Многочлены - определение и вычисление с примерами решения
Содержание:
Многочлены
Многочлен
Выражение
Определение: Многочленом называют сумму нескольких одночленов.
Одночлены, составляющие многочлен, называют членами этого многочлена.
Например, членами многочлена являются одночлены
Многочлен, состоящий из двух членов, называют двучленом, многочлен, состоящий из трех членов, — трехчленом и т. д. Так,
— двучлены;
— трехчлены.
Считают, что каждый одночлен является многочленом, который состоит из одного члена.
Многочлен стандартного вида
Рассмотрим многочлен Два его члена являются подобными слагаемыми, поскольку отличаются только числовыми множителями. Члены -6 и 3 не содержат переменных. Они также являются подобными слагаемыми. Подобные слагаемые многочлена называют подобными членами многочлена.
Приведем в многочлене его подобные члены:
Многочлен уже не имеет подобных членов, и каждый его член является одночленом стандартного вида. Такой многочлен называют многочленом стандартного вида.
Определение:
Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных членов, называют многочленом стандартного вида.
Среди многочленов
только первый является многочленом стандартного вида, а два другие — нет, поскольку во втором многочлене первый член не является одночленом стандартного вида, а третий многочлен имеет подобные члены.
Степень многочлена
Многочлен имеет стандартный вид, и его членами являются одночлены соответственно четвертой, третьей и первой степени. Наибольшую из этих степеней называют степенью данного многочлена. Итак, — многочлен четвертой степени.
Определение:
Степенью многочлена стандартного вида называют наибольшую степень одночленов, образующих данный многочлен.
По этому определению — многочлены первой степени; — многочлен второй степени; — многочлен шестой степени.
Члены многочлена можно записывать в произвольном порядке. Для многочленов стандартного вида, содержащих одну переменную, члены, как правило, записывают в порядке убывания или возрастания показателей степеней. Например:
Каждый многочлен является целым выражением. Однако не каждое целое выражение является многочленом. Например, целые выражения - не многочлены, поскольку они не являются суммами одночленов.
Примеры выполнения заданий:
Пример №117
Записать в стандартному виде многочлен:
Сложение и вычитание многочленов
Сложение многочленов
Сложим многочлены
.
Раскрыв скобки и приведя подобные слагаемые, мы записали сумму данных многочленов в виде многочлена. Итак, суммой многочленов является многочлен
Таким же образом находят сумму трех и более многочленов. Сумму любых многочленов всегда можно записать в виде многочлена.
Вычитание многочленов
Вычтем из многочлена многочлен
Раскрыв скобки и приведя подобные слагаемые, мы записали разность данных многочленов в виде многочлена. Итак, разностью многочленов является многочлен
Разность любых многочленов всегда можно записать в виде многочлена.
Примеры выполнения заданий:
Пример №118
Найти сумму многочленов:
Пример №119
Найти разность многочленов
Решение:
Пример №120
Решить уравнение
Решение:
Ответ.-1,5.
Пример №121
Доказать, что сумма трех последовательных нечетных чисел делится на 3.
Решение:
Пусть из трех последовательных нечетных чисел наименьшим является где — некоторое целое число. Тогда следующие нечетные числа — Сумма этих трех чисел
делится на 3, поскольку имеет делитель 3.
Умножение одночлена на многочлен
Умножим одночлен на многочлен Используя распределительное свойство умножения, получим:
Итак, произведением одночлена и многочлена является многочлен Чтобы найти произведение, мы умножили одночлен на каждый член многочлена и полученные результаты сложили.
Чтобы умножить одночлен на многочлен, нужно одночлен умножить на каждый член многочлена и полученные произведения сложить.
По этому правилу можно умножать и многочлен на одночлен. Например:
Произведение любого одночлена и любого многочлена всегда можно :ать в виде многочлена.
Примеры выполнения заданий:
Пример №122
Выполнить умножение:
Сокращенная запись:
Сокращенная запись:
Пример №123
Упростить выражение
Решение:
Пример №124
Решить уравнение
Решение:
Ответ. 0,5.
Умножение многочлена на многочлен
Умножим многочлен на многочлен Сведем умножение этих многочленов к умножению многочлена на одночлен. Для этого обозначим многочлен через Тогда:
Возвращаясь к замене получаем:
Итак, произведением многочлена и многочлена является многочлен
Выражение мы получили бы сразу, если бы умножили , потом и полученные произведения сложили. Можно сказать и так: произведение можно получить, если умножить каждый член многочлена на каждый член многочлена и полученные произведения сложить.
Приходим к такому правилу:
Чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.
Умножим по этому правилу многочлен на многочлен
Выполняя умножение многочленов, промежуточные результаты можно не записывать:
В каждом из рассмотренных примеров произведение двух многочленов мы записывали в виде многочлена. Вообще, произведение любых многочленов всегда можно записать в виде многочлена.
Примеры выполнения заданий:
Пример №125
Выполнить умножение:
б) Найдем произведение первых двух многочленов, а потом полученное произведение умножим на третий многочлен:
Пример №126
Решить уравнение
Решение:
Ответ.-1,8.
Разложение многочленов на множители способом вынесения общего множителя за скобки
1. В шестом классе мы изучали разложение чисел на множители. Например, число 60 можно записать в виде произведения двух чисел 12 и 5:
Говорят, что число 60 разложили на два множителя 12 и 5.
На множители можно разложить и многочлены. Например,
Записав многочлен в виде произведения говорят, что многочлен разложили на два множителя Каждый из этих множителей — многочлен (первый многочлен состоит только из одного члена).
Разложить многочлен на множители значит представить его в виде произведения нескольких многочленов.
Сравните
2. Рассмотрим один из способов разложения многочленов на множители. Выполним умножение одночлена на многочлен:
Перепишем эти равенства в обратном порядке:
Многочлен разложили на два множителя Чтобы разложить многочлен на множители, достаточно в его членах и выделить общий множитель а потом на основании распределительного свойства умножения записать полученное выражение в виде произведения многочленов
Такой способ разложения многочленов на множители называют способом вынесения общего множителя за скобки.
Примеры выполнения заданий:
Пример №127
Разложить на множителя многочлен 12х3у - 18х2у2.
Решение:
Сначала найдем общий числовой множитель для коэффициентов 12 и -18. Если коэффициентами являются целые числа, то в качестве общего числового множителя берут, как правило, наибольший общий делитель модулей этих коэффициентов. В нашем случае это число 6. Степени с основанием входят в оба члена многочлена. Поскольку первый член содержит а второй — , то общим множителем для степеней с основанием является (за скобки выносят переменную с меньшим показателем). В члены многочлена входят соответственно множители и , за скобки можно вынести . Таким образом, за скобки можно вынести одночлен
Пример №128
Разложить на множители многочлен
Решение:
Пример №129
Разложить на множители:
Решение:
Данное выражение является суммой двух слагаемых, для которых общим множителем является выражение Вынесем этот множитель за скобки:
Пример №130
Разложить на множители:
Решение:
Слагаемые имеют множители и которые отличаются только знаками. В выражении вынесем за скобки -1, тогда второе слагаемое будет иметь вид и оба слагаемых будут иметь общий множитель .
Следовательно,
Пример №131
Найти значение выражения при
Решение:
Разложим сначала многочлен на множители:
При получим:
Пример №132
Решить уравнение
Решение:
Разложим левую часть уравнения на множители:
Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю:
Ответ. 0; -1,25.
Разложение многочленов на множители способом группировки
Изучение этого способа разложения многочленов на множители начнем с рассмотрения примера умножения многочленов. Выполним умножение двучлена на двучлен следующим образом:
Выполняя преобразования в обратном порядке, многочлен можно разложить на два множителя
Проанализируем последние преобразования. Имеем многочлен, члены которого можно группировать так, чтобы каждая группа имела общий множитель: для группы — общий множитель для группы — общий множитель В каждой группе выносим общий множитель за скобки. В образованной разности имеем общий множитель Выносим его за скобки и получаем
Рассмотренный способ разложения многочленов на множители называют способом группировки. При применении этого способа нужно образовывать такие группы членов, чтобы они имели общий множитель. После вынесения в каждой группе общего множителя за скобки должен образоваться общин множитель для всех групп, который также нужно вынести за скобки.
Многочлен можно разложить на множители, группируя его члены иначе:
Сравните
Примеры выполнения заданий:
Пример №133
Разложить на множители многочлен
Решение:
Пример №134
Разложить на множители трехчлен
Решение:
Представим второй член в виде Тогда:
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |