Метод эквивалентного генератора
Метод эквивалентного генератора:
Метод эквивалентного генератора рационально применять в случае необходимости определения тока (напряжения, мощностн и др.) только одной ветви сложной электрической цепи.
Для этой цели разбивают сложную электрическую цепь на две части — на сопротивление R, ток которого
Активным этот двухполюсник называют потому, что в нем имеется источник ЭДС. Этот активный двухполюсник обладает определенной ЭДС
Ток в резисторе с сопротивлением R определяют по закону Ома
Таким образом, определение тока сводится к вычислению ЭДС эквивалентного генератора и его внутреннего сопротивления .
Величина ЭДС определяется любым методом расчета цепей постоянного тока относительно точек А а В при разомкну-клеммах, т. е. в режиме холостого хода. Практически эту ЭДС о измерить вольтметром, подключенным к клеммам А и В холостом ходе.
Внутреннее сопротивление эквивалентного генератора выявляется относительно точек А и В после предварительной смены всех источников сложной схемы эквивалентного генера-а их внутренними сопротивлениями.
Практически для определения внутреннего сопротивления эквивалентного генератора измеряют амперметром ток между точки А и В работающего двухполюсника при коротком замыкании так как сопротивление амперметра настолько мало, что им можно пренебречь. Тогда
где — напряжение холостого хода, — ток короткого замыкания.
Такой метод практического определения внутреннего сопротивления эквивалентного генератора называется методом хо-ого хода и короткого замыкания. Расчет параметров эквивалентного генератора, его ЭДС и внутреннего сопротивления , рассматриваются в примерах 4.12 4.13.
Пример 4.12
Определить ток в сопротивлении , подключенном к точкам А В электрической цепи (рис. 4.8а) примера 4.6 методом эквивалентного генератора.
Решение
Для определения тока в сопротивлении определим ЭДС эквивалентного генератора (рис. 4.16а) и его внутреннее сопротивление (рис. 4.166) при холостом ходе, т. е. разомкнутой цепи (между точками А и В).
Знак «минус» обусловлен тем, что источники в схеме включены встречно и потенциал в точке А больше потенциала в точке В, так как (см. пример 4.6).
Напряжение
Напряжение
Следовательно, Внутреннее сопротивление эквивалентного генератора
Искомый ток
Такой же ток получен в примере 4.6 на сопротивлении
Пример 4.13
В схеме рис. 4.17а сопротивления плеч моста равны
Сопротивление гальванометра Rr = 98,33 Ом, ЭДС источника . Методом эквивалентного генератора определить в ветви гальванометра (между точками А и В).
Решение
Для определения тока в цепи гальванометра методом эквивалентного генератора необходимо вычислить ЭДС эквивалентного генератора между точками А и В (рис. 4.176) и внутреннее сопротивление эквивалентного генератора относительно точек А и В при присутствии гальванометра, заменив в схеме (рис. 4.17в) источник ЭДС его внутренним сопротивлением ( = 0) равным нулю.
Для определения ЭДС эквивалентного генератора принимают потенциал точки С схемы (рис. 4.176) равным нулю, т. е. фс=о.
Тогда
При замене источника ЭДС его внутренним сопротивлением, равным нулю, замыкаются накоротко точки С и D схемы (рис. 4.17в). При этом (рис. 4.17г) сопротивления соединены между собой параллельно. Также параллельно соединены между собой сопротивления . Между точками А и В сопротивления соединены последовательно. Следовательно, сопротивление эквивалентного генератора относительно точек А и В будет равно
Тогда ток в ветви с гальванометром, который направлен из точки В в точку А, т. е. из точки с большим потенциалом в точку с наименьшим потенциалом (рис. 4.17а), будет равен
Метод эквивалентного генератора (активного двухполюсника)
Все методы, рассмотренные ранее, предполагали расчет токов одновременно во всех ветвях цепи. Однако в ряде случаев бывает необходимым контролировать ток в одной отдельно взятой ветви. В этом случае применяют для расчета метод эквивалентного генератора.
Пусть дана некоторая электрическая цепь, которую заменим активным двухполюсником (рис. 3.10), оставив только ветвь в которой необходимо рассчитать ток.
Сначала, введем в ветвь два источника ЭДС и одинаковые по величине и противоположно направленные:
Затем, используя принцип наложения, данную цепь представим суммой двух цепей. В первой оставим все источники активного двухполюсника и источник ЭДС Вторая цепь представляет собой пассивный двухполюсник, имеющий входное сопротивление и источник ЭДС
Рис. 3.10. Преобразование исходного двухполюсника в сумму двух цепей
На основании принципа наложения ток ветви
Поскольку и они могут быть любые по величине, то подберем их значения такими, чтобы ток был равен нулю. Для этого выберем
Напряжение на зажимах источника в режиме холостого хода численно равно его ЭДС. Тогда активный двухполюсник с источником может быть представлен в виде, представленном на рис. 3.11:
Рис. 3.11. Схема замещения активного двухполюсника
В этой схеме ЭДС численно равна активного двухполюсника, и, следовательно, ток:
Таким образом, ток в ветви
Пусть дана цепь (рис. 3.12), в которой необходимо рассчитать ток методом эквивалентного генератора.
Рис. 3.12. Исходная цепь
Последовательность расчета:
1. Разомкнем ветвь с сопротивлением или примем
2. Зададим положительное направление и для произвольно выбранных положительных направлений токов. Например, для первого контура запишем уравнение по второму закону Кирхгофа:
3. Токи и в преобразованной схеме по рис. 3.13 рассчитываем любым известным методом, например, методом контурных токов
Тогда
4. Определим эквивалентное сопротивление пассивного двухполюсника. Для этого мысленно закоротим все источники ЭДС исходной цепи, оставляя в схеме для реальных источников их внутренние сопротивления.
В образовавшейся схеме пассивного двухполюсника невозможно определить эквивалентное сопротивление относительно зажимов так как нет последовательно-параллельного соединения приемников, поэтому необходимо выполнить преобразование какого-либо участка цепи из «треугольника» в «звезду» или выполнить обратное преобразование.
Преобразуем, например, «треугольник» сопротивлений в «звезду» При этом получится схема с последовательно-параллельным соединением приемников (рис. 3.14).
Рис. 3.14. Схема пассивного двухполюсника
Сопротивления этой схемы будут:
Входное сопротивление цепи относительно зажимов и запишем в виде:
Окончательно имеем:
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |
- Теоремы теории цепей
- Теорема обратимости (или взаимности)
- Теорема компенсации
- Теорема об изменении токов в электрической цепи при изменении сопротивления в одной ветви
- Метод свертывания электрической цепи
- Метод преобразования схем электрических цепей
- Параллельное соединение генераторов
- Метод узловых и контурных уравнений