может не иметь максимума (минимума) на промежутке, но иметь наибольшее (наименьшее) значение.
Например функция, график которой изображён на рисунке 91, наибольшее значение имеет в точке
Наибольшее и наименьшее значения функции тесно связаны с её областью значений. Если область значений непрерывной функции — промежуток наименьшее значение данной функции, — наибольшее её значение.
Поскольку непрерывная функция наибольшее и наименьшее значения может иметь только в точках экстремума или на концах отрезка, то для нахождения этих значений пользуются таким правилом.
Чтобы найти наибольшее и наименьшее значения непрерывной функции на промежутке нужно вычислить её значения на концах данного промежутка и в критических точках, принадлежащих этому промежутку, а потом выбрать из них наибольшее и наименьшее.
Записывают так:
Пример №1
Найдите наибольшее и наименьшее значения функции на промежутке
Решение:
Критические точки:
Из этих четырёх значений функции наименьшим является -15, а наибольшим — 66.
Ответ,
Пример №2
Найдите наибольшее и наименьшее значения функции
Решение:
Областью определения функции является промежуток
Если отсюда
Если а если Следовательно, — точка максимума.
Поскольку на промежутке функция имеет только одну критическую точку и эта точка является точкой максимума, то наибольшее значение функция принимает именно в этой точке и оно равно Наименьшего значения функция не имеет.
Ответ, Наименьшего значения функция не имеет.
К нахождению наибольшего или наименьшего значений функции сводится решение многих прикладных задач.
Пример №3
Есть квадратный лист жести со стороной 60 см. Найдите размеры квадратов, которые надо вырезать в углах данного листа, чтобы из полученной заготовки сделать коробку наибольшего объёма {рис. 93).
Решение:
Чтобы получить коробку (в форме прямоугольного параллелепипеда), надо вырезать равные квадраты в углах листа. Пусть — длина стороны такого квадрата. Тогда высота коробки равна а сторона основания Объём коробки — функция от
Надо исследовать математическую модель задачи: при каком значении : функция на промежутке принимает наибольшее значение.
Значение не принадлежит промежутку Поэтому
Поскольку при а при — точка максимума. Итак, в этой точке функция принимает наибольшее значение.
Ответ. Надо вырезать квадраты, стороны которых равны 10 см.
Пример №4
Найдите область значений функции если
Решение:
Найдём критические точки: отсюда
Найдём значение функции на концах промежутка и в критических точках:
Заданная функция непрерывна, её наибольшее значение 93, а наименьшее -115, значит, область её значений — отрезок
Ответ.
Пример №5
Найдите кратчайшее расстояние от точки до графика функции
Решение:
Пусть ближайшая к точка графика функции имеет абсциссу её ордината равна (рис. 94). Найдём квадрат расстояния между точками Длина расстояния наименьшая, когда её квадрат наименьший. Итак, найдём наименьшее значение функции
Уравнение действительных корней не имеет, поэтому функция имеет одну критическую точку Если Следовательно, — точка минимума. В этой точке функция принимает наименьшее значение.
Наименьшее значение квадрата расстояния
Ответ.
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |